Opa1 Overexpression Protects from Early-Onset Mpv17−/−-Related Mouse Kidney Disease

Moderate overexpression of Opa1, the master regulator of mitochondrial cristae morphology, significantly improved mitochondrial damage induced by drugs, surgical denervation, or oxidative phosphorylation (OXPHOS) defects due to specific impairment of a single mitochondrial respiratory chain complex....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy 2020-08, Vol.28 (8), p.1918-1930
Hauptverfasser: Luna-Sanchez, Marta, Benincá, Cristiane, Cerutti, Raffaele, Brea-Calvo, Gloria, Yeates, Anna, Scorrano, Luca, Zeviani, Massimo, Viscomi, Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1930
container_issue 8
container_start_page 1918
container_title Molecular therapy
container_volume 28
creator Luna-Sanchez, Marta
Benincá, Cristiane
Cerutti, Raffaele
Brea-Calvo, Gloria
Yeates, Anna
Scorrano, Luca
Zeviani, Massimo
Viscomi, Carlo
description Moderate overexpression of Opa1, the master regulator of mitochondrial cristae morphology, significantly improved mitochondrial damage induced by drugs, surgical denervation, or oxidative phosphorylation (OXPHOS) defects due to specific impairment of a single mitochondrial respiratory chain complex. Here, we investigated the effectiveness of this approach in the Mpv17−/− mouse, characterized by profound, multisystem mitochondrial DNA (mtDNA) depletion. After the crossing with Opa1tg mice, we found a surprising anticipation of the severe, progressive focal segmental glomerulosclerosis, previously described in Mpv17−/− animals as a late-onset clinical feature (after 12–18 months of life). In contrast, Mpv17−/− animals from this new “mixed” strain died at 8–9 weeks after birth because of severe kidney failure However, Mpv17−/−::Opa1tg mice lived much longer than Mpv17−/− littermates and developed the kidney dysfunction much later. mtDNA content and OXPHOS activities were significantly higher in Mpv17−/−::Opa1tg than in Mpv17−/− kidneys and similar to those for wild-type (WT) littermates. Mitochondrial network and cristae ultrastructure were largely preserved in Mpv17−/−::Opa1tg versus Mpv17−/− kidney and isolated podocytes. Mechanistically, the protective effect of Opa1 overexpression in this model was mediated by a block in apoptosis due to the stabilization of the mitochondrial cristae. These results demonstrate that strategies aiming at increasing Opa1 expression or activity can be effective against mtDNA depletion syndromes. [Display omitted] No treatment is currently available to syndromes associated to mitochondrial DNA instability. We investigated the possibility to correct the kidney disease typical of Mpv17−/− mice by transgenically overexpressing Opa1, the master regulator of mitochondrial cristae shape. Mpv17−/−::Opa1 double recombinant mice showed a marked prolongation of the lifespan, with correction of the proteinuria and of the focal segmental glomerulosclerosis, by reducing apoptosis in podocytes. Accordingly, mitochondrial cristae morphology, largely disrupted in Mpv17−/− glomeruli, was improved in double recombinant animals.
doi_str_mv 10.1016/j.ymthe.2020.06.010
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7403474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001620303002</els_id><sourcerecordid>2415303106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-10120df6f012a5fc8dfdf043398c5122e50207ec707a15e2d754a203041b22f03</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EIi--AAn1kk13ys_OLEBCITxEookQUZaWY5eJR93txu4ZMX-QNZ-YL4nDhFHYZGFVSb51y9eHkNcUGgpUHS6adT9dY8OAQQOqAQrPyC6VTNYATDzf9lTtkL2cF6WjcqZekh3OpGKKql1yOR8NreYrTPh7TJhziEN1nuKEdsqVT7GvTkzq1vV8yDhVZ-OKtrc3fw7Lqb9jZyZ01VlcZqy-BTfguvoYMpqMB-SFN13GVw91n1x8Ovlx_KU-nX_-evzhtLZCzqa6BGHgvPKlGuntkfPOg-B8dmQlZQxlCdeibaE1VCJzrRSGAQdBrxjzwPfJ-43vuLzq0VkcpmQ6PabQm7TW0QT9_80QrvXPuNKtAC5aUQzePhik-GuJedJ9yBa7zgxYcmkmqOTAKagi5RupTTHnhH67hoK-R6IX-i8SfY9Eg9IFSZl68_iF25l_DIrg3UaA5Z9WAZPONuBg0YVUKGgXw5ML7gCL75-j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415303106</pqid></control><display><type>article</type><title>Opa1 Overexpression Protects from Early-Onset Mpv17−/−-Related Mouse Kidney Disease</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Luna-Sanchez, Marta ; Benincá, Cristiane ; Cerutti, Raffaele ; Brea-Calvo, Gloria ; Yeates, Anna ; Scorrano, Luca ; Zeviani, Massimo ; Viscomi, Carlo</creator><creatorcontrib>Luna-Sanchez, Marta ; Benincá, Cristiane ; Cerutti, Raffaele ; Brea-Calvo, Gloria ; Yeates, Anna ; Scorrano, Luca ; Zeviani, Massimo ; Viscomi, Carlo</creatorcontrib><description>Moderate overexpression of Opa1, the master regulator of mitochondrial cristae morphology, significantly improved mitochondrial damage induced by drugs, surgical denervation, or oxidative phosphorylation (OXPHOS) defects due to specific impairment of a single mitochondrial respiratory chain complex. Here, we investigated the effectiveness of this approach in the Mpv17−/− mouse, characterized by profound, multisystem mitochondrial DNA (mtDNA) depletion. After the crossing with Opa1tg mice, we found a surprising anticipation of the severe, progressive focal segmental glomerulosclerosis, previously described in Mpv17−/− animals as a late-onset clinical feature (after 12–18 months of life). In contrast, Mpv17−/− animals from this new “mixed” strain died at 8–9 weeks after birth because of severe kidney failure However, Mpv17−/−::Opa1tg mice lived much longer than Mpv17−/− littermates and developed the kidney dysfunction much later. mtDNA content and OXPHOS activities were significantly higher in Mpv17−/−::Opa1tg than in Mpv17−/− kidneys and similar to those for wild-type (WT) littermates. Mitochondrial network and cristae ultrastructure were largely preserved in Mpv17−/−::Opa1tg versus Mpv17−/− kidney and isolated podocytes. Mechanistically, the protective effect of Opa1 overexpression in this model was mediated by a block in apoptosis due to the stabilization of the mitochondrial cristae. These results demonstrate that strategies aiming at increasing Opa1 expression or activity can be effective against mtDNA depletion syndromes. [Display omitted] No treatment is currently available to syndromes associated to mitochondrial DNA instability. We investigated the possibility to correct the kidney disease typical of Mpv17−/− mice by transgenically overexpressing Opa1, the master regulator of mitochondrial cristae shape. Mpv17−/−::Opa1 double recombinant mice showed a marked prolongation of the lifespan, with correction of the proteinuria and of the focal segmental glomerulosclerosis, by reducing apoptosis in podocytes. Accordingly, mitochondrial cristae morphology, largely disrupted in Mpv17−/− glomeruli, was improved in double recombinant animals.</description><identifier>ISSN: 1525-0016</identifier><identifier>ISSN: 1525-0024</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2020.06.010</identifier><identifier>PMID: 32562616</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; apoptosis ; Apoptosis - genetics ; Disease Models, Animal ; Disease Susceptibility ; DNA, Mitochondrial ; focal segmental glomerulosclerosis ; Gene Expression ; GTP Phosphohydrolases - genetics ; GTP Phosphohydrolases - metabolism ; Immunohistochemistry ; Kidney Diseases - etiology ; Kidney Diseases - metabolism ; Kidney Diseases - pathology ; Membrane Proteins - deficiency ; Mice ; Mice, Knockout ; Mitochondria - genetics ; Mitochondria - metabolism ; mitochondrial cristae ; mitochondrial DNA depletion ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Models, Biological ; Mpv17 ; Opa1 ; Original ; Oxidative Phosphorylation ; Podocytes - metabolism ; Podocytes - pathology ; Podocytes - ultrastructure</subject><ispartof>Molecular therapy, 2020-08, Vol.28 (8), p.1918-1930</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The Authors 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-10120df6f012a5fc8dfdf043398c5122e50207ec707a15e2d754a203041b22f03</citedby><cites>FETCH-LOGICAL-c459t-10120df6f012a5fc8dfdf043398c5122e50207ec707a15e2d754a203041b22f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403474/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403474/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32562616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luna-Sanchez, Marta</creatorcontrib><creatorcontrib>Benincá, Cristiane</creatorcontrib><creatorcontrib>Cerutti, Raffaele</creatorcontrib><creatorcontrib>Brea-Calvo, Gloria</creatorcontrib><creatorcontrib>Yeates, Anna</creatorcontrib><creatorcontrib>Scorrano, Luca</creatorcontrib><creatorcontrib>Zeviani, Massimo</creatorcontrib><creatorcontrib>Viscomi, Carlo</creatorcontrib><title>Opa1 Overexpression Protects from Early-Onset Mpv17−/−-Related Mouse Kidney Disease</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Moderate overexpression of Opa1, the master regulator of mitochondrial cristae morphology, significantly improved mitochondrial damage induced by drugs, surgical denervation, or oxidative phosphorylation (OXPHOS) defects due to specific impairment of a single mitochondrial respiratory chain complex. Here, we investigated the effectiveness of this approach in the Mpv17−/− mouse, characterized by profound, multisystem mitochondrial DNA (mtDNA) depletion. After the crossing with Opa1tg mice, we found a surprising anticipation of the severe, progressive focal segmental glomerulosclerosis, previously described in Mpv17−/− animals as a late-onset clinical feature (after 12–18 months of life). In contrast, Mpv17−/− animals from this new “mixed” strain died at 8–9 weeks after birth because of severe kidney failure However, Mpv17−/−::Opa1tg mice lived much longer than Mpv17−/− littermates and developed the kidney dysfunction much later. mtDNA content and OXPHOS activities were significantly higher in Mpv17−/−::Opa1tg than in Mpv17−/− kidneys and similar to those for wild-type (WT) littermates. Mitochondrial network and cristae ultrastructure were largely preserved in Mpv17−/−::Opa1tg versus Mpv17−/− kidney and isolated podocytes. Mechanistically, the protective effect of Opa1 overexpression in this model was mediated by a block in apoptosis due to the stabilization of the mitochondrial cristae. These results demonstrate that strategies aiming at increasing Opa1 expression or activity can be effective against mtDNA depletion syndromes. [Display omitted] No treatment is currently available to syndromes associated to mitochondrial DNA instability. We investigated the possibility to correct the kidney disease typical of Mpv17−/− mice by transgenically overexpressing Opa1, the master regulator of mitochondrial cristae shape. Mpv17−/−::Opa1 double recombinant mice showed a marked prolongation of the lifespan, with correction of the proteinuria and of the focal segmental glomerulosclerosis, by reducing apoptosis in podocytes. Accordingly, mitochondrial cristae morphology, largely disrupted in Mpv17−/− glomeruli, was improved in double recombinant animals.</description><subject>Animals</subject><subject>apoptosis</subject><subject>Apoptosis - genetics</subject><subject>Disease Models, Animal</subject><subject>Disease Susceptibility</subject><subject>DNA, Mitochondrial</subject><subject>focal segmental glomerulosclerosis</subject><subject>Gene Expression</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>Immunohistochemistry</subject><subject>Kidney Diseases - etiology</subject><subject>Kidney Diseases - metabolism</subject><subject>Kidney Diseases - pathology</subject><subject>Membrane Proteins - deficiency</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>mitochondrial cristae</subject><subject>mitochondrial DNA depletion</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Models, Biological</subject><subject>Mpv17</subject><subject>Opa1</subject><subject>Original</subject><subject>Oxidative Phosphorylation</subject><subject>Podocytes - metabolism</subject><subject>Podocytes - pathology</subject><subject>Podocytes - ultrastructure</subject><issn>1525-0016</issn><issn>1525-0024</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctuFDEQRS0EIi--AAn1kk13ys_OLEBCITxEookQUZaWY5eJR93txu4ZMX-QNZ-YL4nDhFHYZGFVSb51y9eHkNcUGgpUHS6adT9dY8OAQQOqAQrPyC6VTNYATDzf9lTtkL2cF6WjcqZekh3OpGKKql1yOR8NreYrTPh7TJhziEN1nuKEdsqVT7GvTkzq1vV8yDhVZ-OKtrc3fw7Lqb9jZyZ01VlcZqy-BTfguvoYMpqMB-SFN13GVw91n1x8Ovlx_KU-nX_-evzhtLZCzqa6BGHgvPKlGuntkfPOg-B8dmQlZQxlCdeibaE1VCJzrRSGAQdBrxjzwPfJ-43vuLzq0VkcpmQ6PabQm7TW0QT9_80QrvXPuNKtAC5aUQzePhik-GuJedJ9yBa7zgxYcmkmqOTAKagi5RupTTHnhH67hoK-R6IX-i8SfY9Eg9IFSZl68_iF25l_DIrg3UaA5Z9WAZPONuBg0YVUKGgXw5ML7gCL75-j</recordid><startdate>20200805</startdate><enddate>20200805</enddate><creator>Luna-Sanchez, Marta</creator><creator>Benincá, Cristiane</creator><creator>Cerutti, Raffaele</creator><creator>Brea-Calvo, Gloria</creator><creator>Yeates, Anna</creator><creator>Scorrano, Luca</creator><creator>Zeviani, Massimo</creator><creator>Viscomi, Carlo</creator><general>Elsevier Inc</general><general>American Society of Gene &amp; Cell Therapy</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200805</creationdate><title>Opa1 Overexpression Protects from Early-Onset Mpv17−/−-Related Mouse Kidney Disease</title><author>Luna-Sanchez, Marta ; Benincá, Cristiane ; Cerutti, Raffaele ; Brea-Calvo, Gloria ; Yeates, Anna ; Scorrano, Luca ; Zeviani, Massimo ; Viscomi, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-10120df6f012a5fc8dfdf043398c5122e50207ec707a15e2d754a203041b22f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>apoptosis</topic><topic>Apoptosis - genetics</topic><topic>Disease Models, Animal</topic><topic>Disease Susceptibility</topic><topic>DNA, Mitochondrial</topic><topic>focal segmental glomerulosclerosis</topic><topic>Gene Expression</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>Immunohistochemistry</topic><topic>Kidney Diseases - etiology</topic><topic>Kidney Diseases - metabolism</topic><topic>Kidney Diseases - pathology</topic><topic>Membrane Proteins - deficiency</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>mitochondrial cristae</topic><topic>mitochondrial DNA depletion</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Models, Biological</topic><topic>Mpv17</topic><topic>Opa1</topic><topic>Original</topic><topic>Oxidative Phosphorylation</topic><topic>Podocytes - metabolism</topic><topic>Podocytes - pathology</topic><topic>Podocytes - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luna-Sanchez, Marta</creatorcontrib><creatorcontrib>Benincá, Cristiane</creatorcontrib><creatorcontrib>Cerutti, Raffaele</creatorcontrib><creatorcontrib>Brea-Calvo, Gloria</creatorcontrib><creatorcontrib>Yeates, Anna</creatorcontrib><creatorcontrib>Scorrano, Luca</creatorcontrib><creatorcontrib>Zeviani, Massimo</creatorcontrib><creatorcontrib>Viscomi, Carlo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luna-Sanchez, Marta</au><au>Benincá, Cristiane</au><au>Cerutti, Raffaele</au><au>Brea-Calvo, Gloria</au><au>Yeates, Anna</au><au>Scorrano, Luca</au><au>Zeviani, Massimo</au><au>Viscomi, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Opa1 Overexpression Protects from Early-Onset Mpv17−/−-Related Mouse Kidney Disease</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2020-08-05</date><risdate>2020</risdate><volume>28</volume><issue>8</issue><spage>1918</spage><epage>1930</epage><pages>1918-1930</pages><issn>1525-0016</issn><issn>1525-0024</issn><eissn>1525-0024</eissn><abstract>Moderate overexpression of Opa1, the master regulator of mitochondrial cristae morphology, significantly improved mitochondrial damage induced by drugs, surgical denervation, or oxidative phosphorylation (OXPHOS) defects due to specific impairment of a single mitochondrial respiratory chain complex. Here, we investigated the effectiveness of this approach in the Mpv17−/− mouse, characterized by profound, multisystem mitochondrial DNA (mtDNA) depletion. After the crossing with Opa1tg mice, we found a surprising anticipation of the severe, progressive focal segmental glomerulosclerosis, previously described in Mpv17−/− animals as a late-onset clinical feature (after 12–18 months of life). In contrast, Mpv17−/− animals from this new “mixed” strain died at 8–9 weeks after birth because of severe kidney failure However, Mpv17−/−::Opa1tg mice lived much longer than Mpv17−/− littermates and developed the kidney dysfunction much later. mtDNA content and OXPHOS activities were significantly higher in Mpv17−/−::Opa1tg than in Mpv17−/− kidneys and similar to those for wild-type (WT) littermates. Mitochondrial network and cristae ultrastructure were largely preserved in Mpv17−/−::Opa1tg versus Mpv17−/− kidney and isolated podocytes. Mechanistically, the protective effect of Opa1 overexpression in this model was mediated by a block in apoptosis due to the stabilization of the mitochondrial cristae. These results demonstrate that strategies aiming at increasing Opa1 expression or activity can be effective against mtDNA depletion syndromes. [Display omitted] No treatment is currently available to syndromes associated to mitochondrial DNA instability. We investigated the possibility to correct the kidney disease typical of Mpv17−/− mice by transgenically overexpressing Opa1, the master regulator of mitochondrial cristae shape. Mpv17−/−::Opa1 double recombinant mice showed a marked prolongation of the lifespan, with correction of the proteinuria and of the focal segmental glomerulosclerosis, by reducing apoptosis in podocytes. Accordingly, mitochondrial cristae morphology, largely disrupted in Mpv17−/− glomeruli, was improved in double recombinant animals.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32562616</pmid><doi>10.1016/j.ymthe.2020.06.010</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-0016
ispartof Molecular therapy, 2020-08, Vol.28 (8), p.1918-1930
issn 1525-0016
1525-0024
1525-0024
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7403474
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
apoptosis
Apoptosis - genetics
Disease Models, Animal
Disease Susceptibility
DNA, Mitochondrial
focal segmental glomerulosclerosis
Gene Expression
GTP Phosphohydrolases - genetics
GTP Phosphohydrolases - metabolism
Immunohistochemistry
Kidney Diseases - etiology
Kidney Diseases - metabolism
Kidney Diseases - pathology
Membrane Proteins - deficiency
Mice
Mice, Knockout
Mitochondria - genetics
Mitochondria - metabolism
mitochondrial cristae
mitochondrial DNA depletion
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Models, Biological
Mpv17
Opa1
Original
Oxidative Phosphorylation
Podocytes - metabolism
Podocytes - pathology
Podocytes - ultrastructure
title Opa1 Overexpression Protects from Early-Onset Mpv17−/−-Related Mouse Kidney Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Opa1%20Overexpression%20Protects%20from%20Early-Onset%20Mpv17%E2%88%92/%E2%88%92-Related%20Mouse%20Kidney%20Disease&rft.jtitle=Molecular%20therapy&rft.au=Luna-Sanchez,%20Marta&rft.date=2020-08-05&rft.volume=28&rft.issue=8&rft.spage=1918&rft.epage=1930&rft.pages=1918-1930&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2020.06.010&rft_dat=%3Cproquest_pubme%3E2415303106%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415303106&rft_id=info:pmid/32562616&rft_els_id=S1525001620303002&rfr_iscdi=true