The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell proliferation in mice
Mitochondrial iron import is essential for iron–sulfur cluster formation and heme biosynthesis. Two nuclear-encoded vertebrate mitochondrial high-affinity iron importers, mitoferrin1 (Mfrn1) and Mfrn2, have been identified in mammals. In mice, the gene encoding Mfrn1, solute carrier family 25 member...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2020-08, Vol.295 (32), p.11002-11020 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11020 |
---|---|
container_issue | 32 |
container_start_page | 11002 |
container_title | The Journal of biological chemistry |
container_volume | 295 |
creator | Seguin, Alexandra Jia, Xuan Earl, Aubree M. Li, Liangtao Wallace, Jared Qiu, Andong Bradley, Thomas Shrestha, Rishna Troadec, Marie-Bérengère Hockin, Matt Titen, Simon Warner, Dave E. Dowdle, P. Tom Wohlfahrt, Martin E. Hillas, Elaine Firpo, Matthew A. Phillips, John D. Kaplan, Jerry Paw, Barry H. Barasch, Jonathan Ward, Diane M. |
description | Mitochondrial iron import is essential for iron–sulfur cluster formation and heme biosynthesis. Two nuclear-encoded vertebrate mitochondrial high-affinity iron importers, mitoferrin1 (Mfrn1) and Mfrn2, have been identified in mammals. In mice, the gene encoding Mfrn1, solute carrier family 25 member 37 (Slc25a37), is highly expressed in sites of erythropoiesis, and whole-body Slc25a37 deletion leads to lethality. Here, we report that mice with a deletion of Slc25a28 (encoding Mfrn2) are born at expected Mendelian ratios, but show decreased male fertility due to reduced sperm numbers and sperm motility. Mfrn2−/− mice placed on a low-iron diet exhibited reduced mitochondrial manganese, cobalt, and zinc levels, but not reduced iron. Hepatocyte-specific loss of Slc25a37 (encoding Mfrn1) in Mfrn2−/− mice did not affect animal viability, but resulted in a 40% reduction in mitochondrial iron and reduced levels of oxidative phosphorylation proteins. Placing animals on a low-iron diet exaggerated the reduction in mitochondrial iron observed in liver-specific Mfrn1/2-knockout animals. Mfrn1−/−/Mfrn2−/− bone marrow–derived macrophages or skin fibroblasts in vitro were unable to proliferate, and overexpression of Mfrn1-GFP or Mfrn2-GFP prevented this proliferation defect. Loss of both mitoferrins in hepatocytes dramatically reduced regeneration in the adult mouse liver, further supporting the notion that both mitoferrins transport iron and that their absence limits proliferative capacity of mammalian cells. We conclude that Mfrn1 and Mfrn2 contribute to mitochondrial iron homeostasis and are required for high-affinity iron import during active proliferation of mammalian cells. |
doi_str_mv | 10.1074/jbc.RA120.013229 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7415990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817492003</els_id><sourcerecordid>2411558983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-9f16695ee6abfe6a34a200da699458d12eb16a8126ab8ba640324e7c1654ba1c3</originalsourceid><addsrcrecordid>eNp1UcGKFDEQDaK44-rdk_RRDz2m0klPx4MwLOoKA4Ks4C2k09U7WbqT2UrPgGd_3Mz07rIK5lChqt57SdVj7DXwJfCVfH_TuuX3NQi-5FAJoZ-wBfCmKisFP5-yBecCSi1Uc8ZepHTD85EanrOzSihooK4X7PfVFovRT9FtY-jI26EYccpxIhvSLtKElE6AHol8gMKG7lEuCktYEN7uPWFX9JGKwR-QcukaA5KdfAwnjsNhKHYUB9_fl33ISg5fsme9HRK-urvP2Y_Pn64uLsvNty9fL9ab0iktp1L3-cdaIda27XOopBWcd7bWWqqmA4Et1LYBkftNa2vJKyFx5aBWsrXgqnP2cdbd7dsRO4chDzmYHfnR0i8TrTd_d4Lfmut4MCsJSmueBd7NAtt_aJfrjTnWeLXiwLU8QMa-vXuM4u0e02RGn447sAHjPhkhAZRqdFNlKJ-hjmJKhP2DNnBz9Nlkn83JZzP7nClvHo_yQLg3NgM-zADMCz14JJOcx-Cwyz65yXTR_1_9D1xzusk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411558983</pqid></control><display><type>article</type><title>The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell proliferation in mice</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Seguin, Alexandra ; Jia, Xuan ; Earl, Aubree M. ; Li, Liangtao ; Wallace, Jared ; Qiu, Andong ; Bradley, Thomas ; Shrestha, Rishna ; Troadec, Marie-Bérengère ; Hockin, Matt ; Titen, Simon ; Warner, Dave E. ; Dowdle, P. Tom ; Wohlfahrt, Martin E. ; Hillas, Elaine ; Firpo, Matthew A. ; Phillips, John D. ; Kaplan, Jerry ; Paw, Barry H. ; Barasch, Jonathan ; Ward, Diane M.</creator><creatorcontrib>Seguin, Alexandra ; Jia, Xuan ; Earl, Aubree M. ; Li, Liangtao ; Wallace, Jared ; Qiu, Andong ; Bradley, Thomas ; Shrestha, Rishna ; Troadec, Marie-Bérengère ; Hockin, Matt ; Titen, Simon ; Warner, Dave E. ; Dowdle, P. Tom ; Wohlfahrt, Martin E. ; Hillas, Elaine ; Firpo, Matthew A. ; Phillips, John D. ; Kaplan, Jerry ; Paw, Barry H. ; Barasch, Jonathan ; Ward, Diane M.</creatorcontrib><description>Mitochondrial iron import is essential for iron–sulfur cluster formation and heme biosynthesis. Two nuclear-encoded vertebrate mitochondrial high-affinity iron importers, mitoferrin1 (Mfrn1) and Mfrn2, have been identified in mammals. In mice, the gene encoding Mfrn1, solute carrier family 25 member 37 (Slc25a37), is highly expressed in sites of erythropoiesis, and whole-body Slc25a37 deletion leads to lethality. Here, we report that mice with a deletion of Slc25a28 (encoding Mfrn2) are born at expected Mendelian ratios, but show decreased male fertility due to reduced sperm numbers and sperm motility. Mfrn2−/− mice placed on a low-iron diet exhibited reduced mitochondrial manganese, cobalt, and zinc levels, but not reduced iron. Hepatocyte-specific loss of Slc25a37 (encoding Mfrn1) in Mfrn2−/− mice did not affect animal viability, but resulted in a 40% reduction in mitochondrial iron and reduced levels of oxidative phosphorylation proteins. Placing animals on a low-iron diet exaggerated the reduction in mitochondrial iron observed in liver-specific Mfrn1/2-knockout animals. Mfrn1−/−/Mfrn2−/− bone marrow–derived macrophages or skin fibroblasts in vitro were unable to proliferate, and overexpression of Mfrn1-GFP or Mfrn2-GFP prevented this proliferation defect. Loss of both mitoferrins in hepatocytes dramatically reduced regeneration in the adult mouse liver, further supporting the notion that both mitoferrins transport iron and that their absence limits proliferative capacity of mammalian cells. We conclude that Mfrn1 and Mfrn2 contribute to mitochondrial iron homeostasis and are required for high-affinity iron import during active proliferation of mammalian cells.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA120.013229</identifier><identifier>PMID: 32518166</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cation Transport Proteins - physiology ; Cell Biology ; cell proliferation ; Cell Proliferation - physiology ; gene knockout ; Homeostasis ; Iron - metabolism ; Life Sciences ; liver ; Liver Regeneration - physiology ; Male ; membrane transport ; Membrane Transport Proteins - physiology ; metal homeostasis ; Mice ; Mice, Inbred C57BL ; mitochondria ; Mitochondria, Liver - metabolism ; mitoferrin (Mfrn) ; Slc25a28 ; solute carrier family 25 member 37 (Slc25a37)</subject><ispartof>The Journal of biological chemistry, 2020-08, Vol.295 (32), p.11002-11020</ispartof><rights>2020 © 2020 Seguin et al.</rights><rights>2020 Seguin et al.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020 Seguin et al. 2020 Seguin et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-9f16695ee6abfe6a34a200da699458d12eb16a8126ab8ba640324e7c1654ba1c3</citedby><cites>FETCH-LOGICAL-c594t-9f16695ee6abfe6a34a200da699458d12eb16a8126ab8ba640324e7c1654ba1c3</cites><orcidid>0000-0002-7983-3982 ; 0000-0003-2668-9670 ; 0000-0002-2760-8740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415990/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415990/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32518166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03701094$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Seguin, Alexandra</creatorcontrib><creatorcontrib>Jia, Xuan</creatorcontrib><creatorcontrib>Earl, Aubree M.</creatorcontrib><creatorcontrib>Li, Liangtao</creatorcontrib><creatorcontrib>Wallace, Jared</creatorcontrib><creatorcontrib>Qiu, Andong</creatorcontrib><creatorcontrib>Bradley, Thomas</creatorcontrib><creatorcontrib>Shrestha, Rishna</creatorcontrib><creatorcontrib>Troadec, Marie-Bérengère</creatorcontrib><creatorcontrib>Hockin, Matt</creatorcontrib><creatorcontrib>Titen, Simon</creatorcontrib><creatorcontrib>Warner, Dave E.</creatorcontrib><creatorcontrib>Dowdle, P. Tom</creatorcontrib><creatorcontrib>Wohlfahrt, Martin E.</creatorcontrib><creatorcontrib>Hillas, Elaine</creatorcontrib><creatorcontrib>Firpo, Matthew A.</creatorcontrib><creatorcontrib>Phillips, John D.</creatorcontrib><creatorcontrib>Kaplan, Jerry</creatorcontrib><creatorcontrib>Paw, Barry H.</creatorcontrib><creatorcontrib>Barasch, Jonathan</creatorcontrib><creatorcontrib>Ward, Diane M.</creatorcontrib><title>The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell proliferation in mice</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Mitochondrial iron import is essential for iron–sulfur cluster formation and heme biosynthesis. Two nuclear-encoded vertebrate mitochondrial high-affinity iron importers, mitoferrin1 (Mfrn1) and Mfrn2, have been identified in mammals. In mice, the gene encoding Mfrn1, solute carrier family 25 member 37 (Slc25a37), is highly expressed in sites of erythropoiesis, and whole-body Slc25a37 deletion leads to lethality. Here, we report that mice with a deletion of Slc25a28 (encoding Mfrn2) are born at expected Mendelian ratios, but show decreased male fertility due to reduced sperm numbers and sperm motility. Mfrn2−/− mice placed on a low-iron diet exhibited reduced mitochondrial manganese, cobalt, and zinc levels, but not reduced iron. Hepatocyte-specific loss of Slc25a37 (encoding Mfrn1) in Mfrn2−/− mice did not affect animal viability, but resulted in a 40% reduction in mitochondrial iron and reduced levels of oxidative phosphorylation proteins. Placing animals on a low-iron diet exaggerated the reduction in mitochondrial iron observed in liver-specific Mfrn1/2-knockout animals. Mfrn1−/−/Mfrn2−/− bone marrow–derived macrophages or skin fibroblasts in vitro were unable to proliferate, and overexpression of Mfrn1-GFP or Mfrn2-GFP prevented this proliferation defect. Loss of both mitoferrins in hepatocytes dramatically reduced regeneration in the adult mouse liver, further supporting the notion that both mitoferrins transport iron and that their absence limits proliferative capacity of mammalian cells. We conclude that Mfrn1 and Mfrn2 contribute to mitochondrial iron homeostasis and are required for high-affinity iron import during active proliferation of mammalian cells.</description><subject>Animals</subject><subject>Cation Transport Proteins - physiology</subject><subject>Cell Biology</subject><subject>cell proliferation</subject><subject>Cell Proliferation - physiology</subject><subject>gene knockout</subject><subject>Homeostasis</subject><subject>Iron - metabolism</subject><subject>Life Sciences</subject><subject>liver</subject><subject>Liver Regeneration - physiology</subject><subject>Male</subject><subject>membrane transport</subject><subject>Membrane Transport Proteins - physiology</subject><subject>metal homeostasis</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>mitochondria</subject><subject>Mitochondria, Liver - metabolism</subject><subject>mitoferrin (Mfrn)</subject><subject>Slc25a28</subject><subject>solute carrier family 25 member 37 (Slc25a37)</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1UcGKFDEQDaK44-rdk_RRDz2m0klPx4MwLOoKA4Ks4C2k09U7WbqT2UrPgGd_3Mz07rIK5lChqt57SdVj7DXwJfCVfH_TuuX3NQi-5FAJoZ-wBfCmKisFP5-yBecCSi1Uc8ZepHTD85EanrOzSihooK4X7PfVFovRT9FtY-jI26EYccpxIhvSLtKElE6AHol8gMKG7lEuCktYEN7uPWFX9JGKwR-QcukaA5KdfAwnjsNhKHYUB9_fl33ISg5fsme9HRK-urvP2Y_Pn64uLsvNty9fL9ab0iktp1L3-cdaIda27XOopBWcd7bWWqqmA4Et1LYBkftNa2vJKyFx5aBWsrXgqnP2cdbd7dsRO4chDzmYHfnR0i8TrTd_d4Lfmut4MCsJSmueBd7NAtt_aJfrjTnWeLXiwLU8QMa-vXuM4u0e02RGn447sAHjPhkhAZRqdFNlKJ-hjmJKhP2DNnBz9Nlkn83JZzP7nClvHo_yQLg3NgM-zADMCz14JJOcx-Cwyz65yXTR_1_9D1xzusk</recordid><startdate>20200807</startdate><enddate>20200807</enddate><creator>Seguin, Alexandra</creator><creator>Jia, Xuan</creator><creator>Earl, Aubree M.</creator><creator>Li, Liangtao</creator><creator>Wallace, Jared</creator><creator>Qiu, Andong</creator><creator>Bradley, Thomas</creator><creator>Shrestha, Rishna</creator><creator>Troadec, Marie-Bérengère</creator><creator>Hockin, Matt</creator><creator>Titen, Simon</creator><creator>Warner, Dave E.</creator><creator>Dowdle, P. Tom</creator><creator>Wohlfahrt, Martin E.</creator><creator>Hillas, Elaine</creator><creator>Firpo, Matthew A.</creator><creator>Phillips, John D.</creator><creator>Kaplan, Jerry</creator><creator>Paw, Barry H.</creator><creator>Barasch, Jonathan</creator><creator>Ward, Diane M.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7983-3982</orcidid><orcidid>https://orcid.org/0000-0003-2668-9670</orcidid><orcidid>https://orcid.org/0000-0002-2760-8740</orcidid></search><sort><creationdate>20200807</creationdate><title>The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell proliferation in mice</title><author>Seguin, Alexandra ; Jia, Xuan ; Earl, Aubree M. ; Li, Liangtao ; Wallace, Jared ; Qiu, Andong ; Bradley, Thomas ; Shrestha, Rishna ; Troadec, Marie-Bérengère ; Hockin, Matt ; Titen, Simon ; Warner, Dave E. ; Dowdle, P. Tom ; Wohlfahrt, Martin E. ; Hillas, Elaine ; Firpo, Matthew A. ; Phillips, John D. ; Kaplan, Jerry ; Paw, Barry H. ; Barasch, Jonathan ; Ward, Diane M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-9f16695ee6abfe6a34a200da699458d12eb16a8126ab8ba640324e7c1654ba1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Cation Transport Proteins - physiology</topic><topic>Cell Biology</topic><topic>cell proliferation</topic><topic>Cell Proliferation - physiology</topic><topic>gene knockout</topic><topic>Homeostasis</topic><topic>Iron - metabolism</topic><topic>Life Sciences</topic><topic>liver</topic><topic>Liver Regeneration - physiology</topic><topic>Male</topic><topic>membrane transport</topic><topic>Membrane Transport Proteins - physiology</topic><topic>metal homeostasis</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>mitochondria</topic><topic>Mitochondria, Liver - metabolism</topic><topic>mitoferrin (Mfrn)</topic><topic>Slc25a28</topic><topic>solute carrier family 25 member 37 (Slc25a37)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seguin, Alexandra</creatorcontrib><creatorcontrib>Jia, Xuan</creatorcontrib><creatorcontrib>Earl, Aubree M.</creatorcontrib><creatorcontrib>Li, Liangtao</creatorcontrib><creatorcontrib>Wallace, Jared</creatorcontrib><creatorcontrib>Qiu, Andong</creatorcontrib><creatorcontrib>Bradley, Thomas</creatorcontrib><creatorcontrib>Shrestha, Rishna</creatorcontrib><creatorcontrib>Troadec, Marie-Bérengère</creatorcontrib><creatorcontrib>Hockin, Matt</creatorcontrib><creatorcontrib>Titen, Simon</creatorcontrib><creatorcontrib>Warner, Dave E.</creatorcontrib><creatorcontrib>Dowdle, P. Tom</creatorcontrib><creatorcontrib>Wohlfahrt, Martin E.</creatorcontrib><creatorcontrib>Hillas, Elaine</creatorcontrib><creatorcontrib>Firpo, Matthew A.</creatorcontrib><creatorcontrib>Phillips, John D.</creatorcontrib><creatorcontrib>Kaplan, Jerry</creatorcontrib><creatorcontrib>Paw, Barry H.</creatorcontrib><creatorcontrib>Barasch, Jonathan</creatorcontrib><creatorcontrib>Ward, Diane M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seguin, Alexandra</au><au>Jia, Xuan</au><au>Earl, Aubree M.</au><au>Li, Liangtao</au><au>Wallace, Jared</au><au>Qiu, Andong</au><au>Bradley, Thomas</au><au>Shrestha, Rishna</au><au>Troadec, Marie-Bérengère</au><au>Hockin, Matt</au><au>Titen, Simon</au><au>Warner, Dave E.</au><au>Dowdle, P. Tom</au><au>Wohlfahrt, Martin E.</au><au>Hillas, Elaine</au><au>Firpo, Matthew A.</au><au>Phillips, John D.</au><au>Kaplan, Jerry</au><au>Paw, Barry H.</au><au>Barasch, Jonathan</au><au>Ward, Diane M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell proliferation in mice</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-08-07</date><risdate>2020</risdate><volume>295</volume><issue>32</issue><spage>11002</spage><epage>11020</epage><pages>11002-11020</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Mitochondrial iron import is essential for iron–sulfur cluster formation and heme biosynthesis. Two nuclear-encoded vertebrate mitochondrial high-affinity iron importers, mitoferrin1 (Mfrn1) and Mfrn2, have been identified in mammals. In mice, the gene encoding Mfrn1, solute carrier family 25 member 37 (Slc25a37), is highly expressed in sites of erythropoiesis, and whole-body Slc25a37 deletion leads to lethality. Here, we report that mice with a deletion of Slc25a28 (encoding Mfrn2) are born at expected Mendelian ratios, but show decreased male fertility due to reduced sperm numbers and sperm motility. Mfrn2−/− mice placed on a low-iron diet exhibited reduced mitochondrial manganese, cobalt, and zinc levels, but not reduced iron. Hepatocyte-specific loss of Slc25a37 (encoding Mfrn1) in Mfrn2−/− mice did not affect animal viability, but resulted in a 40% reduction in mitochondrial iron and reduced levels of oxidative phosphorylation proteins. Placing animals on a low-iron diet exaggerated the reduction in mitochondrial iron observed in liver-specific Mfrn1/2-knockout animals. Mfrn1−/−/Mfrn2−/− bone marrow–derived macrophages or skin fibroblasts in vitro were unable to proliferate, and overexpression of Mfrn1-GFP or Mfrn2-GFP prevented this proliferation defect. Loss of both mitoferrins in hepatocytes dramatically reduced regeneration in the adult mouse liver, further supporting the notion that both mitoferrins transport iron and that their absence limits proliferative capacity of mammalian cells. We conclude that Mfrn1 and Mfrn2 contribute to mitochondrial iron homeostasis and are required for high-affinity iron import during active proliferation of mammalian cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32518166</pmid><doi>10.1074/jbc.RA120.013229</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7983-3982</orcidid><orcidid>https://orcid.org/0000-0003-2668-9670</orcidid><orcidid>https://orcid.org/0000-0002-2760-8740</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2020-08, Vol.295 (32), p.11002-11020 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7415990 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Cation Transport Proteins - physiology Cell Biology cell proliferation Cell Proliferation - physiology gene knockout Homeostasis Iron - metabolism Life Sciences liver Liver Regeneration - physiology Male membrane transport Membrane Transport Proteins - physiology metal homeostasis Mice Mice, Inbred C57BL mitochondria Mitochondria, Liver - metabolism mitoferrin (Mfrn) Slc25a28 solute carrier family 25 member 37 (Slc25a37) |
title | The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell proliferation in mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mitochondrial%20metal%20transporters%20mitoferrin1%20and%20mitoferrin2%20are%20required%20for%20liver%20regeneration%20and%20cell%20proliferation%20in%20mice&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Seguin,%20Alexandra&rft.date=2020-08-07&rft.volume=295&rft.issue=32&rft.spage=11002&rft.epage=11020&rft.pages=11002-11020&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA120.013229&rft_dat=%3Cproquest_pubme%3E2411558983%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2411558983&rft_id=info:pmid/32518166&rft_els_id=S0021925817492003&rfr_iscdi=true |