The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells
Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2020-07, Vol.79 (2), p.221-233.e5 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 233.e5 |
---|---|
container_issue | 2 |
container_start_page | 221 |
container_title | Molecular cell |
container_volume | 79 |
creator | Wang, Alan S. Chen, Leo C. Wu, R. Alex Hao, Yvonne McSwiggen, David T. Heckert, Alec B. Richardson, Christopher D. Gowen, Benjamin G. Kazane, Katelynn R. Vu, Jonathan T. Wyman, Stacia K. Shin, Jiyung J. Darzacq, Xavier Walter, Johannes C. Corn, Jacob E. |
description | Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through proximity labeling of transient protein interactions in cell-free Xenopus laevis egg extract identified the dimeric histone chaperone facilitates chromatin transcription (FACT) as an interactor of substrate-bound Cas9. FACT is both necessary and sufficient to displace dCas9, and FACT immunodepletion converts Cas9’s activity from multi-turnover to single turnover. In human cells, FACT depletion extends dCas9 residence times, delays genome editing, and alters the balance between indel formation and homology-directed repair. FACT knockdown also increases epigenetic marking by dCas9-based transcriptional effectors with a concomitant enhancement of transcriptional modulation. FACT thus shapes the intrinsic cellular response to Cas9-based genome manipulation most likely by determining Cas9 residence times.
[Display omitted]
•Histone chaperone FACT is necessary and sufficient to remove Cas9 from DNA in vitro•FACT turns Cas9 from single turnover to multi-turnover•FACT depletion in human cells delays Cas9 DSB repair and alters editing outcomes•FACT depletion increases dCas9 residence to increase epigenetic marking and CRISPRi
S. pyogenes Cas9 binds very tightly to DNA. It has been unclear how cells remove Cas9 from the genome. Wang et al. determine that the histone chaperone complex FACT displaces Cas9 from its substrate in eukaryotic systems. FACT knockdown potentiates CRISPR-based tools and alters Cas9 gene editing outcomes. |
doi_str_mv | 10.1016/j.molcel.2020.06.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7398558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276520303993</els_id><sourcerecordid>2419411254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-7f54bd9483810e1f0abad95f76e512a109b0b088cc2b7e9d0ab8b8c9f43954933</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhqOKipbCP0DIRy4JtmMn9gWpRLRbqatelrPl2JOuV4m92MlK_fd4tUuBC6cZad555-Mpio8EVwST5suumsJoYKwoprjCTYUJuyiuCZZtyUjD3pxz2jb8qniX0g5nBRfybXFV0wbXLcHXRdhsAa1cmoMH1G31HuIxu7vtNujB28VAQp1OEq2XcXblvEQfDhDRN9jqgwsRaW_ROlg3uKy8Bx8mQGvt3X4Z9eyCR86j1TJpjzoYx_S-uBz0mODDOd4UP-6-b7pV-fh0_9DdPpaGUzmX7cBZbyUTtSAYyIB1r63kQ9sAJ1Tnw3rcYyGMoX0L0ua66IWRA6slZ7Kub4qvJ9_90k9gDfg56lHto5t0fFFBO_Vvxbuteg4H1dZScC6yweezQQw_F0izmlzK7x61h7AkRRmRjBDKWZayk9TEkFKE4XUMwerISu3UiZU6slK4UZlEbvv094qvTb_h_LkB8qMODqJKxoE3YF0EMysb3P8n_ALVEKiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419411254</pqid></control><display><type>article</type><title>The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Alan S. ; Chen, Leo C. ; Wu, R. Alex ; Hao, Yvonne ; McSwiggen, David T. ; Heckert, Alec B. ; Richardson, Christopher D. ; Gowen, Benjamin G. ; Kazane, Katelynn R. ; Vu, Jonathan T. ; Wyman, Stacia K. ; Shin, Jiyung J. ; Darzacq, Xavier ; Walter, Johannes C. ; Corn, Jacob E.</creator><creatorcontrib>Wang, Alan S. ; Chen, Leo C. ; Wu, R. Alex ; Hao, Yvonne ; McSwiggen, David T. ; Heckert, Alec B. ; Richardson, Christopher D. ; Gowen, Benjamin G. ; Kazane, Katelynn R. ; Vu, Jonathan T. ; Wyman, Stacia K. ; Shin, Jiyung J. ; Darzacq, Xavier ; Walter, Johannes C. ; Corn, Jacob E.</creatorcontrib><description>Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through proximity labeling of transient protein interactions in cell-free Xenopus laevis egg extract identified the dimeric histone chaperone facilitates chromatin transcription (FACT) as an interactor of substrate-bound Cas9. FACT is both necessary and sufficient to displace dCas9, and FACT immunodepletion converts Cas9’s activity from multi-turnover to single turnover. In human cells, FACT depletion extends dCas9 residence times, delays genome editing, and alters the balance between indel formation and homology-directed repair. FACT knockdown also increases epigenetic marking by dCas9-based transcriptional effectors with a concomitant enhancement of transcriptional modulation. FACT thus shapes the intrinsic cellular response to Cas9-based genome manipulation most likely by determining Cas9 residence times.
[Display omitted]
•Histone chaperone FACT is necessary and sufficient to remove Cas9 from DNA in vitro•FACT turns Cas9 from single turnover to multi-turnover•FACT depletion in human cells delays Cas9 DSB repair and alters editing outcomes•FACT depletion increases dCas9 residence to increase epigenetic marking and CRISPRi
S. pyogenes Cas9 binds very tightly to DNA. It has been unclear how cells remove Cas9 from the genome. Wang et al. determine that the histone chaperone complex FACT displaces Cas9 from its substrate in eukaryotic systems. FACT knockdown potentiates CRISPR-based tools and alters Cas9 gene editing outcomes.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2020.06.014</identifier><identifier>PMID: 32603710</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cas9 ; Cell Line ; CRISPR ; CRISPR-Associated Protein 9 - metabolism ; CRISPR-Associated Proteins - metabolism ; CRISPRa ; CRISPRi ; DNA - metabolism ; DNA Breaks, Double-Stranded ; DNA Repair ; DNA-Binding Proteins - metabolism ; Epigenesis, Genetic ; FACT complex ; Gene Editing ; Gene Knockdown Techniques ; Genome, Human ; High Mobility Group Proteins - metabolism ; histone chaperone ; Humans ; Nucleosomes - metabolism ; SPT16 ; SSRP1 ; Transcriptional Elongation Factors - metabolism ; Xenopus laevis</subject><ispartof>Molecular cell, 2020-07, Vol.79 (2), p.221-233.e5</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-7f54bd9483810e1f0abad95f76e512a109b0b088cc2b7e9d0ab8b8c9f43954933</citedby><cites>FETCH-LOGICAL-c529t-7f54bd9483810e1f0abad95f76e512a109b0b088cc2b7e9d0ab8b8c9f43954933</cites><orcidid>0000-0002-7798-5309 ; 0000-0003-2537-8395 ; 0000-0003-4190-4615 ; 0000-0003-3844-7433 ; 0000-0002-4950-7967 ; 0000-0002-8937-8397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276520303993$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32603710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Alan S.</creatorcontrib><creatorcontrib>Chen, Leo C.</creatorcontrib><creatorcontrib>Wu, R. Alex</creatorcontrib><creatorcontrib>Hao, Yvonne</creatorcontrib><creatorcontrib>McSwiggen, David T.</creatorcontrib><creatorcontrib>Heckert, Alec B.</creatorcontrib><creatorcontrib>Richardson, Christopher D.</creatorcontrib><creatorcontrib>Gowen, Benjamin G.</creatorcontrib><creatorcontrib>Kazane, Katelynn R.</creatorcontrib><creatorcontrib>Vu, Jonathan T.</creatorcontrib><creatorcontrib>Wyman, Stacia K.</creatorcontrib><creatorcontrib>Shin, Jiyung J.</creatorcontrib><creatorcontrib>Darzacq, Xavier</creatorcontrib><creatorcontrib>Walter, Johannes C.</creatorcontrib><creatorcontrib>Corn, Jacob E.</creatorcontrib><title>The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through proximity labeling of transient protein interactions in cell-free Xenopus laevis egg extract identified the dimeric histone chaperone facilitates chromatin transcription (FACT) as an interactor of substrate-bound Cas9. FACT is both necessary and sufficient to displace dCas9, and FACT immunodepletion converts Cas9’s activity from multi-turnover to single turnover. In human cells, FACT depletion extends dCas9 residence times, delays genome editing, and alters the balance between indel formation and homology-directed repair. FACT knockdown also increases epigenetic marking by dCas9-based transcriptional effectors with a concomitant enhancement of transcriptional modulation. FACT thus shapes the intrinsic cellular response to Cas9-based genome manipulation most likely by determining Cas9 residence times.
[Display omitted]
•Histone chaperone FACT is necessary and sufficient to remove Cas9 from DNA in vitro•FACT turns Cas9 from single turnover to multi-turnover•FACT depletion in human cells delays Cas9 DSB repair and alters editing outcomes•FACT depletion increases dCas9 residence to increase epigenetic marking and CRISPRi
S. pyogenes Cas9 binds very tightly to DNA. It has been unclear how cells remove Cas9 from the genome. Wang et al. determine that the histone chaperone complex FACT displaces Cas9 from its substrate in eukaryotic systems. FACT knockdown potentiates CRISPR-based tools and alters Cas9 gene editing outcomes.</description><subject>Animals</subject><subject>Cas9</subject><subject>Cell Line</subject><subject>CRISPR</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>CRISPR-Associated Proteins - metabolism</subject><subject>CRISPRa</subject><subject>CRISPRi</subject><subject>DNA - metabolism</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Repair</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Epigenesis, Genetic</subject><subject>FACT complex</subject><subject>Gene Editing</subject><subject>Gene Knockdown Techniques</subject><subject>Genome, Human</subject><subject>High Mobility Group Proteins - metabolism</subject><subject>histone chaperone</subject><subject>Humans</subject><subject>Nucleosomes - metabolism</subject><subject>SPT16</subject><subject>SSRP1</subject><subject>Transcriptional Elongation Factors - metabolism</subject><subject>Xenopus laevis</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhqOKipbCP0DIRy4JtmMn9gWpRLRbqatelrPl2JOuV4m92MlK_fd4tUuBC6cZad555-Mpio8EVwST5suumsJoYKwoprjCTYUJuyiuCZZtyUjD3pxz2jb8qniX0g5nBRfybXFV0wbXLcHXRdhsAa1cmoMH1G31HuIxu7vtNujB28VAQp1OEq2XcXblvEQfDhDRN9jqgwsRaW_ROlg3uKy8Bx8mQGvt3X4Z9eyCR86j1TJpjzoYx_S-uBz0mODDOd4UP-6-b7pV-fh0_9DdPpaGUzmX7cBZbyUTtSAYyIB1r63kQ9sAJ1Tnw3rcYyGMoX0L0ua66IWRA6slZ7Kub4qvJ9_90k9gDfg56lHto5t0fFFBO_Vvxbuteg4H1dZScC6yweezQQw_F0izmlzK7x61h7AkRRmRjBDKWZayk9TEkFKE4XUMwerISu3UiZU6slK4UZlEbvv094qvTb_h_LkB8qMODqJKxoE3YF0EMysb3P8n_ALVEKiA</recordid><startdate>20200716</startdate><enddate>20200716</enddate><creator>Wang, Alan S.</creator><creator>Chen, Leo C.</creator><creator>Wu, R. Alex</creator><creator>Hao, Yvonne</creator><creator>McSwiggen, David T.</creator><creator>Heckert, Alec B.</creator><creator>Richardson, Christopher D.</creator><creator>Gowen, Benjamin G.</creator><creator>Kazane, Katelynn R.</creator><creator>Vu, Jonathan T.</creator><creator>Wyman, Stacia K.</creator><creator>Shin, Jiyung J.</creator><creator>Darzacq, Xavier</creator><creator>Walter, Johannes C.</creator><creator>Corn, Jacob E.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7798-5309</orcidid><orcidid>https://orcid.org/0000-0003-2537-8395</orcidid><orcidid>https://orcid.org/0000-0003-4190-4615</orcidid><orcidid>https://orcid.org/0000-0003-3844-7433</orcidid><orcidid>https://orcid.org/0000-0002-4950-7967</orcidid><orcidid>https://orcid.org/0000-0002-8937-8397</orcidid></search><sort><creationdate>20200716</creationdate><title>The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells</title><author>Wang, Alan S. ; Chen, Leo C. ; Wu, R. Alex ; Hao, Yvonne ; McSwiggen, David T. ; Heckert, Alec B. ; Richardson, Christopher D. ; Gowen, Benjamin G. ; Kazane, Katelynn R. ; Vu, Jonathan T. ; Wyman, Stacia K. ; Shin, Jiyung J. ; Darzacq, Xavier ; Walter, Johannes C. ; Corn, Jacob E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-7f54bd9483810e1f0abad95f76e512a109b0b088cc2b7e9d0ab8b8c9f43954933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Cas9</topic><topic>Cell Line</topic><topic>CRISPR</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>CRISPR-Associated Proteins - metabolism</topic><topic>CRISPRa</topic><topic>CRISPRi</topic><topic>DNA - metabolism</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Repair</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Epigenesis, Genetic</topic><topic>FACT complex</topic><topic>Gene Editing</topic><topic>Gene Knockdown Techniques</topic><topic>Genome, Human</topic><topic>High Mobility Group Proteins - metabolism</topic><topic>histone chaperone</topic><topic>Humans</topic><topic>Nucleosomes - metabolism</topic><topic>SPT16</topic><topic>SSRP1</topic><topic>Transcriptional Elongation Factors - metabolism</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Alan S.</creatorcontrib><creatorcontrib>Chen, Leo C.</creatorcontrib><creatorcontrib>Wu, R. Alex</creatorcontrib><creatorcontrib>Hao, Yvonne</creatorcontrib><creatorcontrib>McSwiggen, David T.</creatorcontrib><creatorcontrib>Heckert, Alec B.</creatorcontrib><creatorcontrib>Richardson, Christopher D.</creatorcontrib><creatorcontrib>Gowen, Benjamin G.</creatorcontrib><creatorcontrib>Kazane, Katelynn R.</creatorcontrib><creatorcontrib>Vu, Jonathan T.</creatorcontrib><creatorcontrib>Wyman, Stacia K.</creatorcontrib><creatorcontrib>Shin, Jiyung J.</creatorcontrib><creatorcontrib>Darzacq, Xavier</creatorcontrib><creatorcontrib>Walter, Johannes C.</creatorcontrib><creatorcontrib>Corn, Jacob E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Alan S.</au><au>Chen, Leo C.</au><au>Wu, R. Alex</au><au>Hao, Yvonne</au><au>McSwiggen, David T.</au><au>Heckert, Alec B.</au><au>Richardson, Christopher D.</au><au>Gowen, Benjamin G.</au><au>Kazane, Katelynn R.</au><au>Vu, Jonathan T.</au><au>Wyman, Stacia K.</au><au>Shin, Jiyung J.</au><au>Darzacq, Xavier</au><au>Walter, Johannes C.</au><au>Corn, Jacob E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2020-07-16</date><risdate>2020</risdate><volume>79</volume><issue>2</issue><spage>221</spage><epage>233.e5</epage><pages>221-233.e5</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through proximity labeling of transient protein interactions in cell-free Xenopus laevis egg extract identified the dimeric histone chaperone facilitates chromatin transcription (FACT) as an interactor of substrate-bound Cas9. FACT is both necessary and sufficient to displace dCas9, and FACT immunodepletion converts Cas9’s activity from multi-turnover to single turnover. In human cells, FACT depletion extends dCas9 residence times, delays genome editing, and alters the balance between indel formation and homology-directed repair. FACT knockdown also increases epigenetic marking by dCas9-based transcriptional effectors with a concomitant enhancement of transcriptional modulation. FACT thus shapes the intrinsic cellular response to Cas9-based genome manipulation most likely by determining Cas9 residence times.
[Display omitted]
•Histone chaperone FACT is necessary and sufficient to remove Cas9 from DNA in vitro•FACT turns Cas9 from single turnover to multi-turnover•FACT depletion in human cells delays Cas9 DSB repair and alters editing outcomes•FACT depletion increases dCas9 residence to increase epigenetic marking and CRISPRi
S. pyogenes Cas9 binds very tightly to DNA. It has been unclear how cells remove Cas9 from the genome. Wang et al. determine that the histone chaperone complex FACT displaces Cas9 from its substrate in eukaryotic systems. FACT knockdown potentiates CRISPR-based tools and alters Cas9 gene editing outcomes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32603710</pmid><doi>10.1016/j.molcel.2020.06.014</doi><orcidid>https://orcid.org/0000-0002-7798-5309</orcidid><orcidid>https://orcid.org/0000-0003-2537-8395</orcidid><orcidid>https://orcid.org/0000-0003-4190-4615</orcidid><orcidid>https://orcid.org/0000-0003-3844-7433</orcidid><orcidid>https://orcid.org/0000-0002-4950-7967</orcidid><orcidid>https://orcid.org/0000-0002-8937-8397</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2020-07, Vol.79 (2), p.221-233.e5 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7398558 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Animals Cas9 Cell Line CRISPR CRISPR-Associated Protein 9 - metabolism CRISPR-Associated Proteins - metabolism CRISPRa CRISPRi DNA - metabolism DNA Breaks, Double-Stranded DNA Repair DNA-Binding Proteins - metabolism Epigenesis, Genetic FACT complex Gene Editing Gene Knockdown Techniques Genome, Human High Mobility Group Proteins - metabolism histone chaperone Humans Nucleosomes - metabolism SPT16 SSRP1 Transcriptional Elongation Factors - metabolism Xenopus laevis |
title | The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Histone%20Chaperone%20FACT%20Induces%20Cas9%20Multi-turnover%20Behavior%20and%20Modifies%20Genome%20Manipulation%20in%20Human%20Cells&rft.jtitle=Molecular%20cell&rft.au=Wang,%20Alan%20S.&rft.date=2020-07-16&rft.volume=79&rft.issue=2&rft.spage=221&rft.epage=233.e5&rft.pages=221-233.e5&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2020.06.014&rft_dat=%3Cproquest_pubme%3E2419411254%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419411254&rft_id=info:pmid/32603710&rft_els_id=S1097276520303993&rfr_iscdi=true |