The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell proliferation in mice

Mitochondrial iron import is essential for iron–sulfur cluster formation and heme biosynthesis. Two nuclear-encoded vertebrate mitochondrial high-affinity iron importers, mitoferrin1 (Mfrn1) and Mfrn2, have been identified in mammals. In mice, the gene encoding Mfrn1, solute carrier family 25 member...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2020-08, Vol.295 (32), p.11002-11020
Hauptverfasser: Seguin, Alexandra, Jia, Xuan, Earl, Aubree M., Li, Liangtao, Wallace, Jared, Qiu, Andong, Bradley, Thomas, Shrestha, Rishna, Troadec, Marie-Bérengère, Hockin, Matt, Titen, Simon, Warner, Dave E., Dowdle, P. Tom, Wohlfahrt, Martin E., Hillas, Elaine, Firpo, Matthew A., Phillips, John D., Kaplan, Jerry, Paw, Barry H., Barasch, Jonathan, Ward, Diane M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11020
container_issue 32
container_start_page 11002
container_title The Journal of biological chemistry
container_volume 295
creator Seguin, Alexandra
Jia, Xuan
Earl, Aubree M.
Li, Liangtao
Wallace, Jared
Qiu, Andong
Bradley, Thomas
Shrestha, Rishna
Troadec, Marie-Bérengère
Hockin, Matt
Titen, Simon
Warner, Dave E.
Dowdle, P. Tom
Wohlfahrt, Martin E.
Hillas, Elaine
Firpo, Matthew A.
Phillips, John D.
Kaplan, Jerry
Paw, Barry H.
Barasch, Jonathan
Ward, Diane M.
description Mitochondrial iron import is essential for iron–sulfur cluster formation and heme biosynthesis. Two nuclear-encoded vertebrate mitochondrial high-affinity iron importers, mitoferrin1 (Mfrn1) and Mfrn2, have been identified in mammals. In mice, the gene encoding Mfrn1, solute carrier family 25 member 37 (Slc25a37), is highly expressed in sites of erythropoiesis, and whole-body Slc25a37 deletion leads to lethality. Here, we report that mice with a deletion of Slc25a28 (encoding Mfrn2) are born at expected Mendelian ratios, but show decreased male fertility due to reduced sperm numbers and sperm motility. Mfrn2−/− mice placed on a low-iron diet exhibited reduced mitochondrial manganese, cobalt, and zinc levels, but not reduced iron. Hepatocyte-specific loss of Slc25a37 (encoding Mfrn1) in Mfrn2−/− mice did not affect animal viability, but resulted in a 40% reduction in mitochondrial iron and reduced levels of oxidative phosphorylation proteins. Placing animals on a low-iron diet exaggerated the reduction in mitochondrial iron observed in liver-specific Mfrn1/2-knockout animals. Mfrn1−/−/Mfrn2−/− bone marrow–derived macrophages or skin fibroblasts in vitro were unable to proliferate, and overexpression of Mfrn1-GFP or Mfrn2-GFP prevented this proliferation defect. Loss of both mitoferrins in hepatocytes dramatically reduced regeneration in the adult mouse liver, further supporting the notion that both mitoferrins transport iron and that their absence limits proliferative capacity of mammalian cells. We conclude that Mfrn1 and Mfrn2 contribute to mitochondrial iron homeostasis and are required for high-affinity iron import during active proliferation of mammalian cells.
doi_str_mv 10.1074/jbc.RA120.013229
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7415990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817492003</els_id><sourcerecordid>2411558983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-9f16695ee6abfe6a34a200da699458d12eb16a8126ab8ba640324e7c1654ba1c3</originalsourceid><addsrcrecordid>eNp1UcGKFDEQDaK44-rdk_RRDz2m0klPx4MwLOoKA4Ks4C2k09U7WbqT2UrPgGd_3Mz07rIK5lChqt57SdVj7DXwJfCVfH_TuuX3NQi-5FAJoZ-wBfCmKisFP5-yBecCSi1Uc8ZepHTD85EanrOzSihooK4X7PfVFovRT9FtY-jI26EYccpxIhvSLtKElE6AHol8gMKG7lEuCktYEN7uPWFX9JGKwR-QcukaA5KdfAwnjsNhKHYUB9_fl33ISg5fsme9HRK-urvP2Y_Pn64uLsvNty9fL9ab0iktp1L3-cdaIda27XOopBWcd7bWWqqmA4Et1LYBkftNa2vJKyFx5aBWsrXgqnP2cdbd7dsRO4chDzmYHfnR0i8TrTd_d4Lfmut4MCsJSmueBd7NAtt_aJfrjTnWeLXiwLU8QMa-vXuM4u0e02RGn447sAHjPhkhAZRqdFNlKJ-hjmJKhP2DNnBz9Nlkn83JZzP7nClvHo_yQLg3NgM-zADMCz14JJOcx-Cwyz65yXTR_1_9D1xzusk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411558983</pqid></control><display><type>article</type><title>The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell proliferation in mice</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Seguin, Alexandra ; Jia, Xuan ; Earl, Aubree M. ; Li, Liangtao ; Wallace, Jared ; Qiu, Andong ; Bradley, Thomas ; Shrestha, Rishna ; Troadec, Marie-Bérengère ; Hockin, Matt ; Titen, Simon ; Warner, Dave E. ; Dowdle, P. Tom ; Wohlfahrt, Martin E. ; Hillas, Elaine ; Firpo, Matthew A. ; Phillips, John D. ; Kaplan, Jerry ; Paw, Barry H. ; Barasch, Jonathan ; Ward, Diane M.</creator><creatorcontrib>Seguin, Alexandra ; Jia, Xuan ; Earl, Aubree M. ; Li, Liangtao ; Wallace, Jared ; Qiu, Andong ; Bradley, Thomas ; Shrestha, Rishna ; Troadec, Marie-Bérengère ; Hockin, Matt ; Titen, Simon ; Warner, Dave E. ; Dowdle, P. Tom ; Wohlfahrt, Martin E. ; Hillas, Elaine ; Firpo, Matthew A. ; Phillips, John D. ; Kaplan, Jerry ; Paw, Barry H. ; Barasch, Jonathan ; Ward, Diane M.</creatorcontrib><description>Mitochondrial iron import is essential for iron–sulfur cluster formation and heme biosynthesis. Two nuclear-encoded vertebrate mitochondrial high-affinity iron importers, mitoferrin1 (Mfrn1) and Mfrn2, have been identified in mammals. In mice, the gene encoding Mfrn1, solute carrier family 25 member 37 (Slc25a37), is highly expressed in sites of erythropoiesis, and whole-body Slc25a37 deletion leads to lethality. Here, we report that mice with a deletion of Slc25a28 (encoding Mfrn2) are born at expected Mendelian ratios, but show decreased male fertility due to reduced sperm numbers and sperm motility. Mfrn2−/− mice placed on a low-iron diet exhibited reduced mitochondrial manganese, cobalt, and zinc levels, but not reduced iron. Hepatocyte-specific loss of Slc25a37 (encoding Mfrn1) in Mfrn2−/− mice did not affect animal viability, but resulted in a 40% reduction in mitochondrial iron and reduced levels of oxidative phosphorylation proteins. Placing animals on a low-iron diet exaggerated the reduction in mitochondrial iron observed in liver-specific Mfrn1/2-knockout animals. Mfrn1−/−/Mfrn2−/− bone marrow–derived macrophages or skin fibroblasts in vitro were unable to proliferate, and overexpression of Mfrn1-GFP or Mfrn2-GFP prevented this proliferation defect. Loss of both mitoferrins in hepatocytes dramatically reduced regeneration in the adult mouse liver, further supporting the notion that both mitoferrins transport iron and that their absence limits proliferative capacity of mammalian cells. We conclude that Mfrn1 and Mfrn2 contribute to mitochondrial iron homeostasis and are required for high-affinity iron import during active proliferation of mammalian cells.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA120.013229</identifier><identifier>PMID: 32518166</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cation Transport Proteins - physiology ; Cell Biology ; cell proliferation ; Cell Proliferation - physiology ; gene knockout ; Homeostasis ; Iron - metabolism ; Life Sciences ; liver ; Liver Regeneration - physiology ; Male ; membrane transport ; Membrane Transport Proteins - physiology ; metal homeostasis ; Mice ; Mice, Inbred C57BL ; mitochondria ; Mitochondria, Liver - metabolism ; mitoferrin (Mfrn) ; Slc25a28 ; solute carrier family 25 member 37 (Slc25a37)</subject><ispartof>The Journal of biological chemistry, 2020-08, Vol.295 (32), p.11002-11020</ispartof><rights>2020 © 2020 Seguin et al.</rights><rights>2020 Seguin et al.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020 Seguin et al. 2020 Seguin et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-9f16695ee6abfe6a34a200da699458d12eb16a8126ab8ba640324e7c1654ba1c3</citedby><cites>FETCH-LOGICAL-c594t-9f16695ee6abfe6a34a200da699458d12eb16a8126ab8ba640324e7c1654ba1c3</cites><orcidid>0000-0002-7983-3982 ; 0000-0003-2668-9670 ; 0000-0002-2760-8740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415990/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415990/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32518166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03701094$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Seguin, Alexandra</creatorcontrib><creatorcontrib>Jia, Xuan</creatorcontrib><creatorcontrib>Earl, Aubree M.</creatorcontrib><creatorcontrib>Li, Liangtao</creatorcontrib><creatorcontrib>Wallace, Jared</creatorcontrib><creatorcontrib>Qiu, Andong</creatorcontrib><creatorcontrib>Bradley, Thomas</creatorcontrib><creatorcontrib>Shrestha, Rishna</creatorcontrib><creatorcontrib>Troadec, Marie-Bérengère</creatorcontrib><creatorcontrib>Hockin, Matt</creatorcontrib><creatorcontrib>Titen, Simon</creatorcontrib><creatorcontrib>Warner, Dave E.</creatorcontrib><creatorcontrib>Dowdle, P. Tom</creatorcontrib><creatorcontrib>Wohlfahrt, Martin E.</creatorcontrib><creatorcontrib>Hillas, Elaine</creatorcontrib><creatorcontrib>Firpo, Matthew A.</creatorcontrib><creatorcontrib>Phillips, John D.</creatorcontrib><creatorcontrib>Kaplan, Jerry</creatorcontrib><creatorcontrib>Paw, Barry H.</creatorcontrib><creatorcontrib>Barasch, Jonathan</creatorcontrib><creatorcontrib>Ward, Diane M.</creatorcontrib><title>The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell proliferation in mice</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Mitochondrial iron import is essential for iron–sulfur cluster formation and heme biosynthesis. Two nuclear-encoded vertebrate mitochondrial high-affinity iron importers, mitoferrin1 (Mfrn1) and Mfrn2, have been identified in mammals. In mice, the gene encoding Mfrn1, solute carrier family 25 member 37 (Slc25a37), is highly expressed in sites of erythropoiesis, and whole-body Slc25a37 deletion leads to lethality. Here, we report that mice with a deletion of Slc25a28 (encoding Mfrn2) are born at expected Mendelian ratios, but show decreased male fertility due to reduced sperm numbers and sperm motility. Mfrn2−/− mice placed on a low-iron diet exhibited reduced mitochondrial manganese, cobalt, and zinc levels, but not reduced iron. Hepatocyte-specific loss of Slc25a37 (encoding Mfrn1) in Mfrn2−/− mice did not affect animal viability, but resulted in a 40% reduction in mitochondrial iron and reduced levels of oxidative phosphorylation proteins. Placing animals on a low-iron diet exaggerated the reduction in mitochondrial iron observed in liver-specific Mfrn1/2-knockout animals. Mfrn1−/−/Mfrn2−/− bone marrow–derived macrophages or skin fibroblasts in vitro were unable to proliferate, and overexpression of Mfrn1-GFP or Mfrn2-GFP prevented this proliferation defect. Loss of both mitoferrins in hepatocytes dramatically reduced regeneration in the adult mouse liver, further supporting the notion that both mitoferrins transport iron and that their absence limits proliferative capacity of mammalian cells. We conclude that Mfrn1 and Mfrn2 contribute to mitochondrial iron homeostasis and are required for high-affinity iron import during active proliferation of mammalian cells.</description><subject>Animals</subject><subject>Cation Transport Proteins - physiology</subject><subject>Cell Biology</subject><subject>cell proliferation</subject><subject>Cell Proliferation - physiology</subject><subject>gene knockout</subject><subject>Homeostasis</subject><subject>Iron - metabolism</subject><subject>Life Sciences</subject><subject>liver</subject><subject>Liver Regeneration - physiology</subject><subject>Male</subject><subject>membrane transport</subject><subject>Membrane Transport Proteins - physiology</subject><subject>metal homeostasis</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>mitochondria</subject><subject>Mitochondria, Liver - metabolism</subject><subject>mitoferrin (Mfrn)</subject><subject>Slc25a28</subject><subject>solute carrier family 25 member 37 (Slc25a37)</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1UcGKFDEQDaK44-rdk_RRDz2m0klPx4MwLOoKA4Ks4C2k09U7WbqT2UrPgGd_3Mz07rIK5lChqt57SdVj7DXwJfCVfH_TuuX3NQi-5FAJoZ-wBfCmKisFP5-yBecCSi1Uc8ZepHTD85EanrOzSihooK4X7PfVFovRT9FtY-jI26EYccpxIhvSLtKElE6AHol8gMKG7lEuCktYEN7uPWFX9JGKwR-QcukaA5KdfAwnjsNhKHYUB9_fl33ISg5fsme9HRK-urvP2Y_Pn64uLsvNty9fL9ab0iktp1L3-cdaIda27XOopBWcd7bWWqqmA4Et1LYBkftNa2vJKyFx5aBWsrXgqnP2cdbd7dsRO4chDzmYHfnR0i8TrTd_d4Lfmut4MCsJSmueBd7NAtt_aJfrjTnWeLXiwLU8QMa-vXuM4u0e02RGn447sAHjPhkhAZRqdFNlKJ-hjmJKhP2DNnBz9Nlkn83JZzP7nClvHo_yQLg3NgM-zADMCz14JJOcx-Cwyz65yXTR_1_9D1xzusk</recordid><startdate>20200807</startdate><enddate>20200807</enddate><creator>Seguin, Alexandra</creator><creator>Jia, Xuan</creator><creator>Earl, Aubree M.</creator><creator>Li, Liangtao</creator><creator>Wallace, Jared</creator><creator>Qiu, Andong</creator><creator>Bradley, Thomas</creator><creator>Shrestha, Rishna</creator><creator>Troadec, Marie-Bérengère</creator><creator>Hockin, Matt</creator><creator>Titen, Simon</creator><creator>Warner, Dave E.</creator><creator>Dowdle, P. Tom</creator><creator>Wohlfahrt, Martin E.</creator><creator>Hillas, Elaine</creator><creator>Firpo, Matthew A.</creator><creator>Phillips, John D.</creator><creator>Kaplan, Jerry</creator><creator>Paw, Barry H.</creator><creator>Barasch, Jonathan</creator><creator>Ward, Diane M.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7983-3982</orcidid><orcidid>https://orcid.org/0000-0003-2668-9670</orcidid><orcidid>https://orcid.org/0000-0002-2760-8740</orcidid></search><sort><creationdate>20200807</creationdate><title>The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell proliferation in mice</title><author>Seguin, Alexandra ; Jia, Xuan ; Earl, Aubree M. ; Li, Liangtao ; Wallace, Jared ; Qiu, Andong ; Bradley, Thomas ; Shrestha, Rishna ; Troadec, Marie-Bérengère ; Hockin, Matt ; Titen, Simon ; Warner, Dave E. ; Dowdle, P. Tom ; Wohlfahrt, Martin E. ; Hillas, Elaine ; Firpo, Matthew A. ; Phillips, John D. ; Kaplan, Jerry ; Paw, Barry H. ; Barasch, Jonathan ; Ward, Diane M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-9f16695ee6abfe6a34a200da699458d12eb16a8126ab8ba640324e7c1654ba1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Cation Transport Proteins - physiology</topic><topic>Cell Biology</topic><topic>cell proliferation</topic><topic>Cell Proliferation - physiology</topic><topic>gene knockout</topic><topic>Homeostasis</topic><topic>Iron - metabolism</topic><topic>Life Sciences</topic><topic>liver</topic><topic>Liver Regeneration - physiology</topic><topic>Male</topic><topic>membrane transport</topic><topic>Membrane Transport Proteins - physiology</topic><topic>metal homeostasis</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>mitochondria</topic><topic>Mitochondria, Liver - metabolism</topic><topic>mitoferrin (Mfrn)</topic><topic>Slc25a28</topic><topic>solute carrier family 25 member 37 (Slc25a37)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seguin, Alexandra</creatorcontrib><creatorcontrib>Jia, Xuan</creatorcontrib><creatorcontrib>Earl, Aubree M.</creatorcontrib><creatorcontrib>Li, Liangtao</creatorcontrib><creatorcontrib>Wallace, Jared</creatorcontrib><creatorcontrib>Qiu, Andong</creatorcontrib><creatorcontrib>Bradley, Thomas</creatorcontrib><creatorcontrib>Shrestha, Rishna</creatorcontrib><creatorcontrib>Troadec, Marie-Bérengère</creatorcontrib><creatorcontrib>Hockin, Matt</creatorcontrib><creatorcontrib>Titen, Simon</creatorcontrib><creatorcontrib>Warner, Dave E.</creatorcontrib><creatorcontrib>Dowdle, P. Tom</creatorcontrib><creatorcontrib>Wohlfahrt, Martin E.</creatorcontrib><creatorcontrib>Hillas, Elaine</creatorcontrib><creatorcontrib>Firpo, Matthew A.</creatorcontrib><creatorcontrib>Phillips, John D.</creatorcontrib><creatorcontrib>Kaplan, Jerry</creatorcontrib><creatorcontrib>Paw, Barry H.</creatorcontrib><creatorcontrib>Barasch, Jonathan</creatorcontrib><creatorcontrib>Ward, Diane M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seguin, Alexandra</au><au>Jia, Xuan</au><au>Earl, Aubree M.</au><au>Li, Liangtao</au><au>Wallace, Jared</au><au>Qiu, Andong</au><au>Bradley, Thomas</au><au>Shrestha, Rishna</au><au>Troadec, Marie-Bérengère</au><au>Hockin, Matt</au><au>Titen, Simon</au><au>Warner, Dave E.</au><au>Dowdle, P. Tom</au><au>Wohlfahrt, Martin E.</au><au>Hillas, Elaine</au><au>Firpo, Matthew A.</au><au>Phillips, John D.</au><au>Kaplan, Jerry</au><au>Paw, Barry H.</au><au>Barasch, Jonathan</au><au>Ward, Diane M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell proliferation in mice</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-08-07</date><risdate>2020</risdate><volume>295</volume><issue>32</issue><spage>11002</spage><epage>11020</epage><pages>11002-11020</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Mitochondrial iron import is essential for iron–sulfur cluster formation and heme biosynthesis. Two nuclear-encoded vertebrate mitochondrial high-affinity iron importers, mitoferrin1 (Mfrn1) and Mfrn2, have been identified in mammals. In mice, the gene encoding Mfrn1, solute carrier family 25 member 37 (Slc25a37), is highly expressed in sites of erythropoiesis, and whole-body Slc25a37 deletion leads to lethality. Here, we report that mice with a deletion of Slc25a28 (encoding Mfrn2) are born at expected Mendelian ratios, but show decreased male fertility due to reduced sperm numbers and sperm motility. Mfrn2−/− mice placed on a low-iron diet exhibited reduced mitochondrial manganese, cobalt, and zinc levels, but not reduced iron. Hepatocyte-specific loss of Slc25a37 (encoding Mfrn1) in Mfrn2−/− mice did not affect animal viability, but resulted in a 40% reduction in mitochondrial iron and reduced levels of oxidative phosphorylation proteins. Placing animals on a low-iron diet exaggerated the reduction in mitochondrial iron observed in liver-specific Mfrn1/2-knockout animals. Mfrn1−/−/Mfrn2−/− bone marrow–derived macrophages or skin fibroblasts in vitro were unable to proliferate, and overexpression of Mfrn1-GFP or Mfrn2-GFP prevented this proliferation defect. Loss of both mitoferrins in hepatocytes dramatically reduced regeneration in the adult mouse liver, further supporting the notion that both mitoferrins transport iron and that their absence limits proliferative capacity of mammalian cells. We conclude that Mfrn1 and Mfrn2 contribute to mitochondrial iron homeostasis and are required for high-affinity iron import during active proliferation of mammalian cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32518166</pmid><doi>10.1074/jbc.RA120.013229</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7983-3982</orcidid><orcidid>https://orcid.org/0000-0003-2668-9670</orcidid><orcidid>https://orcid.org/0000-0002-2760-8740</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2020-08, Vol.295 (32), p.11002-11020
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7415990
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Cation Transport Proteins - physiology
Cell Biology
cell proliferation
Cell Proliferation - physiology
gene knockout
Homeostasis
Iron - metabolism
Life Sciences
liver
Liver Regeneration - physiology
Male
membrane transport
Membrane Transport Proteins - physiology
metal homeostasis
Mice
Mice, Inbred C57BL
mitochondria
Mitochondria, Liver - metabolism
mitoferrin (Mfrn)
Slc25a28
solute carrier family 25 member 37 (Slc25a37)
title The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell proliferation in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mitochondrial%20metal%20transporters%20mitoferrin1%20and%20mitoferrin2%20are%20required%20for%20liver%20regeneration%20and%20cell%20proliferation%20in%20mice&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Seguin,%20Alexandra&rft.date=2020-08-07&rft.volume=295&rft.issue=32&rft.spage=11002&rft.epage=11020&rft.pages=11002-11020&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA120.013229&rft_dat=%3Cproquest_pubme%3E2411558983%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2411558983&rft_id=info:pmid/32518166&rft_els_id=S0021925817492003&rfr_iscdi=true