Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data

This paper presents an innovative multisensor, multitemporal machine-learning approach using remote sensing big data for the detection of archaeological mounds in Cholistan (Pakistan). The Cholistan Desert presents one of the largest concentrations of Indus Civilization sites (from ca. 3300 to 1500...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-08, Vol.117 (31), p.18240-18250
Hauptverfasser: Orengo, Hector A., Conesa, Francesc C., Garcia-Molsosa, Arnau, Lobo, Agustín, Green, Adam S., Madella, Marco, Petrie, Cameron A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18250
container_issue 31
container_start_page 18240
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Orengo, Hector A.
Conesa, Francesc C.
Garcia-Molsosa, Arnau
Lobo, Agustín
Green, Adam S.
Madella, Marco
Petrie, Cameron A.
description This paper presents an innovative multisensor, multitemporal machine-learning approach using remote sensing big data for the detection of archaeological mounds in Cholistan (Pakistan). The Cholistan Desert presents one of the largest concentrations of Indus Civilization sites (from ca. 3300 to 1500 BC). Cholistan has figured prominently in theories about changes in water availability, the rise and decline of the Indus Civilization, and the transformation of fertile monsoonal alluvial plains into an extremely arid margin. This paper implements a multisensor, multitemporal machine-learning approach for the remote detection of archaeological mounds. A classifier algorithm that employs a large-scale collection of synthetic-aperture radar and multispectral images has been implemented in Google Earth Engine, resulting in an accurate probability map for mound-like signatures across an area that covers ca. 36,000 km². The results show that the area presents many more archaeological mounds than previously recorded, extending south and east into the desert, which has major implications for understanding the archaeological significance of the region. The detection of small (30 ha) suggests that there were continuous shifts in settlement location. These shifts are likely to reflect responses to a dynamic and changing hydrological network and the influence of the progressive northward advance of the desert in a long-term process that culminated in the abandonment of much of the settled area during the Late Harappan period.
doi_str_mv 10.1073/pnas.2005583117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7414161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26935569</jstor_id><sourcerecordid>26935569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-43c2fd9b60ec704e3e91a5ed8deda90edf7f1ece0ea9052dfe783401d962f143</originalsourceid><addsrcrecordid>eNpdkctr3DAQxkVpaTZpzz21GHrJxcnoYcu6FELoCwK95C4UabyrxZa2klzotX95ZTbZPi4So_nNp_n4CHlD4YqC5NeHYPIVA-i6gVMqn5ENBUXbXih4TjYATLaDYOKMnOe8BwDVDfCSnHHWK5BUbsivm6XE2RR0jcOCtvgYmjg2JtmdwTjFrbdmaua4BJebJfuwbWZjdz5gO6FJYX2wk8nZj5V8Gp-XqfiMIcfUmOCOdcH5EFNVy_W_aap140wxr8iL0UwZXz_eF-T-08f72y_t3bfPX29v7lorBC-t4JaNTj30gFaCQI6Kmg7d4NAZBehGOVK0CFirjrkR5cAFUKd6NlLBL8iHo-xheZjRWQyl7qIPyc8m_dTReP1vJ_id3sYfWgoqaE-rwOWjQIrfF8xFzz7basQEjEvWTLBuUKJnK_r-P3QflxSqu0rVpSQDulLXR8qmmHPC8bQMBb3Gq9d49Z9468S7vz2c-Kc8K_D2COxzienUr23edfX4DX69r_E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434072011</pqid></control><display><type>article</type><title>Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data</title><source>PMC (PubMed Central)</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Orengo, Hector A. ; Conesa, Francesc C. ; Garcia-Molsosa, Arnau ; Lobo, Agustín ; Green, Adam S. ; Madella, Marco ; Petrie, Cameron A.</creator><creatorcontrib>Orengo, Hector A. ; Conesa, Francesc C. ; Garcia-Molsosa, Arnau ; Lobo, Agustín ; Green, Adam S. ; Madella, Marco ; Petrie, Cameron A.</creatorcontrib><description>This paper presents an innovative multisensor, multitemporal machine-learning approach using remote sensing big data for the detection of archaeological mounds in Cholistan (Pakistan). The Cholistan Desert presents one of the largest concentrations of Indus Civilization sites (from ca. 3300 to 1500 BC). Cholistan has figured prominently in theories about changes in water availability, the rise and decline of the Indus Civilization, and the transformation of fertile monsoonal alluvial plains into an extremely arid margin. This paper implements a multisensor, multitemporal machine-learning approach for the remote detection of archaeological mounds. A classifier algorithm that employs a large-scale collection of synthetic-aperture radar and multispectral images has been implemented in Google Earth Engine, resulting in an accurate probability map for mound-like signatures across an area that covers ca. 36,000 km². The results show that the area presents many more archaeological mounds than previously recorded, extending south and east into the desert, which has major implications for understanding the archaeological significance of the region. The detection of small (&lt;5 ha) to large mounds (&gt;30 ha) suggests that there were continuous shifts in settlement location. These shifts are likely to reflect responses to a dynamic and changing hydrological network and the influence of the progressive northward advance of the desert in a long-term process that culminated in the abandonment of much of the settled area during the Late Harappan period.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2005583117</identifier><identifier>PMID: 32690717</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Abandonment ; Algorithms ; Alluvial plains ; Archaeology ; Aridity ; Deserts ; Hydrology ; Learning algorithms ; Machine learning ; Mounds ; Physical Sciences ; Radar imaging ; Remote sensing ; Satellites ; Social Sciences ; Synthetic aperture radar ; Water availability</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-08, Vol.117 (31), p.18240-18250</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Aug 4, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-43c2fd9b60ec704e3e91a5ed8deda90edf7f1ece0ea9052dfe783401d962f143</citedby><cites>FETCH-LOGICAL-c443t-43c2fd9b60ec704e3e91a5ed8deda90edf7f1ece0ea9052dfe783401d962f143</cites><orcidid>0000-0001-5416-2986 ; 0000-0002-9385-2370 ; 0000-0002-4026-7266 ; 0000-0002-3324-5165 ; 0000-0002-2926-7230 ; 0000-0002-9324-1545 ; 0000-0002-6689-2908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26935569$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26935569$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32690717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orengo, Hector A.</creatorcontrib><creatorcontrib>Conesa, Francesc C.</creatorcontrib><creatorcontrib>Garcia-Molsosa, Arnau</creatorcontrib><creatorcontrib>Lobo, Agustín</creatorcontrib><creatorcontrib>Green, Adam S.</creatorcontrib><creatorcontrib>Madella, Marco</creatorcontrib><creatorcontrib>Petrie, Cameron A.</creatorcontrib><title>Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>This paper presents an innovative multisensor, multitemporal machine-learning approach using remote sensing big data for the detection of archaeological mounds in Cholistan (Pakistan). The Cholistan Desert presents one of the largest concentrations of Indus Civilization sites (from ca. 3300 to 1500 BC). Cholistan has figured prominently in theories about changes in water availability, the rise and decline of the Indus Civilization, and the transformation of fertile monsoonal alluvial plains into an extremely arid margin. This paper implements a multisensor, multitemporal machine-learning approach for the remote detection of archaeological mounds. A classifier algorithm that employs a large-scale collection of synthetic-aperture radar and multispectral images has been implemented in Google Earth Engine, resulting in an accurate probability map for mound-like signatures across an area that covers ca. 36,000 km². The results show that the area presents many more archaeological mounds than previously recorded, extending south and east into the desert, which has major implications for understanding the archaeological significance of the region. The detection of small (&lt;5 ha) to large mounds (&gt;30 ha) suggests that there were continuous shifts in settlement location. These shifts are likely to reflect responses to a dynamic and changing hydrological network and the influence of the progressive northward advance of the desert in a long-term process that culminated in the abandonment of much of the settled area during the Late Harappan period.</description><subject>Abandonment</subject><subject>Algorithms</subject><subject>Alluvial plains</subject><subject>Archaeology</subject><subject>Aridity</subject><subject>Deserts</subject><subject>Hydrology</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mounds</subject><subject>Physical Sciences</subject><subject>Radar imaging</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Social Sciences</subject><subject>Synthetic aperture radar</subject><subject>Water availability</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkctr3DAQxkVpaTZpzz21GHrJxcnoYcu6FELoCwK95C4UabyrxZa2klzotX95ZTbZPi4So_nNp_n4CHlD4YqC5NeHYPIVA-i6gVMqn5ENBUXbXih4TjYATLaDYOKMnOe8BwDVDfCSnHHWK5BUbsivm6XE2RR0jcOCtvgYmjg2JtmdwTjFrbdmaua4BJebJfuwbWZjdz5gO6FJYX2wk8nZj5V8Gp-XqfiMIcfUmOCOdcH5EFNVy_W_aap140wxr8iL0UwZXz_eF-T-08f72y_t3bfPX29v7lorBC-t4JaNTj30gFaCQI6Kmg7d4NAZBehGOVK0CFirjrkR5cAFUKd6NlLBL8iHo-xheZjRWQyl7qIPyc8m_dTReP1vJ_id3sYfWgoqaE-rwOWjQIrfF8xFzz7basQEjEvWTLBuUKJnK_r-P3QflxSqu0rVpSQDulLXR8qmmHPC8bQMBb3Gq9d49Z9468S7vz2c-Kc8K_D2COxzienUr23edfX4DX69r_E</recordid><startdate>20200804</startdate><enddate>20200804</enddate><creator>Orengo, Hector A.</creator><creator>Conesa, Francesc C.</creator><creator>Garcia-Molsosa, Arnau</creator><creator>Lobo, Agustín</creator><creator>Green, Adam S.</creator><creator>Madella, Marco</creator><creator>Petrie, Cameron A.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5416-2986</orcidid><orcidid>https://orcid.org/0000-0002-9385-2370</orcidid><orcidid>https://orcid.org/0000-0002-4026-7266</orcidid><orcidid>https://orcid.org/0000-0002-3324-5165</orcidid><orcidid>https://orcid.org/0000-0002-2926-7230</orcidid><orcidid>https://orcid.org/0000-0002-9324-1545</orcidid><orcidid>https://orcid.org/0000-0002-6689-2908</orcidid></search><sort><creationdate>20200804</creationdate><title>Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data</title><author>Orengo, Hector A. ; Conesa, Francesc C. ; Garcia-Molsosa, Arnau ; Lobo, Agustín ; Green, Adam S. ; Madella, Marco ; Petrie, Cameron A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-43c2fd9b60ec704e3e91a5ed8deda90edf7f1ece0ea9052dfe783401d962f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abandonment</topic><topic>Algorithms</topic><topic>Alluvial plains</topic><topic>Archaeology</topic><topic>Aridity</topic><topic>Deserts</topic><topic>Hydrology</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mounds</topic><topic>Physical Sciences</topic><topic>Radar imaging</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Social Sciences</topic><topic>Synthetic aperture radar</topic><topic>Water availability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orengo, Hector A.</creatorcontrib><creatorcontrib>Conesa, Francesc C.</creatorcontrib><creatorcontrib>Garcia-Molsosa, Arnau</creatorcontrib><creatorcontrib>Lobo, Agustín</creatorcontrib><creatorcontrib>Green, Adam S.</creatorcontrib><creatorcontrib>Madella, Marco</creatorcontrib><creatorcontrib>Petrie, Cameron A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orengo, Hector A.</au><au>Conesa, Francesc C.</au><au>Garcia-Molsosa, Arnau</au><au>Lobo, Agustín</au><au>Green, Adam S.</au><au>Madella, Marco</au><au>Petrie, Cameron A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-08-04</date><risdate>2020</risdate><volume>117</volume><issue>31</issue><spage>18240</spage><epage>18250</epage><pages>18240-18250</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>This paper presents an innovative multisensor, multitemporal machine-learning approach using remote sensing big data for the detection of archaeological mounds in Cholistan (Pakistan). The Cholistan Desert presents one of the largest concentrations of Indus Civilization sites (from ca. 3300 to 1500 BC). Cholistan has figured prominently in theories about changes in water availability, the rise and decline of the Indus Civilization, and the transformation of fertile monsoonal alluvial plains into an extremely arid margin. This paper implements a multisensor, multitemporal machine-learning approach for the remote detection of archaeological mounds. A classifier algorithm that employs a large-scale collection of synthetic-aperture radar and multispectral images has been implemented in Google Earth Engine, resulting in an accurate probability map for mound-like signatures across an area that covers ca. 36,000 km². The results show that the area presents many more archaeological mounds than previously recorded, extending south and east into the desert, which has major implications for understanding the archaeological significance of the region. The detection of small (&lt;5 ha) to large mounds (&gt;30 ha) suggests that there were continuous shifts in settlement location. These shifts are likely to reflect responses to a dynamic and changing hydrological network and the influence of the progressive northward advance of the desert in a long-term process that culminated in the abandonment of much of the settled area during the Late Harappan period.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32690717</pmid><doi>10.1073/pnas.2005583117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5416-2986</orcidid><orcidid>https://orcid.org/0000-0002-9385-2370</orcidid><orcidid>https://orcid.org/0000-0002-4026-7266</orcidid><orcidid>https://orcid.org/0000-0002-3324-5165</orcidid><orcidid>https://orcid.org/0000-0002-2926-7230</orcidid><orcidid>https://orcid.org/0000-0002-9324-1545</orcidid><orcidid>https://orcid.org/0000-0002-6689-2908</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-08, Vol.117 (31), p.18240-18250
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7414161
source PMC (PubMed Central); Jstor Complete Legacy; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Abandonment
Algorithms
Alluvial plains
Archaeology
Aridity
Deserts
Hydrology
Learning algorithms
Machine learning
Mounds
Physical Sciences
Radar imaging
Remote sensing
Satellites
Social Sciences
Synthetic aperture radar
Water availability
title Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A22%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20detection%20of%20archaeological%20mounds%20using%20machine-learning%20classification%20of%20multisensor%20and%20multitemporal%20satellite%20data&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Orengo,%20Hector%20A.&rft.date=2020-08-04&rft.volume=117&rft.issue=31&rft.spage=18240&rft.epage=18250&rft.pages=18240-18250&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2005583117&rft_dat=%3Cjstor_pubme%3E26935569%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434072011&rft_id=info:pmid/32690717&rft_jstor_id=26935569&rfr_iscdi=true