Genetic Redundancy in Iron and Manganese Transport in the Metabolically Versatile Bacterium Rhodopseudomonas palustris TIE-1

The purple nonsulfur bacterium TIE-1 can produce useful biochemicals such as bioplastics and biobutanol. Production of such biochemicals requires intracellular electron availability, which is governed by the availability and the transport of essential metals such as iron (Fe). Because of the distinc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and environmental microbiology 2020-08, Vol.86 (16), p.1
Hauptverfasser: Singh, Rajesh, Ranaivoarisoa, Tahina Onina, Gupta, Dinesh, Bai, Wei, Bose, Arpita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purple nonsulfur bacterium TIE-1 can produce useful biochemicals such as bioplastics and biobutanol. Production of such biochemicals requires intracellular electron availability, which is governed by the availability and the transport of essential metals such as iron (Fe). Because of the distinct chemical properties of ferrous [Fe(II)] and ferric iron [Fe(III)], different systems are required for their transport and storage in bacteria. Although Fe(III) transport systems are well characterized, we know much less about Fe(II) transport systems except for the FeoAB system. Iron transporters can also import manganese (Mn). We studied Fe and Mn transport by five putative Fe transporters in TIE-1 under metal-replete, metal-depleted, oxic, and anoxic conditions. We observed that by overexpressing , , and , the intracellular concentrations of Fe and Mn can be enhanced in TIE-1 under oxic and anoxic conditions, respectively. The deletion of a single gene/operon does not attenuate Fe or Mn uptake in TIE-1 regardless of the growth conditions used. This indicates that genetically dissimilar yet functionally redundant Fe transporters in TIE-1 can complement each other. Relative gene expression analysis shows that and are expressed during Fe and Mn depletion under both oxic and anoxic conditions. The promoters of these transporter genes contain a combination of Fur and Fnr boxes, suggesting that their expression is regulated by both Fe and oxygen availability. The findings from this study will help us modulate intracellular Fe and Mn concentrations, ultimately improving TIE-1's ability to produce desirable biomolecules. TIE-1 is a metabolically versatile bacterium that can use various electron donors, including Fe(II) and poised electrodes, for photoautotrophic growth. TIE-1 can produce useful biomolecules, such as biofuels and bioplastics, under various growth conditions. Production of such reduced biomolecules is controlled by intracellular electron availability, which, in turn, is mediated by various iron-containing proteins in the cell. Several putative Fe transporters exist in TIE-1's genome. Some of these transporters can also transport Mn, part of several important cellular enzymes. Therefore, understanding the ability to transport and respond to various levels of Fe and Mn under different conditions is important to improve TIE-1's ability to produce useful biomolecules. Our data suggest that by overexpressing Fe transporter genes via plasmid-based expressio
ISSN:0099-2240
1098-5336
DOI:10.1128/AEM.01057-20