The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells

Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2020-07, Vol.79 (2), p.221-233.e5
Hauptverfasser: Wang, Alan S., Chen, Leo C., Wu, R. Alex, Hao, Yvonne, McSwiggen, David T., Heckert, Alec B., Richardson, Christopher D., Gowen, Benjamin G., Kazane, Katelynn R., Vu, Jonathan T., Wyman, Stacia K., Shin, Jiyung J., Darzacq, Xavier, Walter, Johannes C., Corn, Jacob E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 233.e5
container_issue 2
container_start_page 221
container_title Molecular cell
container_volume 79
creator Wang, Alan S.
Chen, Leo C.
Wu, R. Alex
Hao, Yvonne
McSwiggen, David T.
Heckert, Alec B.
Richardson, Christopher D.
Gowen, Benjamin G.
Kazane, Katelynn R.
Vu, Jonathan T.
Wyman, Stacia K.
Shin, Jiyung J.
Darzacq, Xavier
Walter, Johannes C.
Corn, Jacob E.
description Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through proximity labeling of transient protein interactions in cell-free Xenopus laevis egg extract identified the dimeric histone chaperone facilitates chromatin transcription (FACT) as an interactor of substrate-bound Cas9. FACT is both necessary and sufficient to displace dCas9, and FACT immunodepletion converts Cas9’s activity from multi-turnover to single turnover. In human cells, FACT depletion extends dCas9 residence times, delays genome editing, and alters the balance between indel formation and homology-directed repair. FACT knockdown also increases epigenetic marking by dCas9-based transcriptional effectors with a concomitant enhancement of transcriptional modulation. FACT thus shapes the intrinsic cellular response to Cas9-based genome manipulation most likely by determining Cas9 residence times. [Display omitted] •Histone chaperone FACT is necessary and sufficient to remove Cas9 from DNA in vitro•FACT turns Cas9 from single turnover to multi-turnover•FACT depletion in human cells delays Cas9 DSB repair and alters editing outcomes•FACT depletion increases dCas9 residence to increase epigenetic marking and CRISPRi S. pyogenes Cas9 binds very tightly to DNA. It has been unclear how cells remove Cas9 from the genome. Wang et al. determine that the histone chaperone complex FACT displaces Cas9 from its substrate in eukaryotic systems. FACT knockdown potentiates CRISPR-based tools and alters Cas9 gene editing outcomes.
doi_str_mv 10.1016/j.molcel.2020.06.014
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7398558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276520303993</els_id><sourcerecordid>2419411254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-7f54bd9483810e1f0abad95f76e512a109b0b088cc2b7e9d0ab8b8c9f43954933</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhqOKipbCP0DIRy4JtmMn9gWpRLRbqatelrPl2JOuV4m92MlK_fd4tUuBC6cZad555-Mpio8EVwST5suumsJoYKwoprjCTYUJuyiuCZZtyUjD3pxz2jb8qniX0g5nBRfybXFV0wbXLcHXRdhsAa1cmoMH1G31HuIxu7vtNujB28VAQp1OEq2XcXblvEQfDhDRN9jqgwsRaW_ROlg3uKy8Bx8mQGvt3X4Z9eyCR86j1TJpjzoYx_S-uBz0mODDOd4UP-6-b7pV-fh0_9DdPpaGUzmX7cBZbyUTtSAYyIB1r63kQ9sAJ1Tnw3rcYyGMoX0L0ua66IWRA6slZ7Kub4qvJ9_90k9gDfg56lHto5t0fFFBO_Vvxbuteg4H1dZScC6yweezQQw_F0izmlzK7x61h7AkRRmRjBDKWZayk9TEkFKE4XUMwerISu3UiZU6slK4UZlEbvv094qvTb_h_LkB8qMODqJKxoE3YF0EMysb3P8n_ALVEKiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419411254</pqid></control><display><type>article</type><title>The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Alan S. ; Chen, Leo C. ; Wu, R. Alex ; Hao, Yvonne ; McSwiggen, David T. ; Heckert, Alec B. ; Richardson, Christopher D. ; Gowen, Benjamin G. ; Kazane, Katelynn R. ; Vu, Jonathan T. ; Wyman, Stacia K. ; Shin, Jiyung J. ; Darzacq, Xavier ; Walter, Johannes C. ; Corn, Jacob E.</creator><creatorcontrib>Wang, Alan S. ; Chen, Leo C. ; Wu, R. Alex ; Hao, Yvonne ; McSwiggen, David T. ; Heckert, Alec B. ; Richardson, Christopher D. ; Gowen, Benjamin G. ; Kazane, Katelynn R. ; Vu, Jonathan T. ; Wyman, Stacia K. ; Shin, Jiyung J. ; Darzacq, Xavier ; Walter, Johannes C. ; Corn, Jacob E.</creatorcontrib><description>Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through proximity labeling of transient protein interactions in cell-free Xenopus laevis egg extract identified the dimeric histone chaperone facilitates chromatin transcription (FACT) as an interactor of substrate-bound Cas9. FACT is both necessary and sufficient to displace dCas9, and FACT immunodepletion converts Cas9’s activity from multi-turnover to single turnover. In human cells, FACT depletion extends dCas9 residence times, delays genome editing, and alters the balance between indel formation and homology-directed repair. FACT knockdown also increases epigenetic marking by dCas9-based transcriptional effectors with a concomitant enhancement of transcriptional modulation. FACT thus shapes the intrinsic cellular response to Cas9-based genome manipulation most likely by determining Cas9 residence times. [Display omitted] •Histone chaperone FACT is necessary and sufficient to remove Cas9 from DNA in vitro•FACT turns Cas9 from single turnover to multi-turnover•FACT depletion in human cells delays Cas9 DSB repair and alters editing outcomes•FACT depletion increases dCas9 residence to increase epigenetic marking and CRISPRi S. pyogenes Cas9 binds very tightly to DNA. It has been unclear how cells remove Cas9 from the genome. Wang et al. determine that the histone chaperone complex FACT displaces Cas9 from its substrate in eukaryotic systems. FACT knockdown potentiates CRISPR-based tools and alters Cas9 gene editing outcomes.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2020.06.014</identifier><identifier>PMID: 32603710</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cas9 ; Cell Line ; CRISPR ; CRISPR-Associated Protein 9 - metabolism ; CRISPR-Associated Proteins - metabolism ; CRISPRa ; CRISPRi ; DNA - metabolism ; DNA Breaks, Double-Stranded ; DNA Repair ; DNA-Binding Proteins - metabolism ; Epigenesis, Genetic ; FACT complex ; Gene Editing ; Gene Knockdown Techniques ; Genome, Human ; High Mobility Group Proteins - metabolism ; histone chaperone ; Humans ; Nucleosomes - metabolism ; SPT16 ; SSRP1 ; Transcriptional Elongation Factors - metabolism ; Xenopus laevis</subject><ispartof>Molecular cell, 2020-07, Vol.79 (2), p.221-233.e5</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-7f54bd9483810e1f0abad95f76e512a109b0b088cc2b7e9d0ab8b8c9f43954933</citedby><cites>FETCH-LOGICAL-c529t-7f54bd9483810e1f0abad95f76e512a109b0b088cc2b7e9d0ab8b8c9f43954933</cites><orcidid>0000-0002-7798-5309 ; 0000-0003-2537-8395 ; 0000-0003-4190-4615 ; 0000-0003-3844-7433 ; 0000-0002-4950-7967 ; 0000-0002-8937-8397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276520303993$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32603710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Alan S.</creatorcontrib><creatorcontrib>Chen, Leo C.</creatorcontrib><creatorcontrib>Wu, R. Alex</creatorcontrib><creatorcontrib>Hao, Yvonne</creatorcontrib><creatorcontrib>McSwiggen, David T.</creatorcontrib><creatorcontrib>Heckert, Alec B.</creatorcontrib><creatorcontrib>Richardson, Christopher D.</creatorcontrib><creatorcontrib>Gowen, Benjamin G.</creatorcontrib><creatorcontrib>Kazane, Katelynn R.</creatorcontrib><creatorcontrib>Vu, Jonathan T.</creatorcontrib><creatorcontrib>Wyman, Stacia K.</creatorcontrib><creatorcontrib>Shin, Jiyung J.</creatorcontrib><creatorcontrib>Darzacq, Xavier</creatorcontrib><creatorcontrib>Walter, Johannes C.</creatorcontrib><creatorcontrib>Corn, Jacob E.</creatorcontrib><title>The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through proximity labeling of transient protein interactions in cell-free Xenopus laevis egg extract identified the dimeric histone chaperone facilitates chromatin transcription (FACT) as an interactor of substrate-bound Cas9. FACT is both necessary and sufficient to displace dCas9, and FACT immunodepletion converts Cas9’s activity from multi-turnover to single turnover. In human cells, FACT depletion extends dCas9 residence times, delays genome editing, and alters the balance between indel formation and homology-directed repair. FACT knockdown also increases epigenetic marking by dCas9-based transcriptional effectors with a concomitant enhancement of transcriptional modulation. FACT thus shapes the intrinsic cellular response to Cas9-based genome manipulation most likely by determining Cas9 residence times. [Display omitted] •Histone chaperone FACT is necessary and sufficient to remove Cas9 from DNA in vitro•FACT turns Cas9 from single turnover to multi-turnover•FACT depletion in human cells delays Cas9 DSB repair and alters editing outcomes•FACT depletion increases dCas9 residence to increase epigenetic marking and CRISPRi S. pyogenes Cas9 binds very tightly to DNA. It has been unclear how cells remove Cas9 from the genome. Wang et al. determine that the histone chaperone complex FACT displaces Cas9 from its substrate in eukaryotic systems. FACT knockdown potentiates CRISPR-based tools and alters Cas9 gene editing outcomes.</description><subject>Animals</subject><subject>Cas9</subject><subject>Cell Line</subject><subject>CRISPR</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>CRISPR-Associated Proteins - metabolism</subject><subject>CRISPRa</subject><subject>CRISPRi</subject><subject>DNA - metabolism</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Repair</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Epigenesis, Genetic</subject><subject>FACT complex</subject><subject>Gene Editing</subject><subject>Gene Knockdown Techniques</subject><subject>Genome, Human</subject><subject>High Mobility Group Proteins - metabolism</subject><subject>histone chaperone</subject><subject>Humans</subject><subject>Nucleosomes - metabolism</subject><subject>SPT16</subject><subject>SSRP1</subject><subject>Transcriptional Elongation Factors - metabolism</subject><subject>Xenopus laevis</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhqOKipbCP0DIRy4JtmMn9gWpRLRbqatelrPl2JOuV4m92MlK_fd4tUuBC6cZad555-Mpio8EVwST5suumsJoYKwoprjCTYUJuyiuCZZtyUjD3pxz2jb8qniX0g5nBRfybXFV0wbXLcHXRdhsAa1cmoMH1G31HuIxu7vtNujB28VAQp1OEq2XcXblvEQfDhDRN9jqgwsRaW_ROlg3uKy8Bx8mQGvt3X4Z9eyCR86j1TJpjzoYx_S-uBz0mODDOd4UP-6-b7pV-fh0_9DdPpaGUzmX7cBZbyUTtSAYyIB1r63kQ9sAJ1Tnw3rcYyGMoX0L0ua66IWRA6slZ7Kub4qvJ9_90k9gDfg56lHto5t0fFFBO_Vvxbuteg4H1dZScC6yweezQQw_F0izmlzK7x61h7AkRRmRjBDKWZayk9TEkFKE4XUMwerISu3UiZU6slK4UZlEbvv094qvTb_h_LkB8qMODqJKxoE3YF0EMysb3P8n_ALVEKiA</recordid><startdate>20200716</startdate><enddate>20200716</enddate><creator>Wang, Alan S.</creator><creator>Chen, Leo C.</creator><creator>Wu, R. Alex</creator><creator>Hao, Yvonne</creator><creator>McSwiggen, David T.</creator><creator>Heckert, Alec B.</creator><creator>Richardson, Christopher D.</creator><creator>Gowen, Benjamin G.</creator><creator>Kazane, Katelynn R.</creator><creator>Vu, Jonathan T.</creator><creator>Wyman, Stacia K.</creator><creator>Shin, Jiyung J.</creator><creator>Darzacq, Xavier</creator><creator>Walter, Johannes C.</creator><creator>Corn, Jacob E.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7798-5309</orcidid><orcidid>https://orcid.org/0000-0003-2537-8395</orcidid><orcidid>https://orcid.org/0000-0003-4190-4615</orcidid><orcidid>https://orcid.org/0000-0003-3844-7433</orcidid><orcidid>https://orcid.org/0000-0002-4950-7967</orcidid><orcidid>https://orcid.org/0000-0002-8937-8397</orcidid></search><sort><creationdate>20200716</creationdate><title>The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells</title><author>Wang, Alan S. ; Chen, Leo C. ; Wu, R. Alex ; Hao, Yvonne ; McSwiggen, David T. ; Heckert, Alec B. ; Richardson, Christopher D. ; Gowen, Benjamin G. ; Kazane, Katelynn R. ; Vu, Jonathan T. ; Wyman, Stacia K. ; Shin, Jiyung J. ; Darzacq, Xavier ; Walter, Johannes C. ; Corn, Jacob E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-7f54bd9483810e1f0abad95f76e512a109b0b088cc2b7e9d0ab8b8c9f43954933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Cas9</topic><topic>Cell Line</topic><topic>CRISPR</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>CRISPR-Associated Proteins - metabolism</topic><topic>CRISPRa</topic><topic>CRISPRi</topic><topic>DNA - metabolism</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Repair</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Epigenesis, Genetic</topic><topic>FACT complex</topic><topic>Gene Editing</topic><topic>Gene Knockdown Techniques</topic><topic>Genome, Human</topic><topic>High Mobility Group Proteins - metabolism</topic><topic>histone chaperone</topic><topic>Humans</topic><topic>Nucleosomes - metabolism</topic><topic>SPT16</topic><topic>SSRP1</topic><topic>Transcriptional Elongation Factors - metabolism</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Alan S.</creatorcontrib><creatorcontrib>Chen, Leo C.</creatorcontrib><creatorcontrib>Wu, R. Alex</creatorcontrib><creatorcontrib>Hao, Yvonne</creatorcontrib><creatorcontrib>McSwiggen, David T.</creatorcontrib><creatorcontrib>Heckert, Alec B.</creatorcontrib><creatorcontrib>Richardson, Christopher D.</creatorcontrib><creatorcontrib>Gowen, Benjamin G.</creatorcontrib><creatorcontrib>Kazane, Katelynn R.</creatorcontrib><creatorcontrib>Vu, Jonathan T.</creatorcontrib><creatorcontrib>Wyman, Stacia K.</creatorcontrib><creatorcontrib>Shin, Jiyung J.</creatorcontrib><creatorcontrib>Darzacq, Xavier</creatorcontrib><creatorcontrib>Walter, Johannes C.</creatorcontrib><creatorcontrib>Corn, Jacob E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Alan S.</au><au>Chen, Leo C.</au><au>Wu, R. Alex</au><au>Hao, Yvonne</au><au>McSwiggen, David T.</au><au>Heckert, Alec B.</au><au>Richardson, Christopher D.</au><au>Gowen, Benjamin G.</au><au>Kazane, Katelynn R.</au><au>Vu, Jonathan T.</au><au>Wyman, Stacia K.</au><au>Shin, Jiyung J.</au><au>Darzacq, Xavier</au><au>Walter, Johannes C.</au><au>Corn, Jacob E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2020-07-16</date><risdate>2020</risdate><volume>79</volume><issue>2</issue><spage>221</spage><epage>233.e5</epage><pages>221-233.e5</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through proximity labeling of transient protein interactions in cell-free Xenopus laevis egg extract identified the dimeric histone chaperone facilitates chromatin transcription (FACT) as an interactor of substrate-bound Cas9. FACT is both necessary and sufficient to displace dCas9, and FACT immunodepletion converts Cas9’s activity from multi-turnover to single turnover. In human cells, FACT depletion extends dCas9 residence times, delays genome editing, and alters the balance between indel formation and homology-directed repair. FACT knockdown also increases epigenetic marking by dCas9-based transcriptional effectors with a concomitant enhancement of transcriptional modulation. FACT thus shapes the intrinsic cellular response to Cas9-based genome manipulation most likely by determining Cas9 residence times. [Display omitted] •Histone chaperone FACT is necessary and sufficient to remove Cas9 from DNA in vitro•FACT turns Cas9 from single turnover to multi-turnover•FACT depletion in human cells delays Cas9 DSB repair and alters editing outcomes•FACT depletion increases dCas9 residence to increase epigenetic marking and CRISPRi S. pyogenes Cas9 binds very tightly to DNA. It has been unclear how cells remove Cas9 from the genome. Wang et al. determine that the histone chaperone complex FACT displaces Cas9 from its substrate in eukaryotic systems. FACT knockdown potentiates CRISPR-based tools and alters Cas9 gene editing outcomes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32603710</pmid><doi>10.1016/j.molcel.2020.06.014</doi><orcidid>https://orcid.org/0000-0002-7798-5309</orcidid><orcidid>https://orcid.org/0000-0003-2537-8395</orcidid><orcidid>https://orcid.org/0000-0003-4190-4615</orcidid><orcidid>https://orcid.org/0000-0003-3844-7433</orcidid><orcidid>https://orcid.org/0000-0002-4950-7967</orcidid><orcidid>https://orcid.org/0000-0002-8937-8397</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2020-07, Vol.79 (2), p.221-233.e5
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7398558
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Animals
Cas9
Cell Line
CRISPR
CRISPR-Associated Protein 9 - metabolism
CRISPR-Associated Proteins - metabolism
CRISPRa
CRISPRi
DNA - metabolism
DNA Breaks, Double-Stranded
DNA Repair
DNA-Binding Proteins - metabolism
Epigenesis, Genetic
FACT complex
Gene Editing
Gene Knockdown Techniques
Genome, Human
High Mobility Group Proteins - metabolism
histone chaperone
Humans
Nucleosomes - metabolism
SPT16
SSRP1
Transcriptional Elongation Factors - metabolism
Xenopus laevis
title The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Histone%20Chaperone%20FACT%20Induces%20Cas9%20Multi-turnover%20Behavior%20and%20Modifies%20Genome%20Manipulation%20in%20Human%20Cells&rft.jtitle=Molecular%20cell&rft.au=Wang,%20Alan%20S.&rft.date=2020-07-16&rft.volume=79&rft.issue=2&rft.spage=221&rft.epage=233.e5&rft.pages=221-233.e5&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2020.06.014&rft_dat=%3Cproquest_pubme%3E2419411254%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419411254&rft_id=info:pmid/32603710&rft_els_id=S1097276520303993&rfr_iscdi=true