Enhanced Binding of SARS-CoV‑2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites
The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein plays a crucial role in binding the human cell receptor ACE2 that is required for viral entry. Many studies have been conducted to target the structures of RBD–ACE2 binding and to design RBD-targeting vaccines and drugs. Nevertheless,...
Gespeichert in:
Veröffentlicht in: | ACS nano 2020-08, Vol.14 (8), p.10616-10623 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10623 |
---|---|
container_issue | 8 |
container_start_page | 10616 |
container_title | ACS nano |
container_volume | 14 |
creator | Qiao, Baofu Olvera de la Cruz, Monica |
description | The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein plays a crucial role in binding the human cell receptor ACE2 that is required for viral entry. Many studies have been conducted to target the structures of RBD–ACE2 binding and to design RBD-targeting vaccines and drugs. Nevertheless, mutations distal from the SARS-CoV-2 RBD also impact its transmissibility and antibody can target non-RBD regions, suggesting the incomplete role of the RBD region in the spike protein–ACE2 binding. Here, in order to elucidate distant binding mechanisms, we analyze complexes of ACE2 with the wild-type spike protein and with key mutants via large-scale all-atom explicit solvent molecular dynamics simulations. We find that though distributed approximately 10 nm away from the RBD, the SARS-CoV-2 polybasic cleavage sites enhance, via electrostatic interactions and hydration, the RBD–ACE2 binding affinity. A negatively charged tetrapeptide (GluGluLeuGlu) is then designed to neutralize the positively charged arginine on the polybasic cleavage sites. We find that the tetrapeptide GluGluLeuGlu binds to one of the three polybasic cleavage sites of the SARS-CoV-2 spike protein lessening by 34% the RBD–ACE2 binding strength. This significant binding energy reduction demonstrates the feasibility to neutralize RBD–ACE2 binding by targeting this specific polybasic cleavage site. Our work enhances understanding of the binding mechanism of SARS-CoV-2 to ACE2, which may aid the design of therapeutics for COVID-19 infection. |
doi_str_mv | 10.1021/acsnano.0c04798 |
format | Article |
fullrecord | <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7409923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c100354250</sourcerecordid><originalsourceid>FETCH-LOGICAL-a456t-90217b573d2907bc4aab52603da9affc6502d7b27031fac2dbe943b29b2f0c9a3</originalsourceid><addsrcrecordid>eNp1kctKAzEUhoMo3tfuJLiV0UzmkslGqPUKgsWquJFwksm00TEpkyh05yv4ij6JkdaiC1c5kO_855z_R2gnJQcpoekhKG_BugOiSM54tYTWU56VCanKh-VFXaRraMP7J0IKVrFyFa1ltCIlKdk6ejy1Y7BK1_jY2NrYEXYNHvZuhknf3X--f1A8nJhnjQedC9pYHBy-0UpPguuwnOIT4wO0eODaqQRvFO63Gt5gpPHQBO230EoDrdfb83cT3Z2d3vYvkqvr88t-7yqBvChDwuMpTBYsqyknTKocQBa0JFkNHJpGlQWhNZOUkSxtQNFaap5nknJJG6I4ZJvoaKY7eZUvulbahg5aMenMC3RT4cCIvz_WjMXIvQmWE85pFgX2ZgLOByO8isursXLWahVEWkXnqiJChzNIdc77TjeLASkR33GIeRxiHkfs2P2914L_8T8C-zMgdoon99rZaNO_cl-zbJep</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced Binding of SARS-CoV‑2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Qiao, Baofu ; Olvera de la Cruz, Monica</creator><creatorcontrib>Qiao, Baofu ; Olvera de la Cruz, Monica ; Northwestern Univ., Evanston, IL (United States)</creatorcontrib><description>The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein plays a crucial role in binding the human cell receptor ACE2 that is required for viral entry. Many studies have been conducted to target the structures of RBD–ACE2 binding and to design RBD-targeting vaccines and drugs. Nevertheless, mutations distal from the SARS-CoV-2 RBD also impact its transmissibility and antibody can target non-RBD regions, suggesting the incomplete role of the RBD region in the spike protein–ACE2 binding. Here, in order to elucidate distant binding mechanisms, we analyze complexes of ACE2 with the wild-type spike protein and with key mutants via large-scale all-atom explicit solvent molecular dynamics simulations. We find that though distributed approximately 10 nm away from the RBD, the SARS-CoV-2 polybasic cleavage sites enhance, via electrostatic interactions and hydration, the RBD–ACE2 binding affinity. A negatively charged tetrapeptide (GluGluLeuGlu) is then designed to neutralize the positively charged arginine on the polybasic cleavage sites. We find that the tetrapeptide GluGluLeuGlu binds to one of the three polybasic cleavage sites of the SARS-CoV-2 spike protein lessening by 34% the RBD–ACE2 binding strength. This significant binding energy reduction demonstrates the feasibility to neutralize RBD–ACE2 binding by targeting this specific polybasic cleavage site. Our work enhances understanding of the binding mechanism of SARS-CoV-2 to ACE2, which may aid the design of therapeutics for COVID-19 infection.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c04798</identifier><identifier>PMID: 32806067</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>60 APPLIED LIFE SCIENCES ; Amino Acid Substitution ; Angiotensin-Converting Enzyme 2 ; Antiviral Agents - chemistry ; Antiviral Agents - pharmacology ; Betacoronavirus - chemistry ; Betacoronavirus - genetics ; Betacoronavirus - metabolism ; Binding Sites - genetics ; chemistry ; Coronavirus Infections - virology ; COVID-19 ; Drug Design ; Host Microbial Interactions - drug effects ; Humans ; materials science ; Molecular Dynamics Simulation ; molecular dynamics simulations ; Mutation ; Oligopeptides - chemistry ; Oligopeptides - pharmacology ; Pandemics ; peptide inhibitor ; Peptidyl-Dipeptidase A - chemistry ; Peptidyl-Dipeptidase A - genetics ; Peptidyl-Dipeptidase A - metabolism ; Pneumonia, Viral - virology ; polybasic cleavage sites ; Protein Binding - drug effects ; Protein Binding - genetics ; Protein Binding - physiology ; Protein Domains ; Receptors, Virus - chemistry ; Receptors, Virus - genetics ; Receptors, Virus - metabolism ; SARS-CoV-2 ; Spike Glycoprotein, Coronavirus - chemistry ; Spike Glycoprotein, Coronavirus - genetics ; Spike Glycoprotein, Coronavirus - metabolism ; Virus Internalization</subject><ispartof>ACS nano, 2020-08, Vol.14 (8), p.10616-10623</ispartof><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a456t-90217b573d2907bc4aab52603da9affc6502d7b27031fac2dbe943b29b2f0c9a3</citedby><cites>FETCH-LOGICAL-a456t-90217b573d2907bc4aab52603da9affc6502d7b27031fac2dbe943b29b2f0c9a3</cites><orcidid>0000-0002-9802-3627 ; 0000-0001-8870-5985 ; 0000000188705985 ; 0000000298023627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c04798$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c04798$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32806067$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1800585$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiao, Baofu</creatorcontrib><creatorcontrib>Olvera de la Cruz, Monica</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><title>Enhanced Binding of SARS-CoV‑2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein plays a crucial role in binding the human cell receptor ACE2 that is required for viral entry. Many studies have been conducted to target the structures of RBD–ACE2 binding and to design RBD-targeting vaccines and drugs. Nevertheless, mutations distal from the SARS-CoV-2 RBD also impact its transmissibility and antibody can target non-RBD regions, suggesting the incomplete role of the RBD region in the spike protein–ACE2 binding. Here, in order to elucidate distant binding mechanisms, we analyze complexes of ACE2 with the wild-type spike protein and with key mutants via large-scale all-atom explicit solvent molecular dynamics simulations. We find that though distributed approximately 10 nm away from the RBD, the SARS-CoV-2 polybasic cleavage sites enhance, via electrostatic interactions and hydration, the RBD–ACE2 binding affinity. A negatively charged tetrapeptide (GluGluLeuGlu) is then designed to neutralize the positively charged arginine on the polybasic cleavage sites. We find that the tetrapeptide GluGluLeuGlu binds to one of the three polybasic cleavage sites of the SARS-CoV-2 spike protein lessening by 34% the RBD–ACE2 binding strength. This significant binding energy reduction demonstrates the feasibility to neutralize RBD–ACE2 binding by targeting this specific polybasic cleavage site. Our work enhances understanding of the binding mechanism of SARS-CoV-2 to ACE2, which may aid the design of therapeutics for COVID-19 infection.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Amino Acid Substitution</subject><subject>Angiotensin-Converting Enzyme 2</subject><subject>Antiviral Agents - chemistry</subject><subject>Antiviral Agents - pharmacology</subject><subject>Betacoronavirus - chemistry</subject><subject>Betacoronavirus - genetics</subject><subject>Betacoronavirus - metabolism</subject><subject>Binding Sites - genetics</subject><subject>chemistry</subject><subject>Coronavirus Infections - virology</subject><subject>COVID-19</subject><subject>Drug Design</subject><subject>Host Microbial Interactions - drug effects</subject><subject>Humans</subject><subject>materials science</subject><subject>Molecular Dynamics Simulation</subject><subject>molecular dynamics simulations</subject><subject>Mutation</subject><subject>Oligopeptides - chemistry</subject><subject>Oligopeptides - pharmacology</subject><subject>Pandemics</subject><subject>peptide inhibitor</subject><subject>Peptidyl-Dipeptidase A - chemistry</subject><subject>Peptidyl-Dipeptidase A - genetics</subject><subject>Peptidyl-Dipeptidase A - metabolism</subject><subject>Pneumonia, Viral - virology</subject><subject>polybasic cleavage sites</subject><subject>Protein Binding - drug effects</subject><subject>Protein Binding - genetics</subject><subject>Protein Binding - physiology</subject><subject>Protein Domains</subject><subject>Receptors, Virus - chemistry</subject><subject>Receptors, Virus - genetics</subject><subject>Receptors, Virus - metabolism</subject><subject>SARS-CoV-2</subject><subject>Spike Glycoprotein, Coronavirus - chemistry</subject><subject>Spike Glycoprotein, Coronavirus - genetics</subject><subject>Spike Glycoprotein, Coronavirus - metabolism</subject><subject>Virus Internalization</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctKAzEUhoMo3tfuJLiV0UzmkslGqPUKgsWquJFwksm00TEpkyh05yv4ij6JkdaiC1c5kO_855z_R2gnJQcpoekhKG_BugOiSM54tYTWU56VCanKh-VFXaRraMP7J0IKVrFyFa1ltCIlKdk6ejy1Y7BK1_jY2NrYEXYNHvZuhknf3X--f1A8nJhnjQedC9pYHBy-0UpPguuwnOIT4wO0eODaqQRvFO63Gt5gpPHQBO230EoDrdfb83cT3Z2d3vYvkqvr88t-7yqBvChDwuMpTBYsqyknTKocQBa0JFkNHJpGlQWhNZOUkSxtQNFaap5nknJJG6I4ZJvoaKY7eZUvulbahg5aMenMC3RT4cCIvz_WjMXIvQmWE85pFgX2ZgLOByO8isursXLWahVEWkXnqiJChzNIdc77TjeLASkR33GIeRxiHkfs2P2914L_8T8C-zMgdoon99rZaNO_cl-zbJep</recordid><startdate>20200825</startdate><enddate>20200825</enddate><creator>Qiao, Baofu</creator><creator>Olvera de la Cruz, Monica</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9802-3627</orcidid><orcidid>https://orcid.org/0000-0001-8870-5985</orcidid><orcidid>https://orcid.org/0000000188705985</orcidid><orcidid>https://orcid.org/0000000298023627</orcidid></search><sort><creationdate>20200825</creationdate><title>Enhanced Binding of SARS-CoV‑2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites</title><author>Qiao, Baofu ; Olvera de la Cruz, Monica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a456t-90217b573d2907bc4aab52603da9affc6502d7b27031fac2dbe943b29b2f0c9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Amino Acid Substitution</topic><topic>Angiotensin-Converting Enzyme 2</topic><topic>Antiviral Agents - chemistry</topic><topic>Antiviral Agents - pharmacology</topic><topic>Betacoronavirus - chemistry</topic><topic>Betacoronavirus - genetics</topic><topic>Betacoronavirus - metabolism</topic><topic>Binding Sites - genetics</topic><topic>chemistry</topic><topic>Coronavirus Infections - virology</topic><topic>COVID-19</topic><topic>Drug Design</topic><topic>Host Microbial Interactions - drug effects</topic><topic>Humans</topic><topic>materials science</topic><topic>Molecular Dynamics Simulation</topic><topic>molecular dynamics simulations</topic><topic>Mutation</topic><topic>Oligopeptides - chemistry</topic><topic>Oligopeptides - pharmacology</topic><topic>Pandemics</topic><topic>peptide inhibitor</topic><topic>Peptidyl-Dipeptidase A - chemistry</topic><topic>Peptidyl-Dipeptidase A - genetics</topic><topic>Peptidyl-Dipeptidase A - metabolism</topic><topic>Pneumonia, Viral - virology</topic><topic>polybasic cleavage sites</topic><topic>Protein Binding - drug effects</topic><topic>Protein Binding - genetics</topic><topic>Protein Binding - physiology</topic><topic>Protein Domains</topic><topic>Receptors, Virus - chemistry</topic><topic>Receptors, Virus - genetics</topic><topic>Receptors, Virus - metabolism</topic><topic>SARS-CoV-2</topic><topic>Spike Glycoprotein, Coronavirus - chemistry</topic><topic>Spike Glycoprotein, Coronavirus - genetics</topic><topic>Spike Glycoprotein, Coronavirus - metabolism</topic><topic>Virus Internalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Baofu</creatorcontrib><creatorcontrib>Olvera de la Cruz, Monica</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Baofu</au><au>Olvera de la Cruz, Monica</au><aucorp>Northwestern Univ., Evanston, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Binding of SARS-CoV‑2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-08-25</date><risdate>2020</risdate><volume>14</volume><issue>8</issue><spage>10616</spage><epage>10623</epage><pages>10616-10623</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein plays a crucial role in binding the human cell receptor ACE2 that is required for viral entry. Many studies have been conducted to target the structures of RBD–ACE2 binding and to design RBD-targeting vaccines and drugs. Nevertheless, mutations distal from the SARS-CoV-2 RBD also impact its transmissibility and antibody can target non-RBD regions, suggesting the incomplete role of the RBD region in the spike protein–ACE2 binding. Here, in order to elucidate distant binding mechanisms, we analyze complexes of ACE2 with the wild-type spike protein and with key mutants via large-scale all-atom explicit solvent molecular dynamics simulations. We find that though distributed approximately 10 nm away from the RBD, the SARS-CoV-2 polybasic cleavage sites enhance, via electrostatic interactions and hydration, the RBD–ACE2 binding affinity. A negatively charged tetrapeptide (GluGluLeuGlu) is then designed to neutralize the positively charged arginine on the polybasic cleavage sites. We find that the tetrapeptide GluGluLeuGlu binds to one of the three polybasic cleavage sites of the SARS-CoV-2 spike protein lessening by 34% the RBD–ACE2 binding strength. This significant binding energy reduction demonstrates the feasibility to neutralize RBD–ACE2 binding by targeting this specific polybasic cleavage site. Our work enhances understanding of the binding mechanism of SARS-CoV-2 to ACE2, which may aid the design of therapeutics for COVID-19 infection.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32806067</pmid><doi>10.1021/acsnano.0c04798</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9802-3627</orcidid><orcidid>https://orcid.org/0000-0001-8870-5985</orcidid><orcidid>https://orcid.org/0000000188705985</orcidid><orcidid>https://orcid.org/0000000298023627</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2020-08, Vol.14 (8), p.10616-10623 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7409923 |
source | MEDLINE; American Chemical Society Journals |
subjects | 60 APPLIED LIFE SCIENCES Amino Acid Substitution Angiotensin-Converting Enzyme 2 Antiviral Agents - chemistry Antiviral Agents - pharmacology Betacoronavirus - chemistry Betacoronavirus - genetics Betacoronavirus - metabolism Binding Sites - genetics chemistry Coronavirus Infections - virology COVID-19 Drug Design Host Microbial Interactions - drug effects Humans materials science Molecular Dynamics Simulation molecular dynamics simulations Mutation Oligopeptides - chemistry Oligopeptides - pharmacology Pandemics peptide inhibitor Peptidyl-Dipeptidase A - chemistry Peptidyl-Dipeptidase A - genetics Peptidyl-Dipeptidase A - metabolism Pneumonia, Viral - virology polybasic cleavage sites Protein Binding - drug effects Protein Binding - genetics Protein Binding - physiology Protein Domains Receptors, Virus - chemistry Receptors, Virus - genetics Receptors, Virus - metabolism SARS-CoV-2 Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - genetics Spike Glycoprotein, Coronavirus - metabolism Virus Internalization |
title | Enhanced Binding of SARS-CoV‑2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Binding%20of%20SARS-CoV%E2%80%912%20Spike%20Protein%20to%20Receptor%20by%20Distal%20Polybasic%20Cleavage%20Sites&rft.jtitle=ACS%20nano&rft.au=Qiao,%20Baofu&rft.aucorp=Northwestern%20Univ.,%20Evanston,%20IL%20(United%20States)&rft.date=2020-08-25&rft.volume=14&rft.issue=8&rft.spage=10616&rft.epage=10623&rft.pages=10616-10623&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c04798&rft_dat=%3Cacs_pubme%3Ec100354250%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32806067&rfr_iscdi=true |