Spatial-Tunable Au Nanoparticle Functionalized Si Nanorods Arrays for Surface Enhanced Raman Spectroscopy

In this study, hexagonal-packed Si nanorods (SiNRs) arrays were fabricated and conjugated with Au nanoparticles (AuNPs) in different spatial distributions for surface-enhanced Raman spectroscopy (SERS). The AuNPs were functionalized on the bottom of SiNRs (B-SiNRs@AuNPs), top of SiNRs (T-SiNRs@AuNPs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2020-07, Vol.10 (7), p.1317, Article 1317
Hauptverfasser: Lin, Dongdong, Dai, Kunjie, Yu, Tianxiang, Zhao, Wenhui, Xu, Wenwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1317
container_title Nanomaterials (Basel, Switzerland)
container_volume 10
creator Lin, Dongdong
Dai, Kunjie
Yu, Tianxiang
Zhao, Wenhui
Xu, Wenwu
description In this study, hexagonal-packed Si nanorods (SiNRs) arrays were fabricated and conjugated with Au nanoparticles (AuNPs) in different spatial distributions for surface-enhanced Raman spectroscopy (SERS). The AuNPs were functionalized on the bottom of SiNRs (B-SiNRs@AuNPs), top of SiNRs (T-SiNRs@AuNPs) and sides of SiNRs (S-SiNRs@AuNPs), respectively. Our results demonstrated that the SiNRs conjugated with AuNPs on the sides achieved high reproducibility in detection of R6G molecules, while the AuNPs on the top of the SiNRs obtained the strongest Raman enhancement. In addition, the substrate with S-SiNRs@AuNPs obtained the highest spatial uniformity of enhancement. The finite-difference time-domain simulation gave further evidence that the incident light could be confined in the space of SiNRs arrays and yield a zero-gap enhancement coupled with the AuNPs. Our study provided a spatially tunable SiNRs@AuNPs substrate with high sensitivity and reproducibility in molecular detection.
doi_str_mv 10.3390/nano10071317
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7407171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a1b5e69f22f54562b8f40fea40b24e96</doaj_id><sourcerecordid>2421460630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-4c389ca3ea13ce9427f95a53fa31c3ec50f00bc8e059432c643ae198dbe09a8c3</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEotXQHT8gEhskGPAziTdIo1FbKlUgMWVt3TjXrUcZO9gJaPj19TSjqmWFN35998i-5xTFW0o-ca7IZw8-UEJqymn9ojhlpFZLoRR9-WR9UpyltCV5KMobyV8XJ5xVXApFTgu3GWB00C9vJg9tj-VqKr9l0QHi6EzeX0zejC546N1f7MqNe7iOoUvlKkbYp9KGWG6maMFgee7vwJvM_YAd-HIzoBljSCYM-zfFKwt9wrPjvCh-XpzfrL8ur79fXq1X10sjpByXwvBGGeAIlBtUgtVWSZDcAqeGo5HEEtKaBolUgjNTCQ5IVdO1SBQ0hi-Kq1m3C7DVQ3Q7iHsdwOmHgxBv9fFvGmgrsVKWMSuFrFjbWEEsgiAtE6iqrPVl1hqmdoedQT9G6J-JPr_x7k7fht-6FtmT7MqieH8UiOHXhGnUO5cM9j14DFPSTDAqKlJxktF3_6DbMMXc95liVc0Uy9THmTK5rSmifXwMJfoQCf00EhlvZvwPtsEm4zC781iSIyGlYLxuDumgazfCwep1mPyYSz_8fym_BzzNyZU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421267292</pqid></control><display><type>article</type><title>Spatial-Tunable Au Nanoparticle Functionalized Si Nanorods Arrays for Surface Enhanced Raman Spectroscopy</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Lin, Dongdong ; Dai, Kunjie ; Yu, Tianxiang ; Zhao, Wenhui ; Xu, Wenwu</creator><creatorcontrib>Lin, Dongdong ; Dai, Kunjie ; Yu, Tianxiang ; Zhao, Wenhui ; Xu, Wenwu</creatorcontrib><description>In this study, hexagonal-packed Si nanorods (SiNRs) arrays were fabricated and conjugated with Au nanoparticles (AuNPs) in different spatial distributions for surface-enhanced Raman spectroscopy (SERS). The AuNPs were functionalized on the bottom of SiNRs (B-SiNRs@AuNPs), top of SiNRs (T-SiNRs@AuNPs) and sides of SiNRs (S-SiNRs@AuNPs), respectively. Our results demonstrated that the SiNRs conjugated with AuNPs on the sides achieved high reproducibility in detection of R6G molecules, while the AuNPs on the top of the SiNRs obtained the strongest Raman enhancement. In addition, the substrate with S-SiNRs@AuNPs obtained the highest spatial uniformity of enhancement. The finite-difference time-domain simulation gave further evidence that the incident light could be confined in the space of SiNRs arrays and yield a zero-gap enhancement coupled with the AuNPs. Our study provided a spatially tunable SiNRs@AuNPs substrate with high sensitivity and reproducibility in molecular detection.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano10071317</identifier><identifier>PMID: 32635490</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Arrays ; Au nanoparticles ; Chemistry ; Chemistry, Multidisciplinary ; detection ; Electric fields ; Etching ; Finite difference time domain method ; Gold ; Incident light ; Lasers ; Light ; Materials Science ; Materials Science, Multidisciplinary ; Nanoparticles ; Nanorods ; Nanoscience &amp; Nanotechnology ; Nanowires ; Physical Sciences ; Physics ; Physics, Applied ; Raman spectroscopy ; Reproducibility ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; SERS ; Si nanorods ; Spatial distribution ; Spectroscopy ; Substrates ; surface plasmon resonance ; Technology</subject><ispartof>Nanomaterials (Basel, Switzerland), 2020-07, Vol.10 (7), p.1317, Article 1317</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000554237800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c455t-4c389ca3ea13ce9427f95a53fa31c3ec50f00bc8e059432c643ae198dbe09a8c3</citedby><cites>FETCH-LOGICAL-c455t-4c389ca3ea13ce9427f95a53fa31c3ec50f00bc8e059432c643ae198dbe09a8c3</cites><orcidid>0000-0002-5538-8706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407171/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407171/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,28255,53798,53800</link.rule.ids></links><search><creatorcontrib>Lin, Dongdong</creatorcontrib><creatorcontrib>Dai, Kunjie</creatorcontrib><creatorcontrib>Yu, Tianxiang</creatorcontrib><creatorcontrib>Zhao, Wenhui</creatorcontrib><creatorcontrib>Xu, Wenwu</creatorcontrib><title>Spatial-Tunable Au Nanoparticle Functionalized Si Nanorods Arrays for Surface Enhanced Raman Spectroscopy</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>NANOMATERIALS-BASEL</addtitle><description>In this study, hexagonal-packed Si nanorods (SiNRs) arrays were fabricated and conjugated with Au nanoparticles (AuNPs) in different spatial distributions for surface-enhanced Raman spectroscopy (SERS). The AuNPs were functionalized on the bottom of SiNRs (B-SiNRs@AuNPs), top of SiNRs (T-SiNRs@AuNPs) and sides of SiNRs (S-SiNRs@AuNPs), respectively. Our results demonstrated that the SiNRs conjugated with AuNPs on the sides achieved high reproducibility in detection of R6G molecules, while the AuNPs on the top of the SiNRs obtained the strongest Raman enhancement. In addition, the substrate with S-SiNRs@AuNPs obtained the highest spatial uniformity of enhancement. The finite-difference time-domain simulation gave further evidence that the incident light could be confined in the space of SiNRs arrays and yield a zero-gap enhancement coupled with the AuNPs. Our study provided a spatially tunable SiNRs@AuNPs substrate with high sensitivity and reproducibility in molecular detection.</description><subject>Arrays</subject><subject>Au nanoparticles</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>detection</subject><subject>Electric fields</subject><subject>Etching</subject><subject>Finite difference time domain method</subject><subject>Gold</subject><subject>Incident light</subject><subject>Lasers</subject><subject>Light</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Nanowires</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Raman spectroscopy</subject><subject>Reproducibility</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>SERS</subject><subject>Si nanorods</subject><subject>Spatial distribution</subject><subject>Spectroscopy</subject><subject>Substrates</subject><subject>surface plasmon resonance</subject><subject>Technology</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktv1DAUhSMEotXQHT8gEhskGPAziTdIo1FbKlUgMWVt3TjXrUcZO9gJaPj19TSjqmWFN35998i-5xTFW0o-ca7IZw8-UEJqymn9ojhlpFZLoRR9-WR9UpyltCV5KMobyV8XJ5xVXApFTgu3GWB00C9vJg9tj-VqKr9l0QHi6EzeX0zejC546N1f7MqNe7iOoUvlKkbYp9KGWG6maMFgee7vwJvM_YAd-HIzoBljSCYM-zfFKwt9wrPjvCh-XpzfrL8ur79fXq1X10sjpByXwvBGGeAIlBtUgtVWSZDcAqeGo5HEEtKaBolUgjNTCQ5IVdO1SBQ0hi-Kq1m3C7DVQ3Q7iHsdwOmHgxBv9fFvGmgrsVKWMSuFrFjbWEEsgiAtE6iqrPVl1hqmdoedQT9G6J-JPr_x7k7fht-6FtmT7MqieH8UiOHXhGnUO5cM9j14DFPSTDAqKlJxktF3_6DbMMXc95liVc0Uy9THmTK5rSmifXwMJfoQCf00EhlvZvwPtsEm4zC781iSIyGlYLxuDumgazfCwep1mPyYSz_8fym_BzzNyZU</recordid><startdate>20200704</startdate><enddate>20200704</enddate><creator>Lin, Dongdong</creator><creator>Dai, Kunjie</creator><creator>Yu, Tianxiang</creator><creator>Zhao, Wenhui</creator><creator>Xu, Wenwu</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5538-8706</orcidid></search><sort><creationdate>20200704</creationdate><title>Spatial-Tunable Au Nanoparticle Functionalized Si Nanorods Arrays for Surface Enhanced Raman Spectroscopy</title><author>Lin, Dongdong ; Dai, Kunjie ; Yu, Tianxiang ; Zhao, Wenhui ; Xu, Wenwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-4c389ca3ea13ce9427f95a53fa31c3ec50f00bc8e059432c643ae198dbe09a8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arrays</topic><topic>Au nanoparticles</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>detection</topic><topic>Electric fields</topic><topic>Etching</topic><topic>Finite difference time domain method</topic><topic>Gold</topic><topic>Incident light</topic><topic>Lasers</topic><topic>Light</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Nanowires</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Raman spectroscopy</topic><topic>Reproducibility</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>SERS</topic><topic>Si nanorods</topic><topic>Spatial distribution</topic><topic>Spectroscopy</topic><topic>Substrates</topic><topic>surface plasmon resonance</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Dongdong</creatorcontrib><creatorcontrib>Dai, Kunjie</creatorcontrib><creatorcontrib>Yu, Tianxiang</creatorcontrib><creatorcontrib>Zhao, Wenhui</creatorcontrib><creatorcontrib>Xu, Wenwu</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Dongdong</au><au>Dai, Kunjie</au><au>Yu, Tianxiang</au><au>Zhao, Wenhui</au><au>Xu, Wenwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial-Tunable Au Nanoparticle Functionalized Si Nanorods Arrays for Surface Enhanced Raman Spectroscopy</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><stitle>NANOMATERIALS-BASEL</stitle><date>2020-07-04</date><risdate>2020</risdate><volume>10</volume><issue>7</issue><spage>1317</spage><pages>1317-</pages><artnum>1317</artnum><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>In this study, hexagonal-packed Si nanorods (SiNRs) arrays were fabricated and conjugated with Au nanoparticles (AuNPs) in different spatial distributions for surface-enhanced Raman spectroscopy (SERS). The AuNPs were functionalized on the bottom of SiNRs (B-SiNRs@AuNPs), top of SiNRs (T-SiNRs@AuNPs) and sides of SiNRs (S-SiNRs@AuNPs), respectively. Our results demonstrated that the SiNRs conjugated with AuNPs on the sides achieved high reproducibility in detection of R6G molecules, while the AuNPs on the top of the SiNRs obtained the strongest Raman enhancement. In addition, the substrate with S-SiNRs@AuNPs obtained the highest spatial uniformity of enhancement. The finite-difference time-domain simulation gave further evidence that the incident light could be confined in the space of SiNRs arrays and yield a zero-gap enhancement coupled with the AuNPs. Our study provided a spatially tunable SiNRs@AuNPs substrate with high sensitivity and reproducibility in molecular detection.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>32635490</pmid><doi>10.3390/nano10071317</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5538-8706</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2020-07, Vol.10 (7), p.1317, Article 1317
issn 2079-4991
2079-4991
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7407171
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Arrays
Au nanoparticles
Chemistry
Chemistry, Multidisciplinary
detection
Electric fields
Etching
Finite difference time domain method
Gold
Incident light
Lasers
Light
Materials Science
Materials Science, Multidisciplinary
Nanoparticles
Nanorods
Nanoscience & Nanotechnology
Nanowires
Physical Sciences
Physics
Physics, Applied
Raman spectroscopy
Reproducibility
Science & Technology
Science & Technology - Other Topics
SERS
Si nanorods
Spatial distribution
Spectroscopy
Substrates
surface plasmon resonance
Technology
title Spatial-Tunable Au Nanoparticle Functionalized Si Nanorods Arrays for Surface Enhanced Raman Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T04%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial-Tunable%20Au%20Nanoparticle%20Functionalized%20Si%20Nanorods%20Arrays%20for%20Surface%20Enhanced%20Raman%20Spectroscopy&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Lin,%20Dongdong&rft.date=2020-07-04&rft.volume=10&rft.issue=7&rft.spage=1317&rft.pages=1317-&rft.artnum=1317&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano10071317&rft_dat=%3Cproquest_pubme%3E2421460630%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421267292&rft_id=info:pmid/32635490&rft_doaj_id=oai_doaj_org_article_a1b5e69f22f54562b8f40fea40b24e96&rfr_iscdi=true