Hippocampal subregions and networks linked with antidepressant response to electroconvulsive therapy
Electroconvulsive therapy (ECT) has been repeatedly linked to hippocampal plasticity. However, it remains unclear what role hippocampal plasticity plays in the antidepressant response to ECT. This magnetic resonance imaging (MRI) study tracks changes in separate hippocampal subregions and hippocampa...
Gespeichert in:
Veröffentlicht in: | Molecular psychiatry 2021-08, Vol.26 (8), p.4288-4299 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4299 |
---|---|
container_issue | 8 |
container_start_page | 4288 |
container_title | Molecular psychiatry |
container_volume | 26 |
creator | Leaver, Amber M. Vasavada, Megha Kubicki, Antoni Wade, Benjamin Loureiro, Joana Hellemann, Gerhard Joshi, Shantanu H. Woods, Roger P. Espinoza, Randall Narr, Katherine L. |
description | Electroconvulsive therapy (ECT) has been repeatedly linked to hippocampal plasticity. However, it remains unclear what role hippocampal plasticity plays in the antidepressant response to ECT. This magnetic resonance imaging (MRI) study tracks changes in separate hippocampal subregions and hippocampal networks in patients with depression (
n
= 44, 23 female) to determine their relationship, if any, with improvement after ECT. Voxelwise analyses were restricted to the hippocampus, amygdala, and parahippocampal cortex, and applied separately for responders and nonresponders to ECT. In analyses of arterial spin-labeled (ASL) MRI, nonresponders exhibited increased cerebral blood flow (CBF) in bilateral anterior hippocampus, while responders showed CBF increases in right middle and left posterior hippocampus. In analyses of gray matter volume (GMV) using T1-weighted MRI, GMV increased throughout bilateral hippocampus and surrounding tissue in nonresponders, while responders showed increased GMV in right anterior hippocampus only. Using CBF loci as seed regions, BOLD-fMRI data from healthy controls (
n
= 36, 19 female) identified spatially separable neurofunctional networks comprised of different brain regions. In graph theory analyses of these networks, functional connectivity within a hippocampus-thalamus-striatum network decreased only in responders after two treatments and after index. In sum, our results suggest that the location of ECT-related plasticity within the hippocampus may differ according to antidepressant outcome, and that larger amounts of hippocampal plasticity may not be conducive to positive antidepressant response. More focused targeting of hippocampal subregions and/or circuits may be a way to improve ECT outcome. |
doi_str_mv | 10.1038/s41380-020-0666-z |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7415508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A680437187</galeid><sourcerecordid>A680437187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-931d00268e1f54223747cf57f156932c4f348eb5b2ff723b46891b7fec0cecda3</originalsourceid><addsrcrecordid>eNp1Ustq3TAQNaWhSdN-QDfF0E03TvSWvCmEkBcEumnXQpZH9yqxJVeyb0i-vrrcNI_SIsQMM-ccaYZTVZ8wOsKIquPMMFWoQaRcIUTz8KY6wEyKhnOp3pac8rZhWLH96n3ONwhtm_xdtU8JIq1S_KDqL_00RWvGyQx1XroEKx9Drk3o6wDzXUy3uR58uIW-vvPzujRm38OUIOeS1iVOBQ_1HGsYwM4p2hg2y5D9phTXkMx0_6Hac2bI8PExHlY_z89-nF42198vrk5PrhvLqZybluIeISIUYMcZIVQyaR2XDnPRUmKZo0xBxzvinCS0Y0K1uJMOLLJge0MPq2873WnpRugthDmZQU_Jjybd62i8ft0Jfq1XcaMlw5wjVQS-Pgqk-GuBPOvRZwvDYALEJWtCORGUtJIV6Je_oDdxSaGMpwlXQsjyef6MWpkBtA8ulnftVlSfCIUYlVjJgjr6B6qcHkZf1gnOl_orAt4RbIo5J3BPM2Kkt9bQO2voYg29tYZ-KJzPL5fzxPjjhQIgO0AurbCC9DzR_1V_A9tVxlg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586677475</pqid></control><display><type>article</type><title>Hippocampal subregions and networks linked with antidepressant response to electroconvulsive therapy</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Leaver, Amber M. ; Vasavada, Megha ; Kubicki, Antoni ; Wade, Benjamin ; Loureiro, Joana ; Hellemann, Gerhard ; Joshi, Shantanu H. ; Woods, Roger P. ; Espinoza, Randall ; Narr, Katherine L.</creator><creatorcontrib>Leaver, Amber M. ; Vasavada, Megha ; Kubicki, Antoni ; Wade, Benjamin ; Loureiro, Joana ; Hellemann, Gerhard ; Joshi, Shantanu H. ; Woods, Roger P. ; Espinoza, Randall ; Narr, Katherine L.</creatorcontrib><description>Electroconvulsive therapy (ECT) has been repeatedly linked to hippocampal plasticity. However, it remains unclear what role hippocampal plasticity plays in the antidepressant response to ECT. This magnetic resonance imaging (MRI) study tracks changes in separate hippocampal subregions and hippocampal networks in patients with depression (
n
= 44, 23 female) to determine their relationship, if any, with improvement after ECT. Voxelwise analyses were restricted to the hippocampus, amygdala, and parahippocampal cortex, and applied separately for responders and nonresponders to ECT. In analyses of arterial spin-labeled (ASL) MRI, nonresponders exhibited increased cerebral blood flow (CBF) in bilateral anterior hippocampus, while responders showed CBF increases in right middle and left posterior hippocampus. In analyses of gray matter volume (GMV) using T1-weighted MRI, GMV increased throughout bilateral hippocampus and surrounding tissue in nonresponders, while responders showed increased GMV in right anterior hippocampus only. Using CBF loci as seed regions, BOLD-fMRI data from healthy controls (
n
= 36, 19 female) identified spatially separable neurofunctional networks comprised of different brain regions. In graph theory analyses of these networks, functional connectivity within a hippocampus-thalamus-striatum network decreased only in responders after two treatments and after index. In sum, our results suggest that the location of ECT-related plasticity within the hippocampus may differ according to antidepressant outcome, and that larger amounts of hippocampal plasticity may not be conducive to positive antidepressant response. More focused targeting of hippocampal subregions and/or circuits may be a way to improve ECT outcome.</description><identifier>ISSN: 1359-4184</identifier><identifier>EISSN: 1476-5578</identifier><identifier>DOI: 10.1038/s41380-020-0666-z</identifier><identifier>PMID: 32029885</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>59/36 ; 59/57 ; 631/378 ; 692/53/2422 ; 692/699/476/1414 ; Amygdala ; Antidepressants ; Antidepressive Agents ; Behavioral Sciences ; Biological Psychology ; Blood flow ; Brain ; Brain mapping ; Care and treatment ; Cerebral blood flow ; Depressive Disorder, Major - drug therapy ; Electroconvulsive Therapy ; Female ; Functional magnetic resonance imaging ; Health aspects ; Hippocampal plasticity ; Hippocampus ; Hippocampus (Brain) ; Humans ; Magnetic Resonance Imaging ; Major depressive disorder ; Medicine ; Medicine & Public Health ; Mental depression ; Neostriatum ; Neural networks ; Neuroimaging ; Neuroplasticity ; Neurosciences ; Parahippocampal gyrus ; Pharmacotherapy ; Physiological aspects ; Psychiatry ; Substantia grisea ; Thalamus</subject><ispartof>Molecular psychiatry, 2021-08, Vol.26 (8), p.4288-4299</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>2020. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-931d00268e1f54223747cf57f156932c4f348eb5b2ff723b46891b7fec0cecda3</citedby><cites>FETCH-LOGICAL-c537t-931d00268e1f54223747cf57f156932c4f348eb5b2ff723b46891b7fec0cecda3</cites><orcidid>0000-0003-2895-4212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41380-020-0666-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41380-020-0666-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32029885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leaver, Amber M.</creatorcontrib><creatorcontrib>Vasavada, Megha</creatorcontrib><creatorcontrib>Kubicki, Antoni</creatorcontrib><creatorcontrib>Wade, Benjamin</creatorcontrib><creatorcontrib>Loureiro, Joana</creatorcontrib><creatorcontrib>Hellemann, Gerhard</creatorcontrib><creatorcontrib>Joshi, Shantanu H.</creatorcontrib><creatorcontrib>Woods, Roger P.</creatorcontrib><creatorcontrib>Espinoza, Randall</creatorcontrib><creatorcontrib>Narr, Katherine L.</creatorcontrib><title>Hippocampal subregions and networks linked with antidepressant response to electroconvulsive therapy</title><title>Molecular psychiatry</title><addtitle>Mol Psychiatry</addtitle><addtitle>Mol Psychiatry</addtitle><description>Electroconvulsive therapy (ECT) has been repeatedly linked to hippocampal plasticity. However, it remains unclear what role hippocampal plasticity plays in the antidepressant response to ECT. This magnetic resonance imaging (MRI) study tracks changes in separate hippocampal subregions and hippocampal networks in patients with depression (
n
= 44, 23 female) to determine their relationship, if any, with improvement after ECT. Voxelwise analyses were restricted to the hippocampus, amygdala, and parahippocampal cortex, and applied separately for responders and nonresponders to ECT. In analyses of arterial spin-labeled (ASL) MRI, nonresponders exhibited increased cerebral blood flow (CBF) in bilateral anterior hippocampus, while responders showed CBF increases in right middle and left posterior hippocampus. In analyses of gray matter volume (GMV) using T1-weighted MRI, GMV increased throughout bilateral hippocampus and surrounding tissue in nonresponders, while responders showed increased GMV in right anterior hippocampus only. Using CBF loci as seed regions, BOLD-fMRI data from healthy controls (
n
= 36, 19 female) identified spatially separable neurofunctional networks comprised of different brain regions. In graph theory analyses of these networks, functional connectivity within a hippocampus-thalamus-striatum network decreased only in responders after two treatments and after index. In sum, our results suggest that the location of ECT-related plasticity within the hippocampus may differ according to antidepressant outcome, and that larger amounts of hippocampal plasticity may not be conducive to positive antidepressant response. More focused targeting of hippocampal subregions and/or circuits may be a way to improve ECT outcome.</description><subject>59/36</subject><subject>59/57</subject><subject>631/378</subject><subject>692/53/2422</subject><subject>692/699/476/1414</subject><subject>Amygdala</subject><subject>Antidepressants</subject><subject>Antidepressive Agents</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Blood flow</subject><subject>Brain</subject><subject>Brain mapping</subject><subject>Care and treatment</subject><subject>Cerebral blood flow</subject><subject>Depressive Disorder, Major - drug therapy</subject><subject>Electroconvulsive Therapy</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Health aspects</subject><subject>Hippocampal plasticity</subject><subject>Hippocampus</subject><subject>Hippocampus (Brain)</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Major depressive disorder</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mental depression</subject><subject>Neostriatum</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neuroplasticity</subject><subject>Neurosciences</subject><subject>Parahippocampal gyrus</subject><subject>Pharmacotherapy</subject><subject>Physiological aspects</subject><subject>Psychiatry</subject><subject>Substantia grisea</subject><subject>Thalamus</subject><issn>1359-4184</issn><issn>1476-5578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1Ustq3TAQNaWhSdN-QDfF0E03TvSWvCmEkBcEumnXQpZH9yqxJVeyb0i-vrrcNI_SIsQMM-ccaYZTVZ8wOsKIquPMMFWoQaRcIUTz8KY6wEyKhnOp3pac8rZhWLH96n3ONwhtm_xdtU8JIq1S_KDqL_00RWvGyQx1XroEKx9Drk3o6wDzXUy3uR58uIW-vvPzujRm38OUIOeS1iVOBQ_1HGsYwM4p2hg2y5D9phTXkMx0_6Hac2bI8PExHlY_z89-nF42198vrk5PrhvLqZybluIeISIUYMcZIVQyaR2XDnPRUmKZo0xBxzvinCS0Y0K1uJMOLLJge0MPq2873WnpRugthDmZQU_Jjybd62i8ft0Jfq1XcaMlw5wjVQS-Pgqk-GuBPOvRZwvDYALEJWtCORGUtJIV6Je_oDdxSaGMpwlXQsjyef6MWpkBtA8ulnftVlSfCIUYlVjJgjr6B6qcHkZf1gnOl_orAt4RbIo5J3BPM2Kkt9bQO2voYg29tYZ-KJzPL5fzxPjjhQIgO0AurbCC9DzR_1V_A9tVxlg</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Leaver, Amber M.</creator><creator>Vasavada, Megha</creator><creator>Kubicki, Antoni</creator><creator>Wade, Benjamin</creator><creator>Loureiro, Joana</creator><creator>Hellemann, Gerhard</creator><creator>Joshi, Shantanu H.</creator><creator>Woods, Roger P.</creator><creator>Espinoza, Randall</creator><creator>Narr, Katherine L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2895-4212</orcidid></search><sort><creationdate>20210801</creationdate><title>Hippocampal subregions and networks linked with antidepressant response to electroconvulsive therapy</title><author>Leaver, Amber M. ; Vasavada, Megha ; Kubicki, Antoni ; Wade, Benjamin ; Loureiro, Joana ; Hellemann, Gerhard ; Joshi, Shantanu H. ; Woods, Roger P. ; Espinoza, Randall ; Narr, Katherine L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-931d00268e1f54223747cf57f156932c4f348eb5b2ff723b46891b7fec0cecda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>59/36</topic><topic>59/57</topic><topic>631/378</topic><topic>692/53/2422</topic><topic>692/699/476/1414</topic><topic>Amygdala</topic><topic>Antidepressants</topic><topic>Antidepressive Agents</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Blood flow</topic><topic>Brain</topic><topic>Brain mapping</topic><topic>Care and treatment</topic><topic>Cerebral blood flow</topic><topic>Depressive Disorder, Major - drug therapy</topic><topic>Electroconvulsive Therapy</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Health aspects</topic><topic>Hippocampal plasticity</topic><topic>Hippocampus</topic><topic>Hippocampus (Brain)</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Major depressive disorder</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mental depression</topic><topic>Neostriatum</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neuroplasticity</topic><topic>Neurosciences</topic><topic>Parahippocampal gyrus</topic><topic>Pharmacotherapy</topic><topic>Physiological aspects</topic><topic>Psychiatry</topic><topic>Substantia grisea</topic><topic>Thalamus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leaver, Amber M.</creatorcontrib><creatorcontrib>Vasavada, Megha</creatorcontrib><creatorcontrib>Kubicki, Antoni</creatorcontrib><creatorcontrib>Wade, Benjamin</creatorcontrib><creatorcontrib>Loureiro, Joana</creatorcontrib><creatorcontrib>Hellemann, Gerhard</creatorcontrib><creatorcontrib>Joshi, Shantanu H.</creatorcontrib><creatorcontrib>Woods, Roger P.</creatorcontrib><creatorcontrib>Espinoza, Randall</creatorcontrib><creatorcontrib>Narr, Katherine L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leaver, Amber M.</au><au>Vasavada, Megha</au><au>Kubicki, Antoni</au><au>Wade, Benjamin</au><au>Loureiro, Joana</au><au>Hellemann, Gerhard</au><au>Joshi, Shantanu H.</au><au>Woods, Roger P.</au><au>Espinoza, Randall</au><au>Narr, Katherine L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hippocampal subregions and networks linked with antidepressant response to electroconvulsive therapy</atitle><jtitle>Molecular psychiatry</jtitle><stitle>Mol Psychiatry</stitle><addtitle>Mol Psychiatry</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>26</volume><issue>8</issue><spage>4288</spage><epage>4299</epage><pages>4288-4299</pages><issn>1359-4184</issn><eissn>1476-5578</eissn><abstract>Electroconvulsive therapy (ECT) has been repeatedly linked to hippocampal plasticity. However, it remains unclear what role hippocampal plasticity plays in the antidepressant response to ECT. This magnetic resonance imaging (MRI) study tracks changes in separate hippocampal subregions and hippocampal networks in patients with depression (
n
= 44, 23 female) to determine their relationship, if any, with improvement after ECT. Voxelwise analyses were restricted to the hippocampus, amygdala, and parahippocampal cortex, and applied separately for responders and nonresponders to ECT. In analyses of arterial spin-labeled (ASL) MRI, nonresponders exhibited increased cerebral blood flow (CBF) in bilateral anterior hippocampus, while responders showed CBF increases in right middle and left posterior hippocampus. In analyses of gray matter volume (GMV) using T1-weighted MRI, GMV increased throughout bilateral hippocampus and surrounding tissue in nonresponders, while responders showed increased GMV in right anterior hippocampus only. Using CBF loci as seed regions, BOLD-fMRI data from healthy controls (
n
= 36, 19 female) identified spatially separable neurofunctional networks comprised of different brain regions. In graph theory analyses of these networks, functional connectivity within a hippocampus-thalamus-striatum network decreased only in responders after two treatments and after index. In sum, our results suggest that the location of ECT-related plasticity within the hippocampus may differ according to antidepressant outcome, and that larger amounts of hippocampal plasticity may not be conducive to positive antidepressant response. More focused targeting of hippocampal subregions and/or circuits may be a way to improve ECT outcome.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32029885</pmid><doi>10.1038/s41380-020-0666-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2895-4212</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4184 |
ispartof | Molecular psychiatry, 2021-08, Vol.26 (8), p.4288-4299 |
issn | 1359-4184 1476-5578 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7415508 |
source | MEDLINE; SpringerLink Journals |
subjects | 59/36 59/57 631/378 692/53/2422 692/699/476/1414 Amygdala Antidepressants Antidepressive Agents Behavioral Sciences Biological Psychology Blood flow Brain Brain mapping Care and treatment Cerebral blood flow Depressive Disorder, Major - drug therapy Electroconvulsive Therapy Female Functional magnetic resonance imaging Health aspects Hippocampal plasticity Hippocampus Hippocampus (Brain) Humans Magnetic Resonance Imaging Major depressive disorder Medicine Medicine & Public Health Mental depression Neostriatum Neural networks Neuroimaging Neuroplasticity Neurosciences Parahippocampal gyrus Pharmacotherapy Physiological aspects Psychiatry Substantia grisea Thalamus |
title | Hippocampal subregions and networks linked with antidepressant response to electroconvulsive therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A59%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hippocampal%20subregions%20and%20networks%20linked%20with%20antidepressant%20response%20to%20electroconvulsive%20therapy&rft.jtitle=Molecular%20psychiatry&rft.au=Leaver,%20Amber%20M.&rft.date=2021-08-01&rft.volume=26&rft.issue=8&rft.spage=4288&rft.epage=4299&rft.pages=4288-4299&rft.issn=1359-4184&rft.eissn=1476-5578&rft_id=info:doi/10.1038/s41380-020-0666-z&rft_dat=%3Cgale_pubme%3EA680437187%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586677475&rft_id=info:pmid/32029885&rft_galeid=A680437187&rfr_iscdi=true |