Enhanced Binding of SARS-CoV‑2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites

The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein plays a crucial role in binding the human cell receptor ACE2 that is required for viral entry. Many studies have been conducted to target the structures of RBD–ACE2 binding and to design RBD-targeting vaccines and drugs. Nevertheless,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-08, Vol.14 (8), p.10616-10623
Hauptverfasser: Qiao, Baofu, Olvera de la Cruz, Monica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10623
container_issue 8
container_start_page 10616
container_title ACS nano
container_volume 14
creator Qiao, Baofu
Olvera de la Cruz, Monica
description The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein plays a crucial role in binding the human cell receptor ACE2 that is required for viral entry. Many studies have been conducted to target the structures of RBD–ACE2 binding and to design RBD-targeting vaccines and drugs. Nevertheless, mutations distal from the SARS-CoV-2 RBD also impact its transmissibility and antibody can target non-RBD regions, suggesting the incomplete role of the RBD region in the spike protein–ACE2 binding. Here, in order to elucidate distant binding mechanisms, we analyze complexes of ACE2 with the wild-type spike protein and with key mutants via large-scale all-atom explicit solvent molecular dynamics simulations. We find that though distributed approximately 10 nm away from the RBD, the SARS-CoV-2 polybasic cleavage sites enhance, via electrostatic interactions and hydration, the RBD–ACE2 binding affinity. A negatively charged tetrapeptide (GluGluLeuGlu) is then designed to neutralize the positively charged arginine on the polybasic cleavage sites. We find that the tetrapeptide GluGluLeuGlu binds to one of the three polybasic cleavage sites of the SARS-CoV-2 spike protein lessening by 34% the RBD–ACE2 binding strength. This significant binding energy reduction demonstrates the feasibility to neutralize RBD–ACE2 binding by targeting this specific polybasic cleavage site. Our work enhances understanding of the binding mechanism of SARS-CoV-2 to ACE2, which may aid the design of therapeutics for COVID-19 infection.
doi_str_mv 10.1021/acsnano.0c04798
format Article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7409923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c100354250</sourcerecordid><originalsourceid>FETCH-LOGICAL-a456t-90217b573d2907bc4aab52603da9affc6502d7b27031fac2dbe943b29b2f0c9a3</originalsourceid><addsrcrecordid>eNp1kctKAzEUhoMo3tfuJLiV0UzmkslGqPUKgsWquJFwksm00TEpkyh05yv4ij6JkdaiC1c5kO_855z_R2gnJQcpoekhKG_BugOiSM54tYTWU56VCanKh-VFXaRraMP7J0IKVrFyFa1ltCIlKdk6ejy1Y7BK1_jY2NrYEXYNHvZuhknf3X--f1A8nJhnjQedC9pYHBy-0UpPguuwnOIT4wO0eODaqQRvFO63Gt5gpPHQBO230EoDrdfb83cT3Z2d3vYvkqvr88t-7yqBvChDwuMpTBYsqyknTKocQBa0JFkNHJpGlQWhNZOUkSxtQNFaap5nknJJG6I4ZJvoaKY7eZUvulbahg5aMenMC3RT4cCIvz_WjMXIvQmWE85pFgX2ZgLOByO8isursXLWahVEWkXnqiJChzNIdc77TjeLASkR33GIeRxiHkfs2P2914L_8T8C-zMgdoon99rZaNO_cl-zbJep</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced Binding of SARS-CoV‑2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Qiao, Baofu ; Olvera de la Cruz, Monica</creator><creatorcontrib>Qiao, Baofu ; Olvera de la Cruz, Monica ; Northwestern Univ., Evanston, IL (United States)</creatorcontrib><description>The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein plays a crucial role in binding the human cell receptor ACE2 that is required for viral entry. Many studies have been conducted to target the structures of RBD–ACE2 binding and to design RBD-targeting vaccines and drugs. Nevertheless, mutations distal from the SARS-CoV-2 RBD also impact its transmissibility and antibody can target non-RBD regions, suggesting the incomplete role of the RBD region in the spike protein–ACE2 binding. Here, in order to elucidate distant binding mechanisms, we analyze complexes of ACE2 with the wild-type spike protein and with key mutants via large-scale all-atom explicit solvent molecular dynamics simulations. We find that though distributed approximately 10 nm away from the RBD, the SARS-CoV-2 polybasic cleavage sites enhance, via electrostatic interactions and hydration, the RBD–ACE2 binding affinity. A negatively charged tetrapeptide (GluGluLeuGlu) is then designed to neutralize the positively charged arginine on the polybasic cleavage sites. We find that the tetrapeptide GluGluLeuGlu binds to one of the three polybasic cleavage sites of the SARS-CoV-2 spike protein lessening by 34% the RBD–ACE2 binding strength. This significant binding energy reduction demonstrates the feasibility to neutralize RBD–ACE2 binding by targeting this specific polybasic cleavage site. Our work enhances understanding of the binding mechanism of SARS-CoV-2 to ACE2, which may aid the design of therapeutics for COVID-19 infection.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c04798</identifier><identifier>PMID: 32806067</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>60 APPLIED LIFE SCIENCES ; Amino Acid Substitution ; Angiotensin-Converting Enzyme 2 ; Antiviral Agents - chemistry ; Antiviral Agents - pharmacology ; Betacoronavirus - chemistry ; Betacoronavirus - genetics ; Betacoronavirus - metabolism ; Binding Sites - genetics ; chemistry ; Coronavirus Infections - virology ; COVID-19 ; Drug Design ; Host Microbial Interactions - drug effects ; Humans ; materials science ; Molecular Dynamics Simulation ; molecular dynamics simulations ; Mutation ; Oligopeptides - chemistry ; Oligopeptides - pharmacology ; Pandemics ; peptide inhibitor ; Peptidyl-Dipeptidase A - chemistry ; Peptidyl-Dipeptidase A - genetics ; Peptidyl-Dipeptidase A - metabolism ; Pneumonia, Viral - virology ; polybasic cleavage sites ; Protein Binding - drug effects ; Protein Binding - genetics ; Protein Binding - physiology ; Protein Domains ; Receptors, Virus - chemistry ; Receptors, Virus - genetics ; Receptors, Virus - metabolism ; SARS-CoV-2 ; Spike Glycoprotein, Coronavirus - chemistry ; Spike Glycoprotein, Coronavirus - genetics ; Spike Glycoprotein, Coronavirus - metabolism ; Virus Internalization</subject><ispartof>ACS nano, 2020-08, Vol.14 (8), p.10616-10623</ispartof><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a456t-90217b573d2907bc4aab52603da9affc6502d7b27031fac2dbe943b29b2f0c9a3</citedby><cites>FETCH-LOGICAL-a456t-90217b573d2907bc4aab52603da9affc6502d7b27031fac2dbe943b29b2f0c9a3</cites><orcidid>0000-0002-9802-3627 ; 0000-0001-8870-5985 ; 0000000188705985 ; 0000000298023627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c04798$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c04798$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32806067$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1800585$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiao, Baofu</creatorcontrib><creatorcontrib>Olvera de la Cruz, Monica</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><title>Enhanced Binding of SARS-CoV‑2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein plays a crucial role in binding the human cell receptor ACE2 that is required for viral entry. Many studies have been conducted to target the structures of RBD–ACE2 binding and to design RBD-targeting vaccines and drugs. Nevertheless, mutations distal from the SARS-CoV-2 RBD also impact its transmissibility and antibody can target non-RBD regions, suggesting the incomplete role of the RBD region in the spike protein–ACE2 binding. Here, in order to elucidate distant binding mechanisms, we analyze complexes of ACE2 with the wild-type spike protein and with key mutants via large-scale all-atom explicit solvent molecular dynamics simulations. We find that though distributed approximately 10 nm away from the RBD, the SARS-CoV-2 polybasic cleavage sites enhance, via electrostatic interactions and hydration, the RBD–ACE2 binding affinity. A negatively charged tetrapeptide (GluGluLeuGlu) is then designed to neutralize the positively charged arginine on the polybasic cleavage sites. We find that the tetrapeptide GluGluLeuGlu binds to one of the three polybasic cleavage sites of the SARS-CoV-2 spike protein lessening by 34% the RBD–ACE2 binding strength. This significant binding energy reduction demonstrates the feasibility to neutralize RBD–ACE2 binding by targeting this specific polybasic cleavage site. Our work enhances understanding of the binding mechanism of SARS-CoV-2 to ACE2, which may aid the design of therapeutics for COVID-19 infection.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Amino Acid Substitution</subject><subject>Angiotensin-Converting Enzyme 2</subject><subject>Antiviral Agents - chemistry</subject><subject>Antiviral Agents - pharmacology</subject><subject>Betacoronavirus - chemistry</subject><subject>Betacoronavirus - genetics</subject><subject>Betacoronavirus - metabolism</subject><subject>Binding Sites - genetics</subject><subject>chemistry</subject><subject>Coronavirus Infections - virology</subject><subject>COVID-19</subject><subject>Drug Design</subject><subject>Host Microbial Interactions - drug effects</subject><subject>Humans</subject><subject>materials science</subject><subject>Molecular Dynamics Simulation</subject><subject>molecular dynamics simulations</subject><subject>Mutation</subject><subject>Oligopeptides - chemistry</subject><subject>Oligopeptides - pharmacology</subject><subject>Pandemics</subject><subject>peptide inhibitor</subject><subject>Peptidyl-Dipeptidase A - chemistry</subject><subject>Peptidyl-Dipeptidase A - genetics</subject><subject>Peptidyl-Dipeptidase A - metabolism</subject><subject>Pneumonia, Viral - virology</subject><subject>polybasic cleavage sites</subject><subject>Protein Binding - drug effects</subject><subject>Protein Binding - genetics</subject><subject>Protein Binding - physiology</subject><subject>Protein Domains</subject><subject>Receptors, Virus - chemistry</subject><subject>Receptors, Virus - genetics</subject><subject>Receptors, Virus - metabolism</subject><subject>SARS-CoV-2</subject><subject>Spike Glycoprotein, Coronavirus - chemistry</subject><subject>Spike Glycoprotein, Coronavirus - genetics</subject><subject>Spike Glycoprotein, Coronavirus - metabolism</subject><subject>Virus Internalization</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctKAzEUhoMo3tfuJLiV0UzmkslGqPUKgsWquJFwksm00TEpkyh05yv4ij6JkdaiC1c5kO_855z_R2gnJQcpoekhKG_BugOiSM54tYTWU56VCanKh-VFXaRraMP7J0IKVrFyFa1ltCIlKdk6ejy1Y7BK1_jY2NrYEXYNHvZuhknf3X--f1A8nJhnjQedC9pYHBy-0UpPguuwnOIT4wO0eODaqQRvFO63Gt5gpPHQBO230EoDrdfb83cT3Z2d3vYvkqvr88t-7yqBvChDwuMpTBYsqyknTKocQBa0JFkNHJpGlQWhNZOUkSxtQNFaap5nknJJG6I4ZJvoaKY7eZUvulbahg5aMenMC3RT4cCIvz_WjMXIvQmWE85pFgX2ZgLOByO8isursXLWahVEWkXnqiJChzNIdc77TjeLASkR33GIeRxiHkfs2P2914L_8T8C-zMgdoon99rZaNO_cl-zbJep</recordid><startdate>20200825</startdate><enddate>20200825</enddate><creator>Qiao, Baofu</creator><creator>Olvera de la Cruz, Monica</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9802-3627</orcidid><orcidid>https://orcid.org/0000-0001-8870-5985</orcidid><orcidid>https://orcid.org/0000000188705985</orcidid><orcidid>https://orcid.org/0000000298023627</orcidid></search><sort><creationdate>20200825</creationdate><title>Enhanced Binding of SARS-CoV‑2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites</title><author>Qiao, Baofu ; Olvera de la Cruz, Monica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a456t-90217b573d2907bc4aab52603da9affc6502d7b27031fac2dbe943b29b2f0c9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Amino Acid Substitution</topic><topic>Angiotensin-Converting Enzyme 2</topic><topic>Antiviral Agents - chemistry</topic><topic>Antiviral Agents - pharmacology</topic><topic>Betacoronavirus - chemistry</topic><topic>Betacoronavirus - genetics</topic><topic>Betacoronavirus - metabolism</topic><topic>Binding Sites - genetics</topic><topic>chemistry</topic><topic>Coronavirus Infections - virology</topic><topic>COVID-19</topic><topic>Drug Design</topic><topic>Host Microbial Interactions - drug effects</topic><topic>Humans</topic><topic>materials science</topic><topic>Molecular Dynamics Simulation</topic><topic>molecular dynamics simulations</topic><topic>Mutation</topic><topic>Oligopeptides - chemistry</topic><topic>Oligopeptides - pharmacology</topic><topic>Pandemics</topic><topic>peptide inhibitor</topic><topic>Peptidyl-Dipeptidase A - chemistry</topic><topic>Peptidyl-Dipeptidase A - genetics</topic><topic>Peptidyl-Dipeptidase A - metabolism</topic><topic>Pneumonia, Viral - virology</topic><topic>polybasic cleavage sites</topic><topic>Protein Binding - drug effects</topic><topic>Protein Binding - genetics</topic><topic>Protein Binding - physiology</topic><topic>Protein Domains</topic><topic>Receptors, Virus - chemistry</topic><topic>Receptors, Virus - genetics</topic><topic>Receptors, Virus - metabolism</topic><topic>SARS-CoV-2</topic><topic>Spike Glycoprotein, Coronavirus - chemistry</topic><topic>Spike Glycoprotein, Coronavirus - genetics</topic><topic>Spike Glycoprotein, Coronavirus - metabolism</topic><topic>Virus Internalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Baofu</creatorcontrib><creatorcontrib>Olvera de la Cruz, Monica</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Baofu</au><au>Olvera de la Cruz, Monica</au><aucorp>Northwestern Univ., Evanston, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Binding of SARS-CoV‑2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-08-25</date><risdate>2020</risdate><volume>14</volume><issue>8</issue><spage>10616</spage><epage>10623</epage><pages>10616-10623</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein plays a crucial role in binding the human cell receptor ACE2 that is required for viral entry. Many studies have been conducted to target the structures of RBD–ACE2 binding and to design RBD-targeting vaccines and drugs. Nevertheless, mutations distal from the SARS-CoV-2 RBD also impact its transmissibility and antibody can target non-RBD regions, suggesting the incomplete role of the RBD region in the spike protein–ACE2 binding. Here, in order to elucidate distant binding mechanisms, we analyze complexes of ACE2 with the wild-type spike protein and with key mutants via large-scale all-atom explicit solvent molecular dynamics simulations. We find that though distributed approximately 10 nm away from the RBD, the SARS-CoV-2 polybasic cleavage sites enhance, via electrostatic interactions and hydration, the RBD–ACE2 binding affinity. A negatively charged tetrapeptide (GluGluLeuGlu) is then designed to neutralize the positively charged arginine on the polybasic cleavage sites. We find that the tetrapeptide GluGluLeuGlu binds to one of the three polybasic cleavage sites of the SARS-CoV-2 spike protein lessening by 34% the RBD–ACE2 binding strength. This significant binding energy reduction demonstrates the feasibility to neutralize RBD–ACE2 binding by targeting this specific polybasic cleavage site. Our work enhances understanding of the binding mechanism of SARS-CoV-2 to ACE2, which may aid the design of therapeutics for COVID-19 infection.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32806067</pmid><doi>10.1021/acsnano.0c04798</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9802-3627</orcidid><orcidid>https://orcid.org/0000-0001-8870-5985</orcidid><orcidid>https://orcid.org/0000000188705985</orcidid><orcidid>https://orcid.org/0000000298023627</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2020-08, Vol.14 (8), p.10616-10623
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7409923
source MEDLINE; American Chemical Society Journals
subjects 60 APPLIED LIFE SCIENCES
Amino Acid Substitution
Angiotensin-Converting Enzyme 2
Antiviral Agents - chemistry
Antiviral Agents - pharmacology
Betacoronavirus - chemistry
Betacoronavirus - genetics
Betacoronavirus - metabolism
Binding Sites - genetics
chemistry
Coronavirus Infections - virology
COVID-19
Drug Design
Host Microbial Interactions - drug effects
Humans
materials science
Molecular Dynamics Simulation
molecular dynamics simulations
Mutation
Oligopeptides - chemistry
Oligopeptides - pharmacology
Pandemics
peptide inhibitor
Peptidyl-Dipeptidase A - chemistry
Peptidyl-Dipeptidase A - genetics
Peptidyl-Dipeptidase A - metabolism
Pneumonia, Viral - virology
polybasic cleavage sites
Protein Binding - drug effects
Protein Binding - genetics
Protein Binding - physiology
Protein Domains
Receptors, Virus - chemistry
Receptors, Virus - genetics
Receptors, Virus - metabolism
SARS-CoV-2
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - genetics
Spike Glycoprotein, Coronavirus - metabolism
Virus Internalization
title Enhanced Binding of SARS-CoV‑2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Binding%20of%20SARS-CoV%E2%80%912%20Spike%20Protein%20to%20Receptor%20by%20Distal%20Polybasic%20Cleavage%20Sites&rft.jtitle=ACS%20nano&rft.au=Qiao,%20Baofu&rft.aucorp=Northwestern%20Univ.,%20Evanston,%20IL%20(United%20States)&rft.date=2020-08-25&rft.volume=14&rft.issue=8&rft.spage=10616&rft.epage=10623&rft.pages=10616-10623&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c04798&rft_dat=%3Cacs_pubme%3Ec100354250%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32806067&rfr_iscdi=true