Sphingosine kinase‐2 is overexpressed in large granular lymphocyte leukaemia and promotes survival through Mcl‐1
Summary Sphingolipid metabolism is increasingly recognised as a therapeutic target in cancer due to its regulation of cell proliferation and apoptosis. The sphingolipid rheostat is proposed to control cell fate through maintaining balance between pro‐apoptotic and pro‐survival sphingolipids. This ba...
Gespeichert in:
Veröffentlicht in: | British journal of haematology 2020-08, Vol.190 (3), p.405-417 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 417 |
---|---|
container_issue | 3 |
container_start_page | 405 |
container_title | British journal of haematology |
container_volume | 190 |
creator | LeBlanc, Francis R. Pearson, Jennifer M. Tan, Su‐Fern Cheon, HeeJin Xing, Jeffrey C. Dunton, Wendy Feith, David J. Loughran, Thomas P. |
description | Summary
Sphingolipid metabolism is increasingly recognised as a therapeutic target in cancer due to its regulation of cell proliferation and apoptosis. The sphingolipid rheostat is proposed to control cell fate through maintaining balance between pro‐apoptotic and pro‐survival sphingolipids. This balance is regulated by metabolising enzymes involved in sphingolipid production. One such enzyme, sphingosine kinase‐2 (SPHK2), produces pro‐survival sphingosine 1‐phosphate (S1P) by phosphorylation of pro‐apoptotic sphingosine. Elevated SPHK2 has been found in multiple cancer types and contributes to cell survival, chemotherapeutic resistance and apoptosis resistance. We have previously shown elevation of S1P in large granular lymphocyte (LGL) leukaemia serum and cells isolated from patients. Here, we examined SPHK2 expression in LGL leukaemia and found SPHK2 mRNA and protein upregulation in a majority of LGL leukaemia patient samples. Knockdown of SPHK2 with siRNA in LGL leukaemia cell lines decreased proliferation. Additionally, the use of ABC294640 or K145, both SPHK2‐specific inhibitors, decreased viability of LGL leukaemia cell lines. ABC294640 selectively induced apoptosis in LGL cell lines and freshly isolated LGL leukaemia patient cells compared to normal controls. Mechanistically, SPHK2 inhibition downregulated pro‐survival myeloid cell leukaemia‐1 (Mcl‐1) protein through proteasomal degradation. Targeting of SPHK2 therefore provides a novel therapeutic approach for the treatment of LGL leukaemia. |
doi_str_mv | 10.1111/bjh.16530 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7415522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2370531621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4430-153d323e5f8d325d7f5ee9df064402ab63dfe6927318235d3578e7f5236474723</originalsourceid><addsrcrecordid>eNp1kc1u1DAURi0EokNhwQsgS2xgkdb_zmyQoAIKKmIBrC1PcpN46tjBTgZmxyPwjDwJLlMqQOJu7pV8dPRZH0IPKTmhZU432-GEKsnJLbSiXMmKUUFvoxUhRFeUiPoI3ct5SwjlRNK76IgzyoTg9QrNH6bBhT5mFwBfumAz_Pj2nWGXcdxBgq9TgpyhxS5gb1MPuE82LOXEfj9OQ2z2M2APy6WF0VlsQ4unFMc4Q8Z5STu3sx7PQ4pLP-B3jS92eh_d6azP8OB6H6NPr15-PDuvLt6_fnP2_KJqSjhSUclbzjjIri5btrqTAOu2I0oIwuxG8bYDtWaa05px2XKpaygQ40pooRk_Rs8O3mnZjNA2EOZkvZmSG23am2id-fsluMH0cWe0oFKyK8GTa0GKnxfIsxldbsB7GyAu2TCuieRUMVrQx_-g27ikUL5nmGBrJddEq0I9PVBNijkn6G7CUGKuujSlS_Ory8I--jP9Dfm7vAKcHoAvzsP-_ybz4u35QfkTnDKrXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429659076</pqid></control><display><type>article</type><title>Sphingosine kinase‐2 is overexpressed in large granular lymphocyte leukaemia and promotes survival through Mcl‐1</title><source>MEDLINE</source><source>Wiley Journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>LeBlanc, Francis R. ; Pearson, Jennifer M. ; Tan, Su‐Fern ; Cheon, HeeJin ; Xing, Jeffrey C. ; Dunton, Wendy ; Feith, David J. ; Loughran, Thomas P.</creator><creatorcontrib>LeBlanc, Francis R. ; Pearson, Jennifer M. ; Tan, Su‐Fern ; Cheon, HeeJin ; Xing, Jeffrey C. ; Dunton, Wendy ; Feith, David J. ; Loughran, Thomas P.</creatorcontrib><description>Summary
Sphingolipid metabolism is increasingly recognised as a therapeutic target in cancer due to its regulation of cell proliferation and apoptosis. The sphingolipid rheostat is proposed to control cell fate through maintaining balance between pro‐apoptotic and pro‐survival sphingolipids. This balance is regulated by metabolising enzymes involved in sphingolipid production. One such enzyme, sphingosine kinase‐2 (SPHK2), produces pro‐survival sphingosine 1‐phosphate (S1P) by phosphorylation of pro‐apoptotic sphingosine. Elevated SPHK2 has been found in multiple cancer types and contributes to cell survival, chemotherapeutic resistance and apoptosis resistance. We have previously shown elevation of S1P in large granular lymphocyte (LGL) leukaemia serum and cells isolated from patients. Here, we examined SPHK2 expression in LGL leukaemia and found SPHK2 mRNA and protein upregulation in a majority of LGL leukaemia patient samples. Knockdown of SPHK2 with siRNA in LGL leukaemia cell lines decreased proliferation. Additionally, the use of ABC294640 or K145, both SPHK2‐specific inhibitors, decreased viability of LGL leukaemia cell lines. ABC294640 selectively induced apoptosis in LGL cell lines and freshly isolated LGL leukaemia patient cells compared to normal controls. Mechanistically, SPHK2 inhibition downregulated pro‐survival myeloid cell leukaemia‐1 (Mcl‐1) protein through proteasomal degradation. Targeting of SPHK2 therefore provides a novel therapeutic approach for the treatment of LGL leukaemia.</description><identifier>ISSN: 0007-1048</identifier><identifier>EISSN: 1365-2141</identifier><identifier>DOI: 10.1111/bjh.16530</identifier><identifier>PMID: 32124438</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Adamantane - analogs & derivatives ; Adamantane - pharmacology ; Adult ; Aged ; Apoptosis ; Apoptosis - drug effects ; Cell fate ; Cell proliferation ; Cell survival ; Chemoresistance ; Enzyme Induction ; Female ; Gene Expression Regulation, Leukemic ; Hematology ; Humans ; Kinases ; leukaemia ; Leukemia ; Leukemia, Large Granular Lymphocytic - enzymology ; Leukocytes, Mononuclear - enzymology ; LGL leukaemia ; Lipid metabolism ; Lymphocytes ; Lysophospholipids ; Male ; Middle Aged ; mRNA ; Myeloid Cell Leukemia Sequence 1 Protein - physiology ; Neoplasm Proteins - biosynthesis ; Neoplasm Proteins - genetics ; Neoplasm Proteins - physiology ; Peptide Fragments ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor) - antagonists & inhibitors ; Phosphotransferases (Alcohol Group Acceptor) - biosynthesis ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Phosphotransferases (Alcohol Group Acceptor) - physiology ; Proteasome Endopeptidase Complex - metabolism ; Proteasomes ; Proto-Oncogene Proteins ; Pyridines - pharmacology ; RNA Interference ; RNA, Messenger - biosynthesis ; RNA, Messenger - genetics ; RNA, Neoplasm - biosynthesis ; RNA, Neoplasm - genetics ; RNA, Small Interfering - genetics ; RNA, Small Interfering - pharmacology ; siRNA ; Sphingolipids ; Sphingosine - analogs & derivatives ; Sphingosine kinase ; SPHK2 ; Thiazolidinediones - pharmacology ; Up-Regulation</subject><ispartof>British journal of haematology, 2020-08, Vol.190 (3), p.405-417</ispartof><rights>2020 British Society for Haematology and John Wiley & Sons Ltd</rights><rights>2020 British Society for Haematology and John Wiley & Sons Ltd.</rights><rights>Copyright © 2020 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4430-153d323e5f8d325d7f5ee9df064402ab63dfe6927318235d3578e7f5236474723</citedby><cites>FETCH-LOGICAL-c4430-153d323e5f8d325d7f5ee9df064402ab63dfe6927318235d3578e7f5236474723</cites><orcidid>0000-0003-0149-9651 ; 0000-0003-0696-1390 ; 0000-0003-4981-1691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbjh.16530$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbjh.16530$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32124438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LeBlanc, Francis R.</creatorcontrib><creatorcontrib>Pearson, Jennifer M.</creatorcontrib><creatorcontrib>Tan, Su‐Fern</creatorcontrib><creatorcontrib>Cheon, HeeJin</creatorcontrib><creatorcontrib>Xing, Jeffrey C.</creatorcontrib><creatorcontrib>Dunton, Wendy</creatorcontrib><creatorcontrib>Feith, David J.</creatorcontrib><creatorcontrib>Loughran, Thomas P.</creatorcontrib><title>Sphingosine kinase‐2 is overexpressed in large granular lymphocyte leukaemia and promotes survival through Mcl‐1</title><title>British journal of haematology</title><addtitle>Br J Haematol</addtitle><description>Summary
Sphingolipid metabolism is increasingly recognised as a therapeutic target in cancer due to its regulation of cell proliferation and apoptosis. The sphingolipid rheostat is proposed to control cell fate through maintaining balance between pro‐apoptotic and pro‐survival sphingolipids. This balance is regulated by metabolising enzymes involved in sphingolipid production. One such enzyme, sphingosine kinase‐2 (SPHK2), produces pro‐survival sphingosine 1‐phosphate (S1P) by phosphorylation of pro‐apoptotic sphingosine. Elevated SPHK2 has been found in multiple cancer types and contributes to cell survival, chemotherapeutic resistance and apoptosis resistance. We have previously shown elevation of S1P in large granular lymphocyte (LGL) leukaemia serum and cells isolated from patients. Here, we examined SPHK2 expression in LGL leukaemia and found SPHK2 mRNA and protein upregulation in a majority of LGL leukaemia patient samples. Knockdown of SPHK2 with siRNA in LGL leukaemia cell lines decreased proliferation. Additionally, the use of ABC294640 or K145, both SPHK2‐specific inhibitors, decreased viability of LGL leukaemia cell lines. ABC294640 selectively induced apoptosis in LGL cell lines and freshly isolated LGL leukaemia patient cells compared to normal controls. Mechanistically, SPHK2 inhibition downregulated pro‐survival myeloid cell leukaemia‐1 (Mcl‐1) protein through proteasomal degradation. Targeting of SPHK2 therefore provides a novel therapeutic approach for the treatment of LGL leukaemia.</description><subject>Adamantane - analogs & derivatives</subject><subject>Adamantane - pharmacology</subject><subject>Adult</subject><subject>Aged</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Cell fate</subject><subject>Cell proliferation</subject><subject>Cell survival</subject><subject>Chemoresistance</subject><subject>Enzyme Induction</subject><subject>Female</subject><subject>Gene Expression Regulation, Leukemic</subject><subject>Hematology</subject><subject>Humans</subject><subject>Kinases</subject><subject>leukaemia</subject><subject>Leukemia</subject><subject>Leukemia, Large Granular Lymphocytic - enzymology</subject><subject>Leukocytes, Mononuclear - enzymology</subject><subject>LGL leukaemia</subject><subject>Lipid metabolism</subject><subject>Lymphocytes</subject><subject>Lysophospholipids</subject><subject>Male</subject><subject>Middle Aged</subject><subject>mRNA</subject><subject>Myeloid Cell Leukemia Sequence 1 Protein - physiology</subject><subject>Neoplasm Proteins - biosynthesis</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - physiology</subject><subject>Peptide Fragments</subject><subject>Phosphorylation</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - antagonists & inhibitors</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - biosynthesis</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - physiology</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Proteasomes</subject><subject>Proto-Oncogene Proteins</subject><subject>Pyridines - pharmacology</subject><subject>RNA Interference</subject><subject>RNA, Messenger - biosynthesis</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Neoplasm - biosynthesis</subject><subject>RNA, Neoplasm - genetics</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - pharmacology</subject><subject>siRNA</subject><subject>Sphingolipids</subject><subject>Sphingosine - analogs & derivatives</subject><subject>Sphingosine kinase</subject><subject>SPHK2</subject><subject>Thiazolidinediones - pharmacology</subject><subject>Up-Regulation</subject><issn>0007-1048</issn><issn>1365-2141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAURi0EokNhwQsgS2xgkdb_zmyQoAIKKmIBrC1PcpN46tjBTgZmxyPwjDwJLlMqQOJu7pV8dPRZH0IPKTmhZU432-GEKsnJLbSiXMmKUUFvoxUhRFeUiPoI3ct5SwjlRNK76IgzyoTg9QrNH6bBhT5mFwBfumAz_Pj2nWGXcdxBgq9TgpyhxS5gb1MPuE82LOXEfj9OQ2z2M2APy6WF0VlsQ4unFMc4Q8Z5STu3sx7PQ4pLP-B3jS92eh_d6azP8OB6H6NPr15-PDuvLt6_fnP2_KJqSjhSUclbzjjIri5btrqTAOu2I0oIwuxG8bYDtWaa05px2XKpaygQ40pooRk_Rs8O3mnZjNA2EOZkvZmSG23am2id-fsluMH0cWe0oFKyK8GTa0GKnxfIsxldbsB7GyAu2TCuieRUMVrQx_-g27ikUL5nmGBrJddEq0I9PVBNijkn6G7CUGKuujSlS_Ory8I--jP9Dfm7vAKcHoAvzsP-_ybz4u35QfkTnDKrXg</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>LeBlanc, Francis R.</creator><creator>Pearson, Jennifer M.</creator><creator>Tan, Su‐Fern</creator><creator>Cheon, HeeJin</creator><creator>Xing, Jeffrey C.</creator><creator>Dunton, Wendy</creator><creator>Feith, David J.</creator><creator>Loughran, Thomas P.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0149-9651</orcidid><orcidid>https://orcid.org/0000-0003-0696-1390</orcidid><orcidid>https://orcid.org/0000-0003-4981-1691</orcidid></search><sort><creationdate>202008</creationdate><title>Sphingosine kinase‐2 is overexpressed in large granular lymphocyte leukaemia and promotes survival through Mcl‐1</title><author>LeBlanc, Francis R. ; Pearson, Jennifer M. ; Tan, Su‐Fern ; Cheon, HeeJin ; Xing, Jeffrey C. ; Dunton, Wendy ; Feith, David J. ; Loughran, Thomas P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4430-153d323e5f8d325d7f5ee9df064402ab63dfe6927318235d3578e7f5236474723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adamantane - analogs & derivatives</topic><topic>Adamantane - pharmacology</topic><topic>Adult</topic><topic>Aged</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Cell fate</topic><topic>Cell proliferation</topic><topic>Cell survival</topic><topic>Chemoresistance</topic><topic>Enzyme Induction</topic><topic>Female</topic><topic>Gene Expression Regulation, Leukemic</topic><topic>Hematology</topic><topic>Humans</topic><topic>Kinases</topic><topic>leukaemia</topic><topic>Leukemia</topic><topic>Leukemia, Large Granular Lymphocytic - enzymology</topic><topic>Leukocytes, Mononuclear - enzymology</topic><topic>LGL leukaemia</topic><topic>Lipid metabolism</topic><topic>Lymphocytes</topic><topic>Lysophospholipids</topic><topic>Male</topic><topic>Middle Aged</topic><topic>mRNA</topic><topic>Myeloid Cell Leukemia Sequence 1 Protein - physiology</topic><topic>Neoplasm Proteins - biosynthesis</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - physiology</topic><topic>Peptide Fragments</topic><topic>Phosphorylation</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - antagonists & inhibitors</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - biosynthesis</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - physiology</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Proteasomes</topic><topic>Proto-Oncogene Proteins</topic><topic>Pyridines - pharmacology</topic><topic>RNA Interference</topic><topic>RNA, Messenger - biosynthesis</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Neoplasm - biosynthesis</topic><topic>RNA, Neoplasm - genetics</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - pharmacology</topic><topic>siRNA</topic><topic>Sphingolipids</topic><topic>Sphingosine - analogs & derivatives</topic><topic>Sphingosine kinase</topic><topic>SPHK2</topic><topic>Thiazolidinediones - pharmacology</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LeBlanc, Francis R.</creatorcontrib><creatorcontrib>Pearson, Jennifer M.</creatorcontrib><creatorcontrib>Tan, Su‐Fern</creatorcontrib><creatorcontrib>Cheon, HeeJin</creatorcontrib><creatorcontrib>Xing, Jeffrey C.</creatorcontrib><creatorcontrib>Dunton, Wendy</creatorcontrib><creatorcontrib>Feith, David J.</creatorcontrib><creatorcontrib>Loughran, Thomas P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of haematology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LeBlanc, Francis R.</au><au>Pearson, Jennifer M.</au><au>Tan, Su‐Fern</au><au>Cheon, HeeJin</au><au>Xing, Jeffrey C.</au><au>Dunton, Wendy</au><au>Feith, David J.</au><au>Loughran, Thomas P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sphingosine kinase‐2 is overexpressed in large granular lymphocyte leukaemia and promotes survival through Mcl‐1</atitle><jtitle>British journal of haematology</jtitle><addtitle>Br J Haematol</addtitle><date>2020-08</date><risdate>2020</risdate><volume>190</volume><issue>3</issue><spage>405</spage><epage>417</epage><pages>405-417</pages><issn>0007-1048</issn><eissn>1365-2141</eissn><abstract>Summary
Sphingolipid metabolism is increasingly recognised as a therapeutic target in cancer due to its regulation of cell proliferation and apoptosis. The sphingolipid rheostat is proposed to control cell fate through maintaining balance between pro‐apoptotic and pro‐survival sphingolipids. This balance is regulated by metabolising enzymes involved in sphingolipid production. One such enzyme, sphingosine kinase‐2 (SPHK2), produces pro‐survival sphingosine 1‐phosphate (S1P) by phosphorylation of pro‐apoptotic sphingosine. Elevated SPHK2 has been found in multiple cancer types and contributes to cell survival, chemotherapeutic resistance and apoptosis resistance. We have previously shown elevation of S1P in large granular lymphocyte (LGL) leukaemia serum and cells isolated from patients. Here, we examined SPHK2 expression in LGL leukaemia and found SPHK2 mRNA and protein upregulation in a majority of LGL leukaemia patient samples. Knockdown of SPHK2 with siRNA in LGL leukaemia cell lines decreased proliferation. Additionally, the use of ABC294640 or K145, both SPHK2‐specific inhibitors, decreased viability of LGL leukaemia cell lines. ABC294640 selectively induced apoptosis in LGL cell lines and freshly isolated LGL leukaemia patient cells compared to normal controls. Mechanistically, SPHK2 inhibition downregulated pro‐survival myeloid cell leukaemia‐1 (Mcl‐1) protein through proteasomal degradation. Targeting of SPHK2 therefore provides a novel therapeutic approach for the treatment of LGL leukaemia.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32124438</pmid><doi>10.1111/bjh.16530</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0149-9651</orcidid><orcidid>https://orcid.org/0000-0003-0696-1390</orcidid><orcidid>https://orcid.org/0000-0003-4981-1691</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-1048 |
ispartof | British journal of haematology, 2020-08, Vol.190 (3), p.405-417 |
issn | 0007-1048 1365-2141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7415522 |
source | MEDLINE; Wiley Journals; Wiley Online Library (Open Access Collection) |
subjects | Adamantane - analogs & derivatives Adamantane - pharmacology Adult Aged Apoptosis Apoptosis - drug effects Cell fate Cell proliferation Cell survival Chemoresistance Enzyme Induction Female Gene Expression Regulation, Leukemic Hematology Humans Kinases leukaemia Leukemia Leukemia, Large Granular Lymphocytic - enzymology Leukocytes, Mononuclear - enzymology LGL leukaemia Lipid metabolism Lymphocytes Lysophospholipids Male Middle Aged mRNA Myeloid Cell Leukemia Sequence 1 Protein - physiology Neoplasm Proteins - biosynthesis Neoplasm Proteins - genetics Neoplasm Proteins - physiology Peptide Fragments Phosphorylation Phosphotransferases (Alcohol Group Acceptor) - antagonists & inhibitors Phosphotransferases (Alcohol Group Acceptor) - biosynthesis Phosphotransferases (Alcohol Group Acceptor) - genetics Phosphotransferases (Alcohol Group Acceptor) - physiology Proteasome Endopeptidase Complex - metabolism Proteasomes Proto-Oncogene Proteins Pyridines - pharmacology RNA Interference RNA, Messenger - biosynthesis RNA, Messenger - genetics RNA, Neoplasm - biosynthesis RNA, Neoplasm - genetics RNA, Small Interfering - genetics RNA, Small Interfering - pharmacology siRNA Sphingolipids Sphingosine - analogs & derivatives Sphingosine kinase SPHK2 Thiazolidinediones - pharmacology Up-Regulation |
title | Sphingosine kinase‐2 is overexpressed in large granular lymphocyte leukaemia and promotes survival through Mcl‐1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sphingosine%20kinase%E2%80%902%20is%20overexpressed%20in%20large%20granular%20lymphocyte%20leukaemia%20and%20promotes%20survival%20through%20Mcl%E2%80%901&rft.jtitle=British%20journal%20of%20haematology&rft.au=LeBlanc,%20Francis%20R.&rft.date=2020-08&rft.volume=190&rft.issue=3&rft.spage=405&rft.epage=417&rft.pages=405-417&rft.issn=0007-1048&rft.eissn=1365-2141&rft_id=info:doi/10.1111/bjh.16530&rft_dat=%3Cproquest_pubme%3E2370531621%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429659076&rft_id=info:pmid/32124438&rfr_iscdi=true |