Cotargeting CHK1 and PI3K Synergistically Suppresses Tumor Growth of Oral Cavity Squamous Cell Carcinoma in Patient-Derived Xenografts
Oral cavity squamous cell carcinomas (OSCCs) are aggressive tumors, and their recurrence leads to poor prognosis and reduced survival rates. This study aimed to identify therapeutic targets and to evaluate the efficacy of targeted inhibitors in OSCC patient-derived xenograft (PDX) models. Herein, we...
Gespeichert in:
Veröffentlicht in: | Cancers 2020-06, Vol.12 (7), p.1726 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 1726 |
container_title | Cancers |
container_volume | 12 |
creator | Yang, Chia-Yu Liu, Chiao-Rou Chang, Ian Yi-Feng OuYang, Chun-Nan Hsieh, Chia-Hsun Huang, Yen-Lin Wang, Chun-I Jan, Fei-Wen Wang, Wan-Ling Tsai, Ting-Lin Liu, Hsuan Tseng, Ching-Ping Chang, Yu-Sun Wu, Chih-Ching Chang, Kai-Ping |
description | Oral cavity squamous cell carcinomas (OSCCs) are aggressive tumors, and their recurrence leads to poor prognosis and reduced survival rates. This study aimed to identify therapeutic targets and to evaluate the efficacy of targeted inhibitors in OSCC patient-derived xenograft (PDX) models. Herein, we reported that OSCC PDXs recapitulated the genomic signatures of their paired primary tumors and the expression of CHEK1, PIK3CA, and PIK3CD was significantly upregulated in OSCC. The antitumor efficacy of CHK1 inhibitors (PF477736, AZD7762, LY2606368) and PI3K inhibitors (BYL719, GDC0941, GSK1059615) was investigated in OSCC cell lines and PDX models. Targeting either CHK1 or PI3K effectively inhibited cell proliferation and colony formation by inducing cell cycle arrest and apoptosis in in vitro cell-based assays. Cisplatin-based chemotherapy combined with CHK1 inhibitor treatment synergistically inhibited cell proliferation by suppressing CHK1 phosphorylation and inducing PARP cleavage. Furthermore, compared with monotherapy, cotreatment with CHK1 and PI3K inhibitors exerted synergistic anticancer effects by suppressing CHK1, AKT, and 4E-BP1 phosphorylation. In summary, our study identified CHK1 and PI3K as promising targets, especially in a dual treatment strategy combining a CHK1 inhibitor with cisplatin or a PI3K inhibitor as a novel therapeutic approach for OSCC patients with aberrant cell cycle regulation and PI3K signaling activation. |
doi_str_mv | 10.3390/cancers12071726 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7408003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419884853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-d2d9560bfc4e8014227f834074a92a66569c222a7fb7dab9b748370eed2994c83</originalsourceid><addsrcrecordid>eNpdkU1LHTEUhkNpUbl17TbQTTdT8zXJZFMoU79QUNBCdyGTyYyRmeSaZK7cP9Dfba5KaT2bczh5eHnfHACOMPpGqUTHRntjY8IECSwI_wAOykQqziX7-M-8Dw5TekClKMWCiz2wTwnHqK7FAfjThqzjaLPzI2zPLzHUvoc3F_QS3m69jaNL2Rk9TVt4u6zX0aZkE7xb5hDhWQxP-R6GAV5HPcFWb1wu2OOi57Ak2Nppt4zG-TBr6Dy80dlZn6ufNrqN7eFv68MY9ZDTZ_Bp0FOyh299BX6dnty159XV9dlF--OqMlQ2uepJL2uOusEw2yDMCBFDQxkSTEuiOa-5NIQQLYZO9LqTnWANFcjankjJTENX4Pur7nrpZtub4qZYV-voZh23Kmin_n_x7l6NYaMEQ83uA1fg65tADI-LTVnNLpmSVHtbQivCsBS4sLKgX96hD2GJvsR7oZqGNfVO8PiVMjGkFO3w1wxGandm9e7M9BmcZZvW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419884853</pqid></control><display><type>article</type><title>Cotargeting CHK1 and PI3K Synergistically Suppresses Tumor Growth of Oral Cavity Squamous Cell Carcinoma in Patient-Derived Xenografts</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Yang, Chia-Yu ; Liu, Chiao-Rou ; Chang, Ian Yi-Feng ; OuYang, Chun-Nan ; Hsieh, Chia-Hsun ; Huang, Yen-Lin ; Wang, Chun-I ; Jan, Fei-Wen ; Wang, Wan-Ling ; Tsai, Ting-Lin ; Liu, Hsuan ; Tseng, Ching-Ping ; Chang, Yu-Sun ; Wu, Chih-Ching ; Chang, Kai-Ping</creator><creatorcontrib>Yang, Chia-Yu ; Liu, Chiao-Rou ; Chang, Ian Yi-Feng ; OuYang, Chun-Nan ; Hsieh, Chia-Hsun ; Huang, Yen-Lin ; Wang, Chun-I ; Jan, Fei-Wen ; Wang, Wan-Ling ; Tsai, Ting-Lin ; Liu, Hsuan ; Tseng, Ching-Ping ; Chang, Yu-Sun ; Wu, Chih-Ching ; Chang, Kai-Ping</creatorcontrib><description>Oral cavity squamous cell carcinomas (OSCCs) are aggressive tumors, and their recurrence leads to poor prognosis and reduced survival rates. This study aimed to identify therapeutic targets and to evaluate the efficacy of targeted inhibitors in OSCC patient-derived xenograft (PDX) models. Herein, we reported that OSCC PDXs recapitulated the genomic signatures of their paired primary tumors and the expression of CHEK1, PIK3CA, and PIK3CD was significantly upregulated in OSCC. The antitumor efficacy of CHK1 inhibitors (PF477736, AZD7762, LY2606368) and PI3K inhibitors (BYL719, GDC0941, GSK1059615) was investigated in OSCC cell lines and PDX models. Targeting either CHK1 or PI3K effectively inhibited cell proliferation and colony formation by inducing cell cycle arrest and apoptosis in in vitro cell-based assays. Cisplatin-based chemotherapy combined with CHK1 inhibitor treatment synergistically inhibited cell proliferation by suppressing CHK1 phosphorylation and inducing PARP cleavage. Furthermore, compared with monotherapy, cotreatment with CHK1 and PI3K inhibitors exerted synergistic anticancer effects by suppressing CHK1, AKT, and 4E-BP1 phosphorylation. In summary, our study identified CHK1 and PI3K as promising targets, especially in a dual treatment strategy combining a CHK1 inhibitor with cisplatin or a PI3K inhibitor as a novel therapeutic approach for OSCC patients with aberrant cell cycle regulation and PI3K signaling activation.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers12071726</identifier><identifier>PMID: 32610557</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>1-Phosphatidylinositol 3-kinase ; AKT protein ; Antitumor activity ; Apoptosis ; Cancer therapies ; Cell culture ; Cell cycle ; Cell proliferation ; Chemotherapy ; CHK1 protein ; Cisplatin ; Datasets ; Deoxyribonucleic acid ; DNA ; DNA damage ; Kinases ; Lymphatic system ; Medical prognosis ; Metastasis ; Mutation ; Oral cancer ; Oral carcinoma ; Oral cavity ; Pathogenesis ; Patients ; Phosphorylation ; Poly(ADP-ribose) polymerase ; Principal components analysis ; Survival analysis ; Therapeutic applications ; Tumors ; Xenografts</subject><ispartof>Cancers, 2020-06, Vol.12 (7), p.1726</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-d2d9560bfc4e8014227f834074a92a66569c222a7fb7dab9b748370eed2994c83</citedby><cites>FETCH-LOGICAL-c398t-d2d9560bfc4e8014227f834074a92a66569c222a7fb7dab9b748370eed2994c83</cites><orcidid>0000-0002-7264-9672 ; 0000-0001-8332-0162 ; 0000-0002-2587-210X ; 0000-0002-5547-409X ; 0000-0003-1777-9578 ; 0000-0001-5840-2051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408003/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408003/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Yang, Chia-Yu</creatorcontrib><creatorcontrib>Liu, Chiao-Rou</creatorcontrib><creatorcontrib>Chang, Ian Yi-Feng</creatorcontrib><creatorcontrib>OuYang, Chun-Nan</creatorcontrib><creatorcontrib>Hsieh, Chia-Hsun</creatorcontrib><creatorcontrib>Huang, Yen-Lin</creatorcontrib><creatorcontrib>Wang, Chun-I</creatorcontrib><creatorcontrib>Jan, Fei-Wen</creatorcontrib><creatorcontrib>Wang, Wan-Ling</creatorcontrib><creatorcontrib>Tsai, Ting-Lin</creatorcontrib><creatorcontrib>Liu, Hsuan</creatorcontrib><creatorcontrib>Tseng, Ching-Ping</creatorcontrib><creatorcontrib>Chang, Yu-Sun</creatorcontrib><creatorcontrib>Wu, Chih-Ching</creatorcontrib><creatorcontrib>Chang, Kai-Ping</creatorcontrib><title>Cotargeting CHK1 and PI3K Synergistically Suppresses Tumor Growth of Oral Cavity Squamous Cell Carcinoma in Patient-Derived Xenografts</title><title>Cancers</title><description>Oral cavity squamous cell carcinomas (OSCCs) are aggressive tumors, and their recurrence leads to poor prognosis and reduced survival rates. This study aimed to identify therapeutic targets and to evaluate the efficacy of targeted inhibitors in OSCC patient-derived xenograft (PDX) models. Herein, we reported that OSCC PDXs recapitulated the genomic signatures of their paired primary tumors and the expression of CHEK1, PIK3CA, and PIK3CD was significantly upregulated in OSCC. The antitumor efficacy of CHK1 inhibitors (PF477736, AZD7762, LY2606368) and PI3K inhibitors (BYL719, GDC0941, GSK1059615) was investigated in OSCC cell lines and PDX models. Targeting either CHK1 or PI3K effectively inhibited cell proliferation and colony formation by inducing cell cycle arrest and apoptosis in in vitro cell-based assays. Cisplatin-based chemotherapy combined with CHK1 inhibitor treatment synergistically inhibited cell proliferation by suppressing CHK1 phosphorylation and inducing PARP cleavage. Furthermore, compared with monotherapy, cotreatment with CHK1 and PI3K inhibitors exerted synergistic anticancer effects by suppressing CHK1, AKT, and 4E-BP1 phosphorylation. In summary, our study identified CHK1 and PI3K as promising targets, especially in a dual treatment strategy combining a CHK1 inhibitor with cisplatin or a PI3K inhibitor as a novel therapeutic approach for OSCC patients with aberrant cell cycle regulation and PI3K signaling activation.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>AKT protein</subject><subject>Antitumor activity</subject><subject>Apoptosis</subject><subject>Cancer therapies</subject><subject>Cell culture</subject><subject>Cell cycle</subject><subject>Cell proliferation</subject><subject>Chemotherapy</subject><subject>CHK1 protein</subject><subject>Cisplatin</subject><subject>Datasets</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>Kinases</subject><subject>Lymphatic system</subject><subject>Medical prognosis</subject><subject>Metastasis</subject><subject>Mutation</subject><subject>Oral cancer</subject><subject>Oral carcinoma</subject><subject>Oral cavity</subject><subject>Pathogenesis</subject><subject>Patients</subject><subject>Phosphorylation</subject><subject>Poly(ADP-ribose) polymerase</subject><subject>Principal components analysis</subject><subject>Survival analysis</subject><subject>Therapeutic applications</subject><subject>Tumors</subject><subject>Xenografts</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkU1LHTEUhkNpUbl17TbQTTdT8zXJZFMoU79QUNBCdyGTyYyRmeSaZK7cP9Dfba5KaT2bczh5eHnfHACOMPpGqUTHRntjY8IECSwI_wAOykQqziX7-M-8Dw5TekClKMWCiz2wTwnHqK7FAfjThqzjaLPzI2zPLzHUvoc3F_QS3m69jaNL2Rk9TVt4u6zX0aZkE7xb5hDhWQxP-R6GAV5HPcFWb1wu2OOi57Ak2Nppt4zG-TBr6Dy80dlZn6ufNrqN7eFv68MY9ZDTZ_Bp0FOyh299BX6dnty159XV9dlF--OqMlQ2uepJL2uOusEw2yDMCBFDQxkSTEuiOa-5NIQQLYZO9LqTnWANFcjankjJTENX4Pur7nrpZtub4qZYV-voZh23Kmin_n_x7l6NYaMEQ83uA1fg65tADI-LTVnNLpmSVHtbQivCsBS4sLKgX96hD2GJvsR7oZqGNfVO8PiVMjGkFO3w1wxGandm9e7M9BmcZZvW</recordid><startdate>20200629</startdate><enddate>20200629</enddate><creator>Yang, Chia-Yu</creator><creator>Liu, Chiao-Rou</creator><creator>Chang, Ian Yi-Feng</creator><creator>OuYang, Chun-Nan</creator><creator>Hsieh, Chia-Hsun</creator><creator>Huang, Yen-Lin</creator><creator>Wang, Chun-I</creator><creator>Jan, Fei-Wen</creator><creator>Wang, Wan-Ling</creator><creator>Tsai, Ting-Lin</creator><creator>Liu, Hsuan</creator><creator>Tseng, Ching-Ping</creator><creator>Chang, Yu-Sun</creator><creator>Wu, Chih-Ching</creator><creator>Chang, Kai-Ping</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7264-9672</orcidid><orcidid>https://orcid.org/0000-0001-8332-0162</orcidid><orcidid>https://orcid.org/0000-0002-2587-210X</orcidid><orcidid>https://orcid.org/0000-0002-5547-409X</orcidid><orcidid>https://orcid.org/0000-0003-1777-9578</orcidid><orcidid>https://orcid.org/0000-0001-5840-2051</orcidid></search><sort><creationdate>20200629</creationdate><title>Cotargeting CHK1 and PI3K Synergistically Suppresses Tumor Growth of Oral Cavity Squamous Cell Carcinoma in Patient-Derived Xenografts</title><author>Yang, Chia-Yu ; Liu, Chiao-Rou ; Chang, Ian Yi-Feng ; OuYang, Chun-Nan ; Hsieh, Chia-Hsun ; Huang, Yen-Lin ; Wang, Chun-I ; Jan, Fei-Wen ; Wang, Wan-Ling ; Tsai, Ting-Lin ; Liu, Hsuan ; Tseng, Ching-Ping ; Chang, Yu-Sun ; Wu, Chih-Ching ; Chang, Kai-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-d2d9560bfc4e8014227f834074a92a66569c222a7fb7dab9b748370eed2994c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>AKT protein</topic><topic>Antitumor activity</topic><topic>Apoptosis</topic><topic>Cancer therapies</topic><topic>Cell culture</topic><topic>Cell cycle</topic><topic>Cell proliferation</topic><topic>Chemotherapy</topic><topic>CHK1 protein</topic><topic>Cisplatin</topic><topic>Datasets</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>Kinases</topic><topic>Lymphatic system</topic><topic>Medical prognosis</topic><topic>Metastasis</topic><topic>Mutation</topic><topic>Oral cancer</topic><topic>Oral carcinoma</topic><topic>Oral cavity</topic><topic>Pathogenesis</topic><topic>Patients</topic><topic>Phosphorylation</topic><topic>Poly(ADP-ribose) polymerase</topic><topic>Principal components analysis</topic><topic>Survival analysis</topic><topic>Therapeutic applications</topic><topic>Tumors</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chia-Yu</creatorcontrib><creatorcontrib>Liu, Chiao-Rou</creatorcontrib><creatorcontrib>Chang, Ian Yi-Feng</creatorcontrib><creatorcontrib>OuYang, Chun-Nan</creatorcontrib><creatorcontrib>Hsieh, Chia-Hsun</creatorcontrib><creatorcontrib>Huang, Yen-Lin</creatorcontrib><creatorcontrib>Wang, Chun-I</creatorcontrib><creatorcontrib>Jan, Fei-Wen</creatorcontrib><creatorcontrib>Wang, Wan-Ling</creatorcontrib><creatorcontrib>Tsai, Ting-Lin</creatorcontrib><creatorcontrib>Liu, Hsuan</creatorcontrib><creatorcontrib>Tseng, Ching-Ping</creatorcontrib><creatorcontrib>Chang, Yu-Sun</creatorcontrib><creatorcontrib>Wu, Chih-Ching</creatorcontrib><creatorcontrib>Chang, Kai-Ping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chia-Yu</au><au>Liu, Chiao-Rou</au><au>Chang, Ian Yi-Feng</au><au>OuYang, Chun-Nan</au><au>Hsieh, Chia-Hsun</au><au>Huang, Yen-Lin</au><au>Wang, Chun-I</au><au>Jan, Fei-Wen</au><au>Wang, Wan-Ling</au><au>Tsai, Ting-Lin</au><au>Liu, Hsuan</au><au>Tseng, Ching-Ping</au><au>Chang, Yu-Sun</au><au>Wu, Chih-Ching</au><au>Chang, Kai-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cotargeting CHK1 and PI3K Synergistically Suppresses Tumor Growth of Oral Cavity Squamous Cell Carcinoma in Patient-Derived Xenografts</atitle><jtitle>Cancers</jtitle><date>2020-06-29</date><risdate>2020</risdate><volume>12</volume><issue>7</issue><spage>1726</spage><pages>1726-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Oral cavity squamous cell carcinomas (OSCCs) are aggressive tumors, and their recurrence leads to poor prognosis and reduced survival rates. This study aimed to identify therapeutic targets and to evaluate the efficacy of targeted inhibitors in OSCC patient-derived xenograft (PDX) models. Herein, we reported that OSCC PDXs recapitulated the genomic signatures of their paired primary tumors and the expression of CHEK1, PIK3CA, and PIK3CD was significantly upregulated in OSCC. The antitumor efficacy of CHK1 inhibitors (PF477736, AZD7762, LY2606368) and PI3K inhibitors (BYL719, GDC0941, GSK1059615) was investigated in OSCC cell lines and PDX models. Targeting either CHK1 or PI3K effectively inhibited cell proliferation and colony formation by inducing cell cycle arrest and apoptosis in in vitro cell-based assays. Cisplatin-based chemotherapy combined with CHK1 inhibitor treatment synergistically inhibited cell proliferation by suppressing CHK1 phosphorylation and inducing PARP cleavage. Furthermore, compared with monotherapy, cotreatment with CHK1 and PI3K inhibitors exerted synergistic anticancer effects by suppressing CHK1, AKT, and 4E-BP1 phosphorylation. In summary, our study identified CHK1 and PI3K as promising targets, especially in a dual treatment strategy combining a CHK1 inhibitor with cisplatin or a PI3K inhibitor as a novel therapeutic approach for OSCC patients with aberrant cell cycle regulation and PI3K signaling activation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32610557</pmid><doi>10.3390/cancers12071726</doi><orcidid>https://orcid.org/0000-0002-7264-9672</orcidid><orcidid>https://orcid.org/0000-0001-8332-0162</orcidid><orcidid>https://orcid.org/0000-0002-2587-210X</orcidid><orcidid>https://orcid.org/0000-0002-5547-409X</orcidid><orcidid>https://orcid.org/0000-0003-1777-9578</orcidid><orcidid>https://orcid.org/0000-0001-5840-2051</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6694 |
ispartof | Cancers, 2020-06, Vol.12 (7), p.1726 |
issn | 2072-6694 2072-6694 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7408003 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 1-Phosphatidylinositol 3-kinase AKT protein Antitumor activity Apoptosis Cancer therapies Cell culture Cell cycle Cell proliferation Chemotherapy CHK1 protein Cisplatin Datasets Deoxyribonucleic acid DNA DNA damage Kinases Lymphatic system Medical prognosis Metastasis Mutation Oral cancer Oral carcinoma Oral cavity Pathogenesis Patients Phosphorylation Poly(ADP-ribose) polymerase Principal components analysis Survival analysis Therapeutic applications Tumors Xenografts |
title | Cotargeting CHK1 and PI3K Synergistically Suppresses Tumor Growth of Oral Cavity Squamous Cell Carcinoma in Patient-Derived Xenografts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cotargeting%20CHK1%20and%20PI3K%20Synergistically%20Suppresses%20Tumor%20Growth%20of%20Oral%20Cavity%20Squamous%20Cell%20Carcinoma%20in%20Patient-Derived%20Xenografts&rft.jtitle=Cancers&rft.au=Yang,%20Chia-Yu&rft.date=2020-06-29&rft.volume=12&rft.issue=7&rft.spage=1726&rft.pages=1726-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers12071726&rft_dat=%3Cproquest_pubme%3E2419884853%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419884853&rft_id=info:pmid/32610557&rfr_iscdi=true |