The activation gate controls steady-state inactivation and recovery from inactivation in Shaker

Despite major advances in the structure determination of ion channels, the sequence of molecular rearrangements at negative membrane potentials in voltage-gated potassium channels of the Shaker family remains unknown. Four major composite gating states are documented during the gating process: close...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of general physiology 2020-08, Vol.152 (8)
Hauptverfasser: Szanto, Tibor G, Zakany, Florina, Papp, Ferenc, Varga, Zoltan, Deutsch, Carol J, Panyi, Gyorgy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title The Journal of general physiology
container_volume 152
creator Szanto, Tibor G
Zakany, Florina
Papp, Ferenc
Varga, Zoltan
Deutsch, Carol J
Panyi, Gyorgy
description Despite major advances in the structure determination of ion channels, the sequence of molecular rearrangements at negative membrane potentials in voltage-gated potassium channels of the Shaker family remains unknown. Four major composite gating states are documented during the gating process: closed (C), open (O), open-inactivated (OI), and closed-inactivated (CI). Although many steps in the gating cycle have been clarified experimentally, the development of steady-state inactivation at negative membrane potentials and mandatory gating transitions for recovery from inactivation have not been elucidated. In this study, we exploit the biophysical properties of Shaker-IR mutants T449A/V474C and T449A/V476C to evaluate the status of the activation and inactivation gates during steady-state inactivation and upon locking the channel open with intracellular Cd2+. We conclude that at negative membrane potentials, the gating scheme of Shaker channels can be refined in two aspects. First, the most likely pathway for the development of steady-state inactivation is C→O→OI⇌CI. Second, the OI→CI transition is a prerequisite for recovery from inactivation. These findings are in accordance with the widely accepted view that tight coupling is present between the activation and C-type inactivation gates in Shaker and underscore the role of steady-state inactivation and recovery from inactivation as determinants of excitability.
doi_str_mv 10.1085/jgp.202012591
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7398138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407602210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-2a275315e54979ef53c5a1852b06be2c3e8db32a01288cccc7f5fc23d9558d5c3</originalsourceid><addsrcrecordid>eNpdkc1Lw0AQxRdRbK0evUrAi5fU3dlssrkIUvyCggfredlsJm1qmq27aaH_vVtaS3UuAzM_HvPmEXLN6JBRKe7n0-UQKFAGImcnpM9EQuMsS-Qp6VMKEDPIRY9ceD-noQTQc9LjkCQACfSJmsww0qar17qrbRtNdYeRsW3nbOMj36EuN7HvttO6PeJ0W0YOjV2j20SVs4u_67qNPmb6C90lOat04_Fq3wfk8_lpMnqNx-8vb6PHcWwSJroYNGSCM4EiybMcK8GN0EwKKGhaIBiOsiw46GBTShMqq0RlgJe5ELIUhg_Iw053uSoWWBoMDnSjlq5eaLdRVtfq76atZ2pq1yrjuWRcBoG7vYCz3yv0nVrU3mDT6BbtyitIaMoppEADevsPnduVa4O9LZWl4etsS8U7yjjrvcPqcAyjahudCtGpQ3SBvzl2cKB_s-I_qU2WHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407602210</pqid></control><display><type>article</type><title>The activation gate controls steady-state inactivation and recovery from inactivation in Shaker</title><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Szanto, Tibor G ; Zakany, Florina ; Papp, Ferenc ; Varga, Zoltan ; Deutsch, Carol J ; Panyi, Gyorgy</creator><creatorcontrib>Szanto, Tibor G ; Zakany, Florina ; Papp, Ferenc ; Varga, Zoltan ; Deutsch, Carol J ; Panyi, Gyorgy</creatorcontrib><description>Despite major advances in the structure determination of ion channels, the sequence of molecular rearrangements at negative membrane potentials in voltage-gated potassium channels of the Shaker family remains unknown. Four major composite gating states are documented during the gating process: closed (C), open (O), open-inactivated (OI), and closed-inactivated (CI). Although many steps in the gating cycle have been clarified experimentally, the development of steady-state inactivation at negative membrane potentials and mandatory gating transitions for recovery from inactivation have not been elucidated. In this study, we exploit the biophysical properties of Shaker-IR mutants T449A/V474C and T449A/V476C to evaluate the status of the activation and inactivation gates during steady-state inactivation and upon locking the channel open with intracellular Cd2+. We conclude that at negative membrane potentials, the gating scheme of Shaker channels can be refined in two aspects. First, the most likely pathway for the development of steady-state inactivation is C→O→OI⇌CI. Second, the OI→CI transition is a prerequisite for recovery from inactivation. These findings are in accordance with the widely accepted view that tight coupling is present between the activation and C-type inactivation gates in Shaker and underscore the role of steady-state inactivation and recovery from inactivation as determinants of excitability.</description><identifier>ISSN: 0022-1295</identifier><identifier>EISSN: 1540-7748</identifier><identifier>DOI: 10.1085/jgp.202012591</identifier><identifier>PMID: 32442242</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Biophysics ; Channel gating ; Excitability ; Ion channels ; Potassium ; Potassium channels (voltage-gated)</subject><ispartof>The Journal of general physiology, 2020-08, Vol.152 (8)</ispartof><rights>2020 Szanto et al.</rights><rights>Copyright Rockefeller University Press Aug 2020</rights><rights>2020 Szanto et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-2a275315e54979ef53c5a1852b06be2c3e8db32a01288cccc7f5fc23d9558d5c3</citedby><cites>FETCH-LOGICAL-c415t-2a275315e54979ef53c5a1852b06be2c3e8db32a01288cccc7f5fc23d9558d5c3</cites><orcidid>0000-0003-1475-5562 ; 0000-0003-1892-6840 ; 0000-0001-6227-3301 ; 0000-0002-9549-6066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32442242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szanto, Tibor G</creatorcontrib><creatorcontrib>Zakany, Florina</creatorcontrib><creatorcontrib>Papp, Ferenc</creatorcontrib><creatorcontrib>Varga, Zoltan</creatorcontrib><creatorcontrib>Deutsch, Carol J</creatorcontrib><creatorcontrib>Panyi, Gyorgy</creatorcontrib><title>The activation gate controls steady-state inactivation and recovery from inactivation in Shaker</title><title>The Journal of general physiology</title><addtitle>J Gen Physiol</addtitle><description>Despite major advances in the structure determination of ion channels, the sequence of molecular rearrangements at negative membrane potentials in voltage-gated potassium channels of the Shaker family remains unknown. Four major composite gating states are documented during the gating process: closed (C), open (O), open-inactivated (OI), and closed-inactivated (CI). Although many steps in the gating cycle have been clarified experimentally, the development of steady-state inactivation at negative membrane potentials and mandatory gating transitions for recovery from inactivation have not been elucidated. In this study, we exploit the biophysical properties of Shaker-IR mutants T449A/V474C and T449A/V476C to evaluate the status of the activation and inactivation gates during steady-state inactivation and upon locking the channel open with intracellular Cd2+. We conclude that at negative membrane potentials, the gating scheme of Shaker channels can be refined in two aspects. First, the most likely pathway for the development of steady-state inactivation is C→O→OI⇌CI. Second, the OI→CI transition is a prerequisite for recovery from inactivation. These findings are in accordance with the widely accepted view that tight coupling is present between the activation and C-type inactivation gates in Shaker and underscore the role of steady-state inactivation and recovery from inactivation as determinants of excitability.</description><subject>Biophysics</subject><subject>Channel gating</subject><subject>Excitability</subject><subject>Ion channels</subject><subject>Potassium</subject><subject>Potassium channels (voltage-gated)</subject><issn>0022-1295</issn><issn>1540-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1Lw0AQxRdRbK0evUrAi5fU3dlssrkIUvyCggfredlsJm1qmq27aaH_vVtaS3UuAzM_HvPmEXLN6JBRKe7n0-UQKFAGImcnpM9EQuMsS-Qp6VMKEDPIRY9ceD-noQTQc9LjkCQACfSJmsww0qar17qrbRtNdYeRsW3nbOMj36EuN7HvttO6PeJ0W0YOjV2j20SVs4u_67qNPmb6C90lOat04_Fq3wfk8_lpMnqNx-8vb6PHcWwSJroYNGSCM4EiybMcK8GN0EwKKGhaIBiOsiw46GBTShMqq0RlgJe5ELIUhg_Iw053uSoWWBoMDnSjlq5eaLdRVtfq76atZ2pq1yrjuWRcBoG7vYCz3yv0nVrU3mDT6BbtyitIaMoppEADevsPnduVa4O9LZWl4etsS8U7yjjrvcPqcAyjahudCtGpQ3SBvzl2cKB_s-I_qU2WHw</recordid><startdate>20200803</startdate><enddate>20200803</enddate><creator>Szanto, Tibor G</creator><creator>Zakany, Florina</creator><creator>Papp, Ferenc</creator><creator>Varga, Zoltan</creator><creator>Deutsch, Carol J</creator><creator>Panyi, Gyorgy</creator><general>Rockefeller University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1475-5562</orcidid><orcidid>https://orcid.org/0000-0003-1892-6840</orcidid><orcidid>https://orcid.org/0000-0001-6227-3301</orcidid><orcidid>https://orcid.org/0000-0002-9549-6066</orcidid></search><sort><creationdate>20200803</creationdate><title>The activation gate controls steady-state inactivation and recovery from inactivation in Shaker</title><author>Szanto, Tibor G ; Zakany, Florina ; Papp, Ferenc ; Varga, Zoltan ; Deutsch, Carol J ; Panyi, Gyorgy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-2a275315e54979ef53c5a1852b06be2c3e8db32a01288cccc7f5fc23d9558d5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biophysics</topic><topic>Channel gating</topic><topic>Excitability</topic><topic>Ion channels</topic><topic>Potassium</topic><topic>Potassium channels (voltage-gated)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szanto, Tibor G</creatorcontrib><creatorcontrib>Zakany, Florina</creatorcontrib><creatorcontrib>Papp, Ferenc</creatorcontrib><creatorcontrib>Varga, Zoltan</creatorcontrib><creatorcontrib>Deutsch, Carol J</creatorcontrib><creatorcontrib>Panyi, Gyorgy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of general physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szanto, Tibor G</au><au>Zakany, Florina</au><au>Papp, Ferenc</au><au>Varga, Zoltan</au><au>Deutsch, Carol J</au><au>Panyi, Gyorgy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The activation gate controls steady-state inactivation and recovery from inactivation in Shaker</atitle><jtitle>The Journal of general physiology</jtitle><addtitle>J Gen Physiol</addtitle><date>2020-08-03</date><risdate>2020</risdate><volume>152</volume><issue>8</issue><issn>0022-1295</issn><eissn>1540-7748</eissn><abstract>Despite major advances in the structure determination of ion channels, the sequence of molecular rearrangements at negative membrane potentials in voltage-gated potassium channels of the Shaker family remains unknown. Four major composite gating states are documented during the gating process: closed (C), open (O), open-inactivated (OI), and closed-inactivated (CI). Although many steps in the gating cycle have been clarified experimentally, the development of steady-state inactivation at negative membrane potentials and mandatory gating transitions for recovery from inactivation have not been elucidated. In this study, we exploit the biophysical properties of Shaker-IR mutants T449A/V474C and T449A/V476C to evaluate the status of the activation and inactivation gates during steady-state inactivation and upon locking the channel open with intracellular Cd2+. We conclude that at negative membrane potentials, the gating scheme of Shaker channels can be refined in two aspects. First, the most likely pathway for the development of steady-state inactivation is C→O→OI⇌CI. Second, the OI→CI transition is a prerequisite for recovery from inactivation. These findings are in accordance with the widely accepted view that tight coupling is present between the activation and C-type inactivation gates in Shaker and underscore the role of steady-state inactivation and recovery from inactivation as determinants of excitability.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>32442242</pmid><doi>10.1085/jgp.202012591</doi><orcidid>https://orcid.org/0000-0003-1475-5562</orcidid><orcidid>https://orcid.org/0000-0003-1892-6840</orcidid><orcidid>https://orcid.org/0000-0001-6227-3301</orcidid><orcidid>https://orcid.org/0000-0002-9549-6066</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1295
ispartof The Journal of general physiology, 2020-08, Vol.152 (8)
issn 0022-1295
1540-7748
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7398138
source Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Biophysics
Channel gating
Excitability
Ion channels
Potassium
Potassium channels (voltage-gated)
title The activation gate controls steady-state inactivation and recovery from inactivation in Shaker
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20activation%20gate%20controls%20steady-state%20inactivation%20and%20recovery%20from%20inactivation%20in%20Shaker&rft.jtitle=The%20Journal%20of%20general%20physiology&rft.au=Szanto,%20Tibor%20G&rft.date=2020-08-03&rft.volume=152&rft.issue=8&rft.issn=0022-1295&rft.eissn=1540-7748&rft_id=info:doi/10.1085/jgp.202012591&rft_dat=%3Cproquest_pubme%3E2407602210%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407602210&rft_id=info:pmid/32442242&rfr_iscdi=true