Characterizing the dynamic rheology in the pericellular region by human mesenchymal stem cell re-engineering in PEG-peptide hydrogel scaffolds
During wound healing, human mesenchymal stem cells (hMSCs) migrate to injuries to regulate inflammation and coordinate tissue regeneration. To enable migration, hMSCs re-engineer the extracellular matrix rheology. Our work determines the correlation between cell-engineered rheology and motility. We...
Gespeichert in:
Veröffentlicht in: | Rheologica acta 2019-08, Vol.58 (8), p.421-437 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 437 |
---|---|
container_issue | 8 |
container_start_page | 421 |
container_title | Rheologica acta |
container_volume | 58 |
creator | Daviran, Maryam Schultz, Kelly M. |
description | During wound healing, human mesenchymal stem cells (hMSCs) migrate to injuries to regulate inflammation and coordinate tissue regeneration. To enable migration, hMSCs re-engineer the extracellular matrix rheology. Our work determines the correlation between cell-engineered rheology and motility. We encapsulate hMSCs in a cell-degradable peptide-polymeric hydrogel and characterize the change in rheological properties in the pericellular region using multiple particle tracking microrheology. Previous studies determined that pericellular rheology is correlated with motility. Additionally, hMSCs re-engineer their microenvironment by regulating cell-secreted enzyme, matrix metalloproteinases (MMPs), activity by also secreting their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). We independently inhibit TIMPs and measure two different degradation profiles, reaction-diffusion and reverse reaction-diffusion. These profiles are correlated with cell spreading, speed and motility type. We model scaffold degradation using Michaelis-Menten kinetics, finding a decrease in kinetics between joint and independent TIMP inhibition. hMSCs ability to regulate microenvironmental remodeling and motility could be exploited in design of new materials that deliver hMSCs to wounds to enhance healing. |
doi_str_mv | 10.1007/s00397-019-01142-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7413226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432868825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-a6c6d39d36cb1ad6717823f8500bf3dacb09529749d578eb273d68dba2cf4a203</originalsourceid><addsrcrecordid>eNp9kc1u1TAUhC1ERS-FF2CBLLFhE-qfJHY2SOiqFKRKZQFry7FPEleJHeykUngInhnf3lKgCxaWJZ9vxmc0CL2i5B0lRJwnQngjCkKbfGjJCvYE7WjJq4JWTD5FuzyvirKi9BQ9T-mGECpqwZ6hU86E4FI2O_RzP-iozQLR_XC-x8sA2G5eT87gOEAYQ79h5-_e5wwZGMd11BFH6F3wuN3wsE7a4wkSeDNskx5xWmDCBzJTBfjeecjS7J6NvlxcFjPMi7OAh83G0EMWGN11YbTpBTrp9Jjg5f19hr59vPi6_1RcXV9-3n-4KkxOsxS6NrXljeW1aam2taBCMt7JipC241abljQVa0TZ2EpIaJngtpa21cx0pWaEn6H3R995bSewBvwS9ajm6CYdNxW0U_9OvBtUH26VKClnrM4Gb-8NYvi-QlrU5NIhsvYQ1qRYyZmspWRVRt88Qm_CGn2OpxgTROYNicwUO1ImhpQidA_LUKIOdatj3SrXre7qViyLXv8d40Hyu98M8COQ5kMBEP_8_R_bXxpCuTc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2270857808</pqid></control><display><type>article</type><title>Characterizing the dynamic rheology in the pericellular region by human mesenchymal stem cell re-engineering in PEG-peptide hydrogel scaffolds</title><source>Springer Nature - Complete Springer Journals</source><creator>Daviran, Maryam ; Schultz, Kelly M.</creator><creatorcontrib>Daviran, Maryam ; Schultz, Kelly M.</creatorcontrib><description>During wound healing, human mesenchymal stem cells (hMSCs) migrate to injuries to regulate inflammation and coordinate tissue regeneration. To enable migration, hMSCs re-engineer the extracellular matrix rheology. Our work determines the correlation between cell-engineered rheology and motility. We encapsulate hMSCs in a cell-degradable peptide-polymeric hydrogel and characterize the change in rheological properties in the pericellular region using multiple particle tracking microrheology. Previous studies determined that pericellular rheology is correlated with motility. Additionally, hMSCs re-engineer their microenvironment by regulating cell-secreted enzyme, matrix metalloproteinases (MMPs), activity by also secreting their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). We independently inhibit TIMPs and measure two different degradation profiles, reaction-diffusion and reverse reaction-diffusion. These profiles are correlated with cell spreading, speed and motility type. We model scaffold degradation using Michaelis-Menten kinetics, finding a decrease in kinetics between joint and independent TIMP inhibition. hMSCs ability to regulate microenvironmental remodeling and motility could be exploited in design of new materials that deliver hMSCs to wounds to enhance healing.</description><identifier>ISSN: 0035-4511</identifier><identifier>EISSN: 1435-1528</identifier><identifier>DOI: 10.1007/s00397-019-01142-2</identifier><identifier>PMID: 32773889</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Degradation ; Diffusion rate ; Engineers ; Food Science ; Hydrogels ; Inhibitors ; Materials Science ; Matrix metalloproteinases ; Mechanical Engineering ; Migration ; Motility ; Original Contribution ; Particle tracking ; Peptides ; Polymer Sciences ; Reaction kinetics ; Reengineering ; Regeneration ; Rheological properties ; Rheology ; Scaffolds ; Soft and Granular Matter ; Stem cells ; Tissue engineering ; Wound healing</subject><ispartof>Rheologica acta, 2019-08, Vol.58 (8), p.421-437</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Rheologica Acta is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-a6c6d39d36cb1ad6717823f8500bf3dacb09529749d578eb273d68dba2cf4a203</citedby><cites>FETCH-LOGICAL-c511t-a6c6d39d36cb1ad6717823f8500bf3dacb09529749d578eb273d68dba2cf4a203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00397-019-01142-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00397-019-01142-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32773889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Daviran, Maryam</creatorcontrib><creatorcontrib>Schultz, Kelly M.</creatorcontrib><title>Characterizing the dynamic rheology in the pericellular region by human mesenchymal stem cell re-engineering in PEG-peptide hydrogel scaffolds</title><title>Rheologica acta</title><addtitle>Rheol Acta</addtitle><addtitle>Rheol Acta</addtitle><description>During wound healing, human mesenchymal stem cells (hMSCs) migrate to injuries to regulate inflammation and coordinate tissue regeneration. To enable migration, hMSCs re-engineer the extracellular matrix rheology. Our work determines the correlation between cell-engineered rheology and motility. We encapsulate hMSCs in a cell-degradable peptide-polymeric hydrogel and characterize the change in rheological properties in the pericellular region using multiple particle tracking microrheology. Previous studies determined that pericellular rheology is correlated with motility. Additionally, hMSCs re-engineer their microenvironment by regulating cell-secreted enzyme, matrix metalloproteinases (MMPs), activity by also secreting their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). We independently inhibit TIMPs and measure two different degradation profiles, reaction-diffusion and reverse reaction-diffusion. These profiles are correlated with cell spreading, speed and motility type. We model scaffold degradation using Michaelis-Menten kinetics, finding a decrease in kinetics between joint and independent TIMP inhibition. hMSCs ability to regulate microenvironmental remodeling and motility could be exploited in design of new materials that deliver hMSCs to wounds to enhance healing.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Degradation</subject><subject>Diffusion rate</subject><subject>Engineers</subject><subject>Food Science</subject><subject>Hydrogels</subject><subject>Inhibitors</subject><subject>Materials Science</subject><subject>Matrix metalloproteinases</subject><subject>Mechanical Engineering</subject><subject>Migration</subject><subject>Motility</subject><subject>Original Contribution</subject><subject>Particle tracking</subject><subject>Peptides</subject><subject>Polymer Sciences</subject><subject>Reaction kinetics</subject><subject>Reengineering</subject><subject>Regeneration</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Scaffolds</subject><subject>Soft and Granular Matter</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><subject>Wound healing</subject><issn>0035-4511</issn><issn>1435-1528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc1u1TAUhC1ERS-FF2CBLLFhE-qfJHY2SOiqFKRKZQFry7FPEleJHeykUngInhnf3lKgCxaWJZ9vxmc0CL2i5B0lRJwnQngjCkKbfGjJCvYE7WjJq4JWTD5FuzyvirKi9BQ9T-mGECpqwZ6hU86E4FI2O_RzP-iozQLR_XC-x8sA2G5eT87gOEAYQ79h5-_e5wwZGMd11BFH6F3wuN3wsE7a4wkSeDNskx5xWmDCBzJTBfjeecjS7J6NvlxcFjPMi7OAh83G0EMWGN11YbTpBTrp9Jjg5f19hr59vPi6_1RcXV9-3n-4KkxOsxS6NrXljeW1aam2taBCMt7JipC241abljQVa0TZ2EpIaJngtpa21cx0pWaEn6H3R995bSewBvwS9ajm6CYdNxW0U_9OvBtUH26VKClnrM4Gb-8NYvi-QlrU5NIhsvYQ1qRYyZmspWRVRt88Qm_CGn2OpxgTROYNicwUO1ImhpQidA_LUKIOdatj3SrXre7qViyLXv8d40Hyu98M8COQ5kMBEP_8_R_bXxpCuTc</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Daviran, Maryam</creator><creator>Schultz, Kelly M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190801</creationdate><title>Characterizing the dynamic rheology in the pericellular region by human mesenchymal stem cell re-engineering in PEG-peptide hydrogel scaffolds</title><author>Daviran, Maryam ; Schultz, Kelly M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-a6c6d39d36cb1ad6717823f8500bf3dacb09529749d578eb273d68dba2cf4a203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Degradation</topic><topic>Diffusion rate</topic><topic>Engineers</topic><topic>Food Science</topic><topic>Hydrogels</topic><topic>Inhibitors</topic><topic>Materials Science</topic><topic>Matrix metalloproteinases</topic><topic>Mechanical Engineering</topic><topic>Migration</topic><topic>Motility</topic><topic>Original Contribution</topic><topic>Particle tracking</topic><topic>Peptides</topic><topic>Polymer Sciences</topic><topic>Reaction kinetics</topic><topic>Reengineering</topic><topic>Regeneration</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Scaffolds</topic><topic>Soft and Granular Matter</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daviran, Maryam</creatorcontrib><creatorcontrib>Schultz, Kelly M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Rheologica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daviran, Maryam</au><au>Schultz, Kelly M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing the dynamic rheology in the pericellular region by human mesenchymal stem cell re-engineering in PEG-peptide hydrogel scaffolds</atitle><jtitle>Rheologica acta</jtitle><stitle>Rheol Acta</stitle><addtitle>Rheol Acta</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>58</volume><issue>8</issue><spage>421</spage><epage>437</epage><pages>421-437</pages><issn>0035-4511</issn><eissn>1435-1528</eissn><abstract>During wound healing, human mesenchymal stem cells (hMSCs) migrate to injuries to regulate inflammation and coordinate tissue regeneration. To enable migration, hMSCs re-engineer the extracellular matrix rheology. Our work determines the correlation between cell-engineered rheology and motility. We encapsulate hMSCs in a cell-degradable peptide-polymeric hydrogel and characterize the change in rheological properties in the pericellular region using multiple particle tracking microrheology. Previous studies determined that pericellular rheology is correlated with motility. Additionally, hMSCs re-engineer their microenvironment by regulating cell-secreted enzyme, matrix metalloproteinases (MMPs), activity by also secreting their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). We independently inhibit TIMPs and measure two different degradation profiles, reaction-diffusion and reverse reaction-diffusion. These profiles are correlated with cell spreading, speed and motility type. We model scaffold degradation using Michaelis-Menten kinetics, finding a decrease in kinetics between joint and independent TIMP inhibition. hMSCs ability to regulate microenvironmental remodeling and motility could be exploited in design of new materials that deliver hMSCs to wounds to enhance healing.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32773889</pmid><doi>10.1007/s00397-019-01142-2</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-4511 |
ispartof | Rheologica acta, 2019-08, Vol.58 (8), p.421-437 |
issn | 0035-4511 1435-1528 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7413226 |
source | Springer Nature - Complete Springer Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Complex Fluids and Microfluidics Degradation Diffusion rate Engineers Food Science Hydrogels Inhibitors Materials Science Matrix metalloproteinases Mechanical Engineering Migration Motility Original Contribution Particle tracking Peptides Polymer Sciences Reaction kinetics Reengineering Regeneration Rheological properties Rheology Scaffolds Soft and Granular Matter Stem cells Tissue engineering Wound healing |
title | Characterizing the dynamic rheology in the pericellular region by human mesenchymal stem cell re-engineering in PEG-peptide hydrogel scaffolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20the%20dynamic%20rheology%20in%20the%20pericellular%20region%20by%20human%20mesenchymal%20stem%20cell%20re-engineering%20in%20PEG-peptide%20hydrogel%20scaffolds&rft.jtitle=Rheologica%20acta&rft.au=Daviran,%20Maryam&rft.date=2019-08-01&rft.volume=58&rft.issue=8&rft.spage=421&rft.epage=437&rft.pages=421-437&rft.issn=0035-4511&rft.eissn=1435-1528&rft_id=info:doi/10.1007/s00397-019-01142-2&rft_dat=%3Cproquest_pubme%3E2432868825%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2270857808&rft_id=info:pmid/32773889&rfr_iscdi=true |