Sphingosine kinase‐2 is overexpressed in large granular lymphocyte leukaemia and promotes survival through Mcl‐1

Summary Sphingolipid metabolism is increasingly recognised as a therapeutic target in cancer due to its regulation of cell proliferation and apoptosis. The sphingolipid rheostat is proposed to control cell fate through maintaining balance between pro‐apoptotic and pro‐survival sphingolipids. This ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of haematology 2020-08, Vol.190 (3), p.405-417
Hauptverfasser: LeBlanc, Francis R., Pearson, Jennifer M., Tan, Su‐Fern, Cheon, HeeJin, Xing, Jeffrey C., Dunton, Wendy, Feith, David J., Loughran, Thomas P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 417
container_issue 3
container_start_page 405
container_title British journal of haematology
container_volume 190
creator LeBlanc, Francis R.
Pearson, Jennifer M.
Tan, Su‐Fern
Cheon, HeeJin
Xing, Jeffrey C.
Dunton, Wendy
Feith, David J.
Loughran, Thomas P.
description Summary Sphingolipid metabolism is increasingly recognised as a therapeutic target in cancer due to its regulation of cell proliferation and apoptosis. The sphingolipid rheostat is proposed to control cell fate through maintaining balance between pro‐apoptotic and pro‐survival sphingolipids. This balance is regulated by metabolising enzymes involved in sphingolipid production. One such enzyme, sphingosine kinase‐2 (SPHK2), produces pro‐survival sphingosine 1‐phosphate (S1P) by phosphorylation of pro‐apoptotic sphingosine. Elevated SPHK2 has been found in multiple cancer types and contributes to cell survival, chemotherapeutic resistance and apoptosis resistance. We have previously shown elevation of S1P in large granular lymphocyte (LGL) leukaemia serum and cells isolated from patients. Here, we examined SPHK2 expression in LGL leukaemia and found SPHK2 mRNA and protein upregulation in a majority of LGL leukaemia patient samples. Knockdown of SPHK2 with siRNA in LGL leukaemia cell lines decreased proliferation. Additionally, the use of ABC294640 or K145, both SPHK2‐specific inhibitors, decreased viability of LGL leukaemia cell lines. ABC294640 selectively induced apoptosis in LGL cell lines and freshly isolated LGL leukaemia patient cells compared to normal controls. Mechanistically, SPHK2 inhibition downregulated pro‐survival myeloid cell leukaemia‐1 (Mcl‐1) protein through proteasomal degradation. Targeting of SPHK2 therefore provides a novel therapeutic approach for the treatment of LGL leukaemia.
doi_str_mv 10.1111/bjh.16530
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7415522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2370531621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4430-153d323e5f8d325d7f5ee9df064402ab63dfe6927318235d3578e7f5236474723</originalsourceid><addsrcrecordid>eNp1kc1u1DAURi0EokNhwQsgS2xgkdb_zmyQoAIKKmIBrC1PcpN46tjBTgZmxyPwjDwJLlMqQOJu7pV8dPRZH0IPKTmhZU432-GEKsnJLbSiXMmKUUFvoxUhRFeUiPoI3ct5SwjlRNK76IgzyoTg9QrNH6bBhT5mFwBfumAz_Pj2nWGXcdxBgq9TgpyhxS5gb1MPuE82LOXEfj9OQ2z2M2APy6WF0VlsQ4unFMc4Q8Z5STu3sx7PQ4pLP-B3jS92eh_d6azP8OB6H6NPr15-PDuvLt6_fnP2_KJqSjhSUclbzjjIri5btrqTAOu2I0oIwuxG8bYDtWaa05px2XKpaygQ40pooRk_Rs8O3mnZjNA2EOZkvZmSG23am2id-fsluMH0cWe0oFKyK8GTa0GKnxfIsxldbsB7GyAu2TCuieRUMVrQx_-g27ikUL5nmGBrJddEq0I9PVBNijkn6G7CUGKuujSlS_Ory8I--jP9Dfm7vAKcHoAvzsP-_ybz4u35QfkTnDKrXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429659076</pqid></control><display><type>article</type><title>Sphingosine kinase‐2 is overexpressed in large granular lymphocyte leukaemia and promotes survival through Mcl‐1</title><source>MEDLINE</source><source>Wiley Journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>LeBlanc, Francis R. ; Pearson, Jennifer M. ; Tan, Su‐Fern ; Cheon, HeeJin ; Xing, Jeffrey C. ; Dunton, Wendy ; Feith, David J. ; Loughran, Thomas P.</creator><creatorcontrib>LeBlanc, Francis R. ; Pearson, Jennifer M. ; Tan, Su‐Fern ; Cheon, HeeJin ; Xing, Jeffrey C. ; Dunton, Wendy ; Feith, David J. ; Loughran, Thomas P.</creatorcontrib><description>Summary Sphingolipid metabolism is increasingly recognised as a therapeutic target in cancer due to its regulation of cell proliferation and apoptosis. The sphingolipid rheostat is proposed to control cell fate through maintaining balance between pro‐apoptotic and pro‐survival sphingolipids. This balance is regulated by metabolising enzymes involved in sphingolipid production. One such enzyme, sphingosine kinase‐2 (SPHK2), produces pro‐survival sphingosine 1‐phosphate (S1P) by phosphorylation of pro‐apoptotic sphingosine. Elevated SPHK2 has been found in multiple cancer types and contributes to cell survival, chemotherapeutic resistance and apoptosis resistance. We have previously shown elevation of S1P in large granular lymphocyte (LGL) leukaemia serum and cells isolated from patients. Here, we examined SPHK2 expression in LGL leukaemia and found SPHK2 mRNA and protein upregulation in a majority of LGL leukaemia patient samples. Knockdown of SPHK2 with siRNA in LGL leukaemia cell lines decreased proliferation. Additionally, the use of ABC294640 or K145, both SPHK2‐specific inhibitors, decreased viability of LGL leukaemia cell lines. ABC294640 selectively induced apoptosis in LGL cell lines and freshly isolated LGL leukaemia patient cells compared to normal controls. Mechanistically, SPHK2 inhibition downregulated pro‐survival myeloid cell leukaemia‐1 (Mcl‐1) protein through proteasomal degradation. Targeting of SPHK2 therefore provides a novel therapeutic approach for the treatment of LGL leukaemia.</description><identifier>ISSN: 0007-1048</identifier><identifier>EISSN: 1365-2141</identifier><identifier>DOI: 10.1111/bjh.16530</identifier><identifier>PMID: 32124438</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Adamantane - analogs &amp; derivatives ; Adamantane - pharmacology ; Adult ; Aged ; Apoptosis ; Apoptosis - drug effects ; Cell fate ; Cell proliferation ; Cell survival ; Chemoresistance ; Enzyme Induction ; Female ; Gene Expression Regulation, Leukemic ; Hematology ; Humans ; Kinases ; leukaemia ; Leukemia ; Leukemia, Large Granular Lymphocytic - enzymology ; Leukocytes, Mononuclear - enzymology ; LGL leukaemia ; Lipid metabolism ; Lymphocytes ; Lysophospholipids ; Male ; Middle Aged ; mRNA ; Myeloid Cell Leukemia Sequence 1 Protein - physiology ; Neoplasm Proteins - biosynthesis ; Neoplasm Proteins - genetics ; Neoplasm Proteins - physiology ; Peptide Fragments ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor) - antagonists &amp; inhibitors ; Phosphotransferases (Alcohol Group Acceptor) - biosynthesis ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Phosphotransferases (Alcohol Group Acceptor) - physiology ; Proteasome Endopeptidase Complex - metabolism ; Proteasomes ; Proto-Oncogene Proteins ; Pyridines - pharmacology ; RNA Interference ; RNA, Messenger - biosynthesis ; RNA, Messenger - genetics ; RNA, Neoplasm - biosynthesis ; RNA, Neoplasm - genetics ; RNA, Small Interfering - genetics ; RNA, Small Interfering - pharmacology ; siRNA ; Sphingolipids ; Sphingosine - analogs &amp; derivatives ; Sphingosine kinase ; SPHK2 ; Thiazolidinediones - pharmacology ; Up-Regulation</subject><ispartof>British journal of haematology, 2020-08, Vol.190 (3), p.405-417</ispartof><rights>2020 British Society for Haematology and John Wiley &amp; Sons Ltd</rights><rights>2020 British Society for Haematology and John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4430-153d323e5f8d325d7f5ee9df064402ab63dfe6927318235d3578e7f5236474723</citedby><cites>FETCH-LOGICAL-c4430-153d323e5f8d325d7f5ee9df064402ab63dfe6927318235d3578e7f5236474723</cites><orcidid>0000-0003-0149-9651 ; 0000-0003-0696-1390 ; 0000-0003-4981-1691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbjh.16530$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbjh.16530$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32124438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LeBlanc, Francis R.</creatorcontrib><creatorcontrib>Pearson, Jennifer M.</creatorcontrib><creatorcontrib>Tan, Su‐Fern</creatorcontrib><creatorcontrib>Cheon, HeeJin</creatorcontrib><creatorcontrib>Xing, Jeffrey C.</creatorcontrib><creatorcontrib>Dunton, Wendy</creatorcontrib><creatorcontrib>Feith, David J.</creatorcontrib><creatorcontrib>Loughran, Thomas P.</creatorcontrib><title>Sphingosine kinase‐2 is overexpressed in large granular lymphocyte leukaemia and promotes survival through Mcl‐1</title><title>British journal of haematology</title><addtitle>Br J Haematol</addtitle><description>Summary Sphingolipid metabolism is increasingly recognised as a therapeutic target in cancer due to its regulation of cell proliferation and apoptosis. The sphingolipid rheostat is proposed to control cell fate through maintaining balance between pro‐apoptotic and pro‐survival sphingolipids. This balance is regulated by metabolising enzymes involved in sphingolipid production. One such enzyme, sphingosine kinase‐2 (SPHK2), produces pro‐survival sphingosine 1‐phosphate (S1P) by phosphorylation of pro‐apoptotic sphingosine. Elevated SPHK2 has been found in multiple cancer types and contributes to cell survival, chemotherapeutic resistance and apoptosis resistance. We have previously shown elevation of S1P in large granular lymphocyte (LGL) leukaemia serum and cells isolated from patients. Here, we examined SPHK2 expression in LGL leukaemia and found SPHK2 mRNA and protein upregulation in a majority of LGL leukaemia patient samples. Knockdown of SPHK2 with siRNA in LGL leukaemia cell lines decreased proliferation. Additionally, the use of ABC294640 or K145, both SPHK2‐specific inhibitors, decreased viability of LGL leukaemia cell lines. ABC294640 selectively induced apoptosis in LGL cell lines and freshly isolated LGL leukaemia patient cells compared to normal controls. Mechanistically, SPHK2 inhibition downregulated pro‐survival myeloid cell leukaemia‐1 (Mcl‐1) protein through proteasomal degradation. Targeting of SPHK2 therefore provides a novel therapeutic approach for the treatment of LGL leukaemia.</description><subject>Adamantane - analogs &amp; derivatives</subject><subject>Adamantane - pharmacology</subject><subject>Adult</subject><subject>Aged</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Cell fate</subject><subject>Cell proliferation</subject><subject>Cell survival</subject><subject>Chemoresistance</subject><subject>Enzyme Induction</subject><subject>Female</subject><subject>Gene Expression Regulation, Leukemic</subject><subject>Hematology</subject><subject>Humans</subject><subject>Kinases</subject><subject>leukaemia</subject><subject>Leukemia</subject><subject>Leukemia, Large Granular Lymphocytic - enzymology</subject><subject>Leukocytes, Mononuclear - enzymology</subject><subject>LGL leukaemia</subject><subject>Lipid metabolism</subject><subject>Lymphocytes</subject><subject>Lysophospholipids</subject><subject>Male</subject><subject>Middle Aged</subject><subject>mRNA</subject><subject>Myeloid Cell Leukemia Sequence 1 Protein - physiology</subject><subject>Neoplasm Proteins - biosynthesis</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - physiology</subject><subject>Peptide Fragments</subject><subject>Phosphorylation</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - antagonists &amp; inhibitors</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - biosynthesis</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - physiology</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Proteasomes</subject><subject>Proto-Oncogene Proteins</subject><subject>Pyridines - pharmacology</subject><subject>RNA Interference</subject><subject>RNA, Messenger - biosynthesis</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Neoplasm - biosynthesis</subject><subject>RNA, Neoplasm - genetics</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - pharmacology</subject><subject>siRNA</subject><subject>Sphingolipids</subject><subject>Sphingosine - analogs &amp; derivatives</subject><subject>Sphingosine kinase</subject><subject>SPHK2</subject><subject>Thiazolidinediones - pharmacology</subject><subject>Up-Regulation</subject><issn>0007-1048</issn><issn>1365-2141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAURi0EokNhwQsgS2xgkdb_zmyQoAIKKmIBrC1PcpN46tjBTgZmxyPwjDwJLlMqQOJu7pV8dPRZH0IPKTmhZU432-GEKsnJLbSiXMmKUUFvoxUhRFeUiPoI3ct5SwjlRNK76IgzyoTg9QrNH6bBhT5mFwBfumAz_Pj2nWGXcdxBgq9TgpyhxS5gb1MPuE82LOXEfj9OQ2z2M2APy6WF0VlsQ4unFMc4Q8Z5STu3sx7PQ4pLP-B3jS92eh_d6azP8OB6H6NPr15-PDuvLt6_fnP2_KJqSjhSUclbzjjIri5btrqTAOu2I0oIwuxG8bYDtWaa05px2XKpaygQ40pooRk_Rs8O3mnZjNA2EOZkvZmSG23am2id-fsluMH0cWe0oFKyK8GTa0GKnxfIsxldbsB7GyAu2TCuieRUMVrQx_-g27ikUL5nmGBrJddEq0I9PVBNijkn6G7CUGKuujSlS_Ory8I--jP9Dfm7vAKcHoAvzsP-_ybz4u35QfkTnDKrXg</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>LeBlanc, Francis R.</creator><creator>Pearson, Jennifer M.</creator><creator>Tan, Su‐Fern</creator><creator>Cheon, HeeJin</creator><creator>Xing, Jeffrey C.</creator><creator>Dunton, Wendy</creator><creator>Feith, David J.</creator><creator>Loughran, Thomas P.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0149-9651</orcidid><orcidid>https://orcid.org/0000-0003-0696-1390</orcidid><orcidid>https://orcid.org/0000-0003-4981-1691</orcidid></search><sort><creationdate>202008</creationdate><title>Sphingosine kinase‐2 is overexpressed in large granular lymphocyte leukaemia and promotes survival through Mcl‐1</title><author>LeBlanc, Francis R. ; Pearson, Jennifer M. ; Tan, Su‐Fern ; Cheon, HeeJin ; Xing, Jeffrey C. ; Dunton, Wendy ; Feith, David J. ; Loughran, Thomas P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4430-153d323e5f8d325d7f5ee9df064402ab63dfe6927318235d3578e7f5236474723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adamantane - analogs &amp; derivatives</topic><topic>Adamantane - pharmacology</topic><topic>Adult</topic><topic>Aged</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Cell fate</topic><topic>Cell proliferation</topic><topic>Cell survival</topic><topic>Chemoresistance</topic><topic>Enzyme Induction</topic><topic>Female</topic><topic>Gene Expression Regulation, Leukemic</topic><topic>Hematology</topic><topic>Humans</topic><topic>Kinases</topic><topic>leukaemia</topic><topic>Leukemia</topic><topic>Leukemia, Large Granular Lymphocytic - enzymology</topic><topic>Leukocytes, Mononuclear - enzymology</topic><topic>LGL leukaemia</topic><topic>Lipid metabolism</topic><topic>Lymphocytes</topic><topic>Lysophospholipids</topic><topic>Male</topic><topic>Middle Aged</topic><topic>mRNA</topic><topic>Myeloid Cell Leukemia Sequence 1 Protein - physiology</topic><topic>Neoplasm Proteins - biosynthesis</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - physiology</topic><topic>Peptide Fragments</topic><topic>Phosphorylation</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - antagonists &amp; inhibitors</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - biosynthesis</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - physiology</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Proteasomes</topic><topic>Proto-Oncogene Proteins</topic><topic>Pyridines - pharmacology</topic><topic>RNA Interference</topic><topic>RNA, Messenger - biosynthesis</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Neoplasm - biosynthesis</topic><topic>RNA, Neoplasm - genetics</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - pharmacology</topic><topic>siRNA</topic><topic>Sphingolipids</topic><topic>Sphingosine - analogs &amp; derivatives</topic><topic>Sphingosine kinase</topic><topic>SPHK2</topic><topic>Thiazolidinediones - pharmacology</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LeBlanc, Francis R.</creatorcontrib><creatorcontrib>Pearson, Jennifer M.</creatorcontrib><creatorcontrib>Tan, Su‐Fern</creatorcontrib><creatorcontrib>Cheon, HeeJin</creatorcontrib><creatorcontrib>Xing, Jeffrey C.</creatorcontrib><creatorcontrib>Dunton, Wendy</creatorcontrib><creatorcontrib>Feith, David J.</creatorcontrib><creatorcontrib>Loughran, Thomas P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of haematology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LeBlanc, Francis R.</au><au>Pearson, Jennifer M.</au><au>Tan, Su‐Fern</au><au>Cheon, HeeJin</au><au>Xing, Jeffrey C.</au><au>Dunton, Wendy</au><au>Feith, David J.</au><au>Loughran, Thomas P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sphingosine kinase‐2 is overexpressed in large granular lymphocyte leukaemia and promotes survival through Mcl‐1</atitle><jtitle>British journal of haematology</jtitle><addtitle>Br J Haematol</addtitle><date>2020-08</date><risdate>2020</risdate><volume>190</volume><issue>3</issue><spage>405</spage><epage>417</epage><pages>405-417</pages><issn>0007-1048</issn><eissn>1365-2141</eissn><abstract>Summary Sphingolipid metabolism is increasingly recognised as a therapeutic target in cancer due to its regulation of cell proliferation and apoptosis. The sphingolipid rheostat is proposed to control cell fate through maintaining balance between pro‐apoptotic and pro‐survival sphingolipids. This balance is regulated by metabolising enzymes involved in sphingolipid production. One such enzyme, sphingosine kinase‐2 (SPHK2), produces pro‐survival sphingosine 1‐phosphate (S1P) by phosphorylation of pro‐apoptotic sphingosine. Elevated SPHK2 has been found in multiple cancer types and contributes to cell survival, chemotherapeutic resistance and apoptosis resistance. We have previously shown elevation of S1P in large granular lymphocyte (LGL) leukaemia serum and cells isolated from patients. Here, we examined SPHK2 expression in LGL leukaemia and found SPHK2 mRNA and protein upregulation in a majority of LGL leukaemia patient samples. Knockdown of SPHK2 with siRNA in LGL leukaemia cell lines decreased proliferation. Additionally, the use of ABC294640 or K145, both SPHK2‐specific inhibitors, decreased viability of LGL leukaemia cell lines. ABC294640 selectively induced apoptosis in LGL cell lines and freshly isolated LGL leukaemia patient cells compared to normal controls. Mechanistically, SPHK2 inhibition downregulated pro‐survival myeloid cell leukaemia‐1 (Mcl‐1) protein through proteasomal degradation. Targeting of SPHK2 therefore provides a novel therapeutic approach for the treatment of LGL leukaemia.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32124438</pmid><doi>10.1111/bjh.16530</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0149-9651</orcidid><orcidid>https://orcid.org/0000-0003-0696-1390</orcidid><orcidid>https://orcid.org/0000-0003-4981-1691</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-1048
ispartof British journal of haematology, 2020-08, Vol.190 (3), p.405-417
issn 0007-1048
1365-2141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7415522
source MEDLINE; Wiley Journals; Wiley Online Library (Open Access Collection)
subjects Adamantane - analogs & derivatives
Adamantane - pharmacology
Adult
Aged
Apoptosis
Apoptosis - drug effects
Cell fate
Cell proliferation
Cell survival
Chemoresistance
Enzyme Induction
Female
Gene Expression Regulation, Leukemic
Hematology
Humans
Kinases
leukaemia
Leukemia
Leukemia, Large Granular Lymphocytic - enzymology
Leukocytes, Mononuclear - enzymology
LGL leukaemia
Lipid metabolism
Lymphocytes
Lysophospholipids
Male
Middle Aged
mRNA
Myeloid Cell Leukemia Sequence 1 Protein - physiology
Neoplasm Proteins - biosynthesis
Neoplasm Proteins - genetics
Neoplasm Proteins - physiology
Peptide Fragments
Phosphorylation
Phosphotransferases (Alcohol Group Acceptor) - antagonists & inhibitors
Phosphotransferases (Alcohol Group Acceptor) - biosynthesis
Phosphotransferases (Alcohol Group Acceptor) - genetics
Phosphotransferases (Alcohol Group Acceptor) - physiology
Proteasome Endopeptidase Complex - metabolism
Proteasomes
Proto-Oncogene Proteins
Pyridines - pharmacology
RNA Interference
RNA, Messenger - biosynthesis
RNA, Messenger - genetics
RNA, Neoplasm - biosynthesis
RNA, Neoplasm - genetics
RNA, Small Interfering - genetics
RNA, Small Interfering - pharmacology
siRNA
Sphingolipids
Sphingosine - analogs & derivatives
Sphingosine kinase
SPHK2
Thiazolidinediones - pharmacology
Up-Regulation
title Sphingosine kinase‐2 is overexpressed in large granular lymphocyte leukaemia and promotes survival through Mcl‐1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sphingosine%20kinase%E2%80%902%20is%20overexpressed%20in%20large%20granular%20lymphocyte%20leukaemia%20and%20promotes%20survival%20through%20Mcl%E2%80%901&rft.jtitle=British%20journal%20of%20haematology&rft.au=LeBlanc,%20Francis%20R.&rft.date=2020-08&rft.volume=190&rft.issue=3&rft.spage=405&rft.epage=417&rft.pages=405-417&rft.issn=0007-1048&rft.eissn=1365-2141&rft_id=info:doi/10.1111/bjh.16530&rft_dat=%3Cproquest_pubme%3E2370531621%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429659076&rft_id=info:pmid/32124438&rfr_iscdi=true