Development and Validation of a Deep Learning System for Diagnosing Glaucoma Using Optical Coherence Tomography
This study aimed to develop and validate a deep learning system for diagnosing glaucoma using optical coherence tomography (OCT). A training set of 1822 eyes (332 control, 1490 glaucoma) with 7288 OCT images, an internal validation set of 425 eyes (104 control, 321 glaucoma) with 1700 images, and an...
Gespeichert in:
Veröffentlicht in: | Journal of clinical medicine 2020-07, Vol.9 (7), p.2167 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 2167 |
container_title | Journal of clinical medicine |
container_volume | 9 |
creator | Kim, Ko Eun Kim, Joon Mo Song, Ji Eun Kee, Changwon Han, Jong Chul Hyun, Seung Hyup |
description | This study aimed to develop and validate a deep learning system for diagnosing glaucoma using optical coherence tomography (OCT). A training set of 1822 eyes (332 control, 1490 glaucoma) with 7288 OCT images, an internal validation set of 425 eyes (104 control, 321 glaucoma) with 1700 images, and an external validation set of 355 eyes (108 control, 247 glaucoma) with 1420 images were included. Deviation and thickness maps of retinal nerve fiber layer (RNFL) and ganglion cell-inner plexiform layer (GCIPL) analyses were used to develop the deep learning system for glaucoma diagnosis based on the visual geometry group deep convolutional neural network (VGG-19) model. The diagnostic abilities of deep learning models using different OCT maps were evaluated, and the best model was compared with the diagnostic results produced by two glaucoma specialists. The glaucoma-diagnostic ability was highest when the deep learning system used the RNFL thickness map alone (area under the receiver operating characteristic curve (AUROC) 0.987), followed by the RNFL deviation map (AUROC 0.974), the GCIPL thickness map (AUROC 0.966), and the GCIPL deviation map (AUROC 0.903). Among combination sets, use of the RNFL and GCIPL deviation map showed the highest diagnostic ability, showing similar results when tested via an external validation dataset. The inclusion of the axial length did not significantly affect the diagnostic performance of the deep learning system. The location of glaucomatous damage showed generally high level of agreement between the heatmap and the diagnosis of glaucoma specialists, with 90.0% agreement when using the RNFL thickness map and 88.0% when using the GCIPL thickness map. In conclusion, our deep learning system showed high glaucoma-diagnostic abilities using OCT thickness and deviation maps. It also showed detection patterns similar to those of glaucoma specialists, showing promising results for future clinical application as an interpretable computer-aided diagnosis. |
doi_str_mv | 10.3390/jcm9072167 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7408821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641151630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-40c5cf47a9d88654f49c5dd5c3eedaa50ddbeabed1df6ce06cab6b7ad4603c503</originalsourceid><addsrcrecordid>eNpdkU9r3DAQxUVpaEKSSz9AEfRSAtvon2X7Uii7bRpYyCFJr2IsjXe12JIr2YH99vU2aZpGF2k0Px5v5hHynrPPUtbscmf7mpWC6_INORGsLBdMVvLti_cxOc95x-ZTVUrw8h05lkIXdc2rExJX-IBdHHoMI4Xg6E_ovIPRx0BjS4GuEAe6RkjBhw293ecRe9rGRFceNiHmw-9VB5ONPdD7P-XNMHoLHV3GLSYMFuld7OMmwbDdn5GjFrqM50_3Kbn__u1u-WOxvrm6Xn5dL6xielwoZgvbqhJqV1W6UK2qbeFcYSWiAyiYcw1Cg467Vltk2kKjmxKc0kzagslT8uVRd5iaHp2dx0vQmSH5HtLeRPDm_07wW7OJD6ZU85oEnwU-PQmk-GvCPJreZ4tdBwHjlI1QQlZMlqKe0Y-v0F2cUpjHM0Irzguu5cHRxSNlU8w5YftshjNziNL8i3KGP7y0_4z-DU7-BiXWnD4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641151630</pqid></control><display><type>article</type><title>Development and Validation of a Deep Learning System for Diagnosing Glaucoma Using Optical Coherence Tomography</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Kim, Ko Eun ; Kim, Joon Mo ; Song, Ji Eun ; Kee, Changwon ; Han, Jong Chul ; Hyun, Seung Hyup</creator><creatorcontrib>Kim, Ko Eun ; Kim, Joon Mo ; Song, Ji Eun ; Kee, Changwon ; Han, Jong Chul ; Hyun, Seung Hyup</creatorcontrib><description>This study aimed to develop and validate a deep learning system for diagnosing glaucoma using optical coherence tomography (OCT). A training set of 1822 eyes (332 control, 1490 glaucoma) with 7288 OCT images, an internal validation set of 425 eyes (104 control, 321 glaucoma) with 1700 images, and an external validation set of 355 eyes (108 control, 247 glaucoma) with 1420 images were included. Deviation and thickness maps of retinal nerve fiber layer (RNFL) and ganglion cell-inner plexiform layer (GCIPL) analyses were used to develop the deep learning system for glaucoma diagnosis based on the visual geometry group deep convolutional neural network (VGG-19) model. The diagnostic abilities of deep learning models using different OCT maps were evaluated, and the best model was compared with the diagnostic results produced by two glaucoma specialists. The glaucoma-diagnostic ability was highest when the deep learning system used the RNFL thickness map alone (area under the receiver operating characteristic curve (AUROC) 0.987), followed by the RNFL deviation map (AUROC 0.974), the GCIPL thickness map (AUROC 0.966), and the GCIPL deviation map (AUROC 0.903). Among combination sets, use of the RNFL and GCIPL deviation map showed the highest diagnostic ability, showing similar results when tested via an external validation dataset. The inclusion of the axial length did not significantly affect the diagnostic performance of the deep learning system. The location of glaucomatous damage showed generally high level of agreement between the heatmap and the diagnosis of glaucoma specialists, with 90.0% agreement when using the RNFL thickness map and 88.0% when using the GCIPL thickness map. In conclusion, our deep learning system showed high glaucoma-diagnostic abilities using OCT thickness and deviation maps. It also showed detection patterns similar to those of glaucoma specialists, showing promising results for future clinical application as an interpretable computer-aided diagnosis.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm9072167</identifier><identifier>PMID: 32659918</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Classification ; Clinical medicine ; Datasets ; Deep learning ; Disease ; Glaucoma ; Hospitals ; Optics ; Tomography</subject><ispartof>Journal of clinical medicine, 2020-07, Vol.9 (7), p.2167</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-40c5cf47a9d88654f49c5dd5c3eedaa50ddbeabed1df6ce06cab6b7ad4603c503</citedby><cites>FETCH-LOGICAL-c406t-40c5cf47a9d88654f49c5dd5c3eedaa50ddbeabed1df6ce06cab6b7ad4603c503</cites><orcidid>0000-0001-5125-7170 ; 0000-0002-4543-043X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408821/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408821/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32659918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Ko Eun</creatorcontrib><creatorcontrib>Kim, Joon Mo</creatorcontrib><creatorcontrib>Song, Ji Eun</creatorcontrib><creatorcontrib>Kee, Changwon</creatorcontrib><creatorcontrib>Han, Jong Chul</creatorcontrib><creatorcontrib>Hyun, Seung Hyup</creatorcontrib><title>Development and Validation of a Deep Learning System for Diagnosing Glaucoma Using Optical Coherence Tomography</title><title>Journal of clinical medicine</title><addtitle>J Clin Med</addtitle><description>This study aimed to develop and validate a deep learning system for diagnosing glaucoma using optical coherence tomography (OCT). A training set of 1822 eyes (332 control, 1490 glaucoma) with 7288 OCT images, an internal validation set of 425 eyes (104 control, 321 glaucoma) with 1700 images, and an external validation set of 355 eyes (108 control, 247 glaucoma) with 1420 images were included. Deviation and thickness maps of retinal nerve fiber layer (RNFL) and ganglion cell-inner plexiform layer (GCIPL) analyses were used to develop the deep learning system for glaucoma diagnosis based on the visual geometry group deep convolutional neural network (VGG-19) model. The diagnostic abilities of deep learning models using different OCT maps were evaluated, and the best model was compared with the diagnostic results produced by two glaucoma specialists. The glaucoma-diagnostic ability was highest when the deep learning system used the RNFL thickness map alone (area under the receiver operating characteristic curve (AUROC) 0.987), followed by the RNFL deviation map (AUROC 0.974), the GCIPL thickness map (AUROC 0.966), and the GCIPL deviation map (AUROC 0.903). Among combination sets, use of the RNFL and GCIPL deviation map showed the highest diagnostic ability, showing similar results when tested via an external validation dataset. The inclusion of the axial length did not significantly affect the diagnostic performance of the deep learning system. The location of glaucomatous damage showed generally high level of agreement between the heatmap and the diagnosis of glaucoma specialists, with 90.0% agreement when using the RNFL thickness map and 88.0% when using the GCIPL thickness map. In conclusion, our deep learning system showed high glaucoma-diagnostic abilities using OCT thickness and deviation maps. It also showed detection patterns similar to those of glaucoma specialists, showing promising results for future clinical application as an interpretable computer-aided diagnosis.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Clinical medicine</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Disease</subject><subject>Glaucoma</subject><subject>Hospitals</subject><subject>Optics</subject><subject>Tomography</subject><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU9r3DAQxUVpaEKSSz9AEfRSAtvon2X7Uii7bRpYyCFJr2IsjXe12JIr2YH99vU2aZpGF2k0Px5v5hHynrPPUtbscmf7mpWC6_INORGsLBdMVvLti_cxOc95x-ZTVUrw8h05lkIXdc2rExJX-IBdHHoMI4Xg6E_ovIPRx0BjS4GuEAe6RkjBhw293ecRe9rGRFceNiHmw-9VB5ONPdD7P-XNMHoLHV3GLSYMFuld7OMmwbDdn5GjFrqM50_3Kbn__u1u-WOxvrm6Xn5dL6xielwoZgvbqhJqV1W6UK2qbeFcYSWiAyiYcw1Cg467Vltk2kKjmxKc0kzagslT8uVRd5iaHp2dx0vQmSH5HtLeRPDm_07wW7OJD6ZU85oEnwU-PQmk-GvCPJreZ4tdBwHjlI1QQlZMlqKe0Y-v0F2cUpjHM0Irzguu5cHRxSNlU8w5YftshjNziNL8i3KGP7y0_4z-DU7-BiXWnD4</recordid><startdate>20200709</startdate><enddate>20200709</enddate><creator>Kim, Ko Eun</creator><creator>Kim, Joon Mo</creator><creator>Song, Ji Eun</creator><creator>Kee, Changwon</creator><creator>Han, Jong Chul</creator><creator>Hyun, Seung Hyup</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5125-7170</orcidid><orcidid>https://orcid.org/0000-0002-4543-043X</orcidid></search><sort><creationdate>20200709</creationdate><title>Development and Validation of a Deep Learning System for Diagnosing Glaucoma Using Optical Coherence Tomography</title><author>Kim, Ko Eun ; Kim, Joon Mo ; Song, Ji Eun ; Kee, Changwon ; Han, Jong Chul ; Hyun, Seung Hyup</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-40c5cf47a9d88654f49c5dd5c3eedaa50ddbeabed1df6ce06cab6b7ad4603c503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Clinical medicine</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Disease</topic><topic>Glaucoma</topic><topic>Hospitals</topic><topic>Optics</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ko Eun</creatorcontrib><creatorcontrib>Kim, Joon Mo</creatorcontrib><creatorcontrib>Song, Ji Eun</creatorcontrib><creatorcontrib>Kee, Changwon</creatorcontrib><creatorcontrib>Han, Jong Chul</creatorcontrib><creatorcontrib>Hyun, Seung Hyup</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ko Eun</au><au>Kim, Joon Mo</au><au>Song, Ji Eun</au><au>Kee, Changwon</au><au>Han, Jong Chul</au><au>Hyun, Seung Hyup</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Validation of a Deep Learning System for Diagnosing Glaucoma Using Optical Coherence Tomography</atitle><jtitle>Journal of clinical medicine</jtitle><addtitle>J Clin Med</addtitle><date>2020-07-09</date><risdate>2020</risdate><volume>9</volume><issue>7</issue><spage>2167</spage><pages>2167-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>This study aimed to develop and validate a deep learning system for diagnosing glaucoma using optical coherence tomography (OCT). A training set of 1822 eyes (332 control, 1490 glaucoma) with 7288 OCT images, an internal validation set of 425 eyes (104 control, 321 glaucoma) with 1700 images, and an external validation set of 355 eyes (108 control, 247 glaucoma) with 1420 images were included. Deviation and thickness maps of retinal nerve fiber layer (RNFL) and ganglion cell-inner plexiform layer (GCIPL) analyses were used to develop the deep learning system for glaucoma diagnosis based on the visual geometry group deep convolutional neural network (VGG-19) model. The diagnostic abilities of deep learning models using different OCT maps were evaluated, and the best model was compared with the diagnostic results produced by two glaucoma specialists. The glaucoma-diagnostic ability was highest when the deep learning system used the RNFL thickness map alone (area under the receiver operating characteristic curve (AUROC) 0.987), followed by the RNFL deviation map (AUROC 0.974), the GCIPL thickness map (AUROC 0.966), and the GCIPL deviation map (AUROC 0.903). Among combination sets, use of the RNFL and GCIPL deviation map showed the highest diagnostic ability, showing similar results when tested via an external validation dataset. The inclusion of the axial length did not significantly affect the diagnostic performance of the deep learning system. The location of glaucomatous damage showed generally high level of agreement between the heatmap and the diagnosis of glaucoma specialists, with 90.0% agreement when using the RNFL thickness map and 88.0% when using the GCIPL thickness map. In conclusion, our deep learning system showed high glaucoma-diagnostic abilities using OCT thickness and deviation maps. It also showed detection patterns similar to those of glaucoma specialists, showing promising results for future clinical application as an interpretable computer-aided diagnosis.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32659918</pmid><doi>10.3390/jcm9072167</doi><orcidid>https://orcid.org/0000-0001-5125-7170</orcidid><orcidid>https://orcid.org/0000-0002-4543-043X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0383 |
ispartof | Journal of clinical medicine, 2020-07, Vol.9 (7), p.2167 |
issn | 2077-0383 2077-0383 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7408821 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Algorithms Classification Clinical medicine Datasets Deep learning Disease Glaucoma Hospitals Optics Tomography |
title | Development and Validation of a Deep Learning System for Diagnosing Glaucoma Using Optical Coherence Tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Validation%20of%20a%20Deep%20Learning%20System%20for%20Diagnosing%20Glaucoma%20Using%20Optical%20Coherence%20Tomography&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=Kim,%20Ko%20Eun&rft.date=2020-07-09&rft.volume=9&rft.issue=7&rft.spage=2167&rft.pages=2167-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm9072167&rft_dat=%3Cproquest_pubme%3E2641151630%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641151630&rft_id=info:pmid/32659918&rfr_iscdi=true |