Comparative transcriptomics of primary cells in vertebrates
Gene expression profiles in homologous tissues have been observed to be different between species, which may be due to differences between species in the gene expression program in each cell type, but may also reflect differences in cell type composition of each tissue in different species. Here, we...
Gespeichert in:
Veröffentlicht in: | Genome research 2020-07, Vol.30 (7), p.951-961 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 961 |
---|---|
container_issue | 7 |
container_start_page | 951 |
container_title | Genome research |
container_volume | 30 |
creator | Alam, Tanvir Agrawal, Saumya Severin, Jessica Young, Robert S Andersson, Robin Arner, Erik Hasegawa, Akira Lizio, Marina Ramilowski, Jordan A Abugessaisa, Imad Ishizu, Yuri Noma, Shohei Tarui, Hiroshi Taylor, Martin S Lassmann, Timo Itoh, Masayoshi Kasukawa, Takeya Kawaji, Hideya Marchionni, Luigi Sheng, Guojun R R Forrest, Alistair Khachigian, Levon M Hayashizaki, Yoshihide Carninci, Piero de Hoon, Michiel J L |
description | Gene expression profiles in homologous tissues have been observed to be different between species, which may be due to differences between species in the gene expression program in each cell type, but may also reflect differences in cell type composition of each tissue in different species. Here, we compare expression profiles in matching primary cells in human, mouse, rat, dog, and chicken using Cap Analysis Gene Expression (CAGE) and short RNA (sRNA) sequencing data from FANTOM5. While we find that expression profiles of orthologous genes in different species are highly correlated across cell types, in each cell type many genes were differentially expressed between species. Expression of genes with products involved in transcription, RNA processing, and transcriptional regulation was more likely to be conserved, while expression of genes encoding proteins involved in intercellular communication was more likely to have diverged during evolution. Conservation of expression correlated positively with the evolutionary age of genes, suggesting that divergence in expression levels of genes critical for cell function was restricted during evolution. Motif activity analysis showed that both promoters and enhancers are activated by the same transcription factors in different species. An analysis of expression levels of mature miRNAs and of primary miRNAs identified by CAGE revealed that evolutionary old miRNAs are more likely to have conserved expression patterns than young miRNAs. We conclude that key aspects of the regulatory network are conserved, while differential expression of genes involved in cell-to-cell communication may contribute greatly to phenotypic differences between species. |
doi_str_mv | 10.1101/gr.255679.119 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7397866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428060899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-75973c295bf743cc71692a7040f39c81fc5eaa36e2ce05a0f62949f984cce7dd3</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMotlaXbmXAjZvRvJOLIEjxBQU3ug5pmqlTZiY1mRb896a0FnV1c8l3D-dwEDon-JoQTG7m8ZoKIRXkFQ7QkAgOpeASDvMba10CFmSATlJaYIwZ1_oYDRhVRIMmQ3Q7Du3SRtvXa1_00XbJxXrZh7Z2qQhVsYx1a-NX4XzTpKLuirWPvZ_mA59O0VFlm-TPdnOE3h8f3sbP5eT16WV8Pykd16QvlQDFHAUxrRRnzikigVqFOa4YOE0qJ7y1THrqPBYWV5IChwo0d86r2YyN0N1Wd7matn7mfJeNNmZnzQRbm78_Xf1h5mFtFAOlpcwCVzuBGD5XPvWmrdMmke18WCVDOdVYYg2Q0ct_6CKsYpfjZYpLTBRQlalyS7kYUoq-2psh2GxqMfNotrXkdaN68TvBnv7pgX0DliuJKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446017927</pqid></control><display><type>article</type><title>Comparative transcriptomics of primary cells in vertebrates</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Alam, Tanvir ; Agrawal, Saumya ; Severin, Jessica ; Young, Robert S ; Andersson, Robin ; Arner, Erik ; Hasegawa, Akira ; Lizio, Marina ; Ramilowski, Jordan A ; Abugessaisa, Imad ; Ishizu, Yuri ; Noma, Shohei ; Tarui, Hiroshi ; Taylor, Martin S ; Lassmann, Timo ; Itoh, Masayoshi ; Kasukawa, Takeya ; Kawaji, Hideya ; Marchionni, Luigi ; Sheng, Guojun ; R R Forrest, Alistair ; Khachigian, Levon M ; Hayashizaki, Yoshihide ; Carninci, Piero ; de Hoon, Michiel J L</creator><creatorcontrib>Alam, Tanvir ; Agrawal, Saumya ; Severin, Jessica ; Young, Robert S ; Andersson, Robin ; Arner, Erik ; Hasegawa, Akira ; Lizio, Marina ; Ramilowski, Jordan A ; Abugessaisa, Imad ; Ishizu, Yuri ; Noma, Shohei ; Tarui, Hiroshi ; Taylor, Martin S ; Lassmann, Timo ; Itoh, Masayoshi ; Kasukawa, Takeya ; Kawaji, Hideya ; Marchionni, Luigi ; Sheng, Guojun ; R R Forrest, Alistair ; Khachigian, Levon M ; Hayashizaki, Yoshihide ; Carninci, Piero ; de Hoon, Michiel J L</creatorcontrib><description>Gene expression profiles in homologous tissues have been observed to be different between species, which may be due to differences between species in the gene expression program in each cell type, but may also reflect differences in cell type composition of each tissue in different species. Here, we compare expression profiles in matching primary cells in human, mouse, rat, dog, and chicken using Cap Analysis Gene Expression (CAGE) and short RNA (sRNA) sequencing data from FANTOM5. While we find that expression profiles of orthologous genes in different species are highly correlated across cell types, in each cell type many genes were differentially expressed between species. Expression of genes with products involved in transcription, RNA processing, and transcriptional regulation was more likely to be conserved, while expression of genes encoding proteins involved in intercellular communication was more likely to have diverged during evolution. Conservation of expression correlated positively with the evolutionary age of genes, suggesting that divergence in expression levels of genes critical for cell function was restricted during evolution. Motif activity analysis showed that both promoters and enhancers are activated by the same transcription factors in different species. An analysis of expression levels of mature miRNAs and of primary miRNAs identified by CAGE revealed that evolutionary old miRNAs are more likely to have conserved expression patterns than young miRNAs. We conclude that key aspects of the regulatory network are conserved, while differential expression of genes involved in cell-to-cell communication may contribute greatly to phenotypic differences between species.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.255679.119</identifier><identifier>PMID: 32718981</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Cell interactions ; Cell signaling ; Divergence ; Enhancers ; Evolutionary conservation ; Evolutionary genetics ; Gene expression ; Gene regulation ; Kinases ; RNA processing ; Species ; Transcription factors</subject><ispartof>Genome research, 2020-07, Vol.30 (7), p.951-961</ispartof><rights>2020 Alam et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>Copyright Cold Spring Harbor Laboratory Press Jul 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-75973c295bf743cc71692a7040f39c81fc5eaa36e2ce05a0f62949f984cce7dd3</citedby><cites>FETCH-LOGICAL-c481t-75973c295bf743cc71692a7040f39c81fc5eaa36e2ce05a0f62949f984cce7dd3</cites><orcidid>0000-0001-5085-0802 ; 0000-0002-7336-8071 ; 0000-0003-0489-2352 ; 0000-0001-7202-7243 ; 0000-0001-7458-801X ; 0000-0002-3156-6416 ; 0000-0001-7656-330X ; 0000-0003-3446-0323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397866/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397866/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32718981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alam, Tanvir</creatorcontrib><creatorcontrib>Agrawal, Saumya</creatorcontrib><creatorcontrib>Severin, Jessica</creatorcontrib><creatorcontrib>Young, Robert S</creatorcontrib><creatorcontrib>Andersson, Robin</creatorcontrib><creatorcontrib>Arner, Erik</creatorcontrib><creatorcontrib>Hasegawa, Akira</creatorcontrib><creatorcontrib>Lizio, Marina</creatorcontrib><creatorcontrib>Ramilowski, Jordan A</creatorcontrib><creatorcontrib>Abugessaisa, Imad</creatorcontrib><creatorcontrib>Ishizu, Yuri</creatorcontrib><creatorcontrib>Noma, Shohei</creatorcontrib><creatorcontrib>Tarui, Hiroshi</creatorcontrib><creatorcontrib>Taylor, Martin S</creatorcontrib><creatorcontrib>Lassmann, Timo</creatorcontrib><creatorcontrib>Itoh, Masayoshi</creatorcontrib><creatorcontrib>Kasukawa, Takeya</creatorcontrib><creatorcontrib>Kawaji, Hideya</creatorcontrib><creatorcontrib>Marchionni, Luigi</creatorcontrib><creatorcontrib>Sheng, Guojun</creatorcontrib><creatorcontrib>R R Forrest, Alistair</creatorcontrib><creatorcontrib>Khachigian, Levon M</creatorcontrib><creatorcontrib>Hayashizaki, Yoshihide</creatorcontrib><creatorcontrib>Carninci, Piero</creatorcontrib><creatorcontrib>de Hoon, Michiel J L</creatorcontrib><title>Comparative transcriptomics of primary cells in vertebrates</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>Gene expression profiles in homologous tissues have been observed to be different between species, which may be due to differences between species in the gene expression program in each cell type, but may also reflect differences in cell type composition of each tissue in different species. Here, we compare expression profiles in matching primary cells in human, mouse, rat, dog, and chicken using Cap Analysis Gene Expression (CAGE) and short RNA (sRNA) sequencing data from FANTOM5. While we find that expression profiles of orthologous genes in different species are highly correlated across cell types, in each cell type many genes were differentially expressed between species. Expression of genes with products involved in transcription, RNA processing, and transcriptional regulation was more likely to be conserved, while expression of genes encoding proteins involved in intercellular communication was more likely to have diverged during evolution. Conservation of expression correlated positively with the evolutionary age of genes, suggesting that divergence in expression levels of genes critical for cell function was restricted during evolution. Motif activity analysis showed that both promoters and enhancers are activated by the same transcription factors in different species. An analysis of expression levels of mature miRNAs and of primary miRNAs identified by CAGE revealed that evolutionary old miRNAs are more likely to have conserved expression patterns than young miRNAs. We conclude that key aspects of the regulatory network are conserved, while differential expression of genes involved in cell-to-cell communication may contribute greatly to phenotypic differences between species.</description><subject>Cell interactions</subject><subject>Cell signaling</subject><subject>Divergence</subject><subject>Enhancers</subject><subject>Evolutionary conservation</subject><subject>Evolutionary genetics</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Kinases</subject><subject>RNA processing</subject><subject>Species</subject><subject>Transcription factors</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLAzEUhYMotlaXbmXAjZvRvJOLIEjxBQU3ug5pmqlTZiY1mRb896a0FnV1c8l3D-dwEDon-JoQTG7m8ZoKIRXkFQ7QkAgOpeASDvMba10CFmSATlJaYIwZ1_oYDRhVRIMmQ3Q7Du3SRtvXa1_00XbJxXrZh7Z2qQhVsYx1a-NX4XzTpKLuirWPvZ_mA59O0VFlm-TPdnOE3h8f3sbP5eT16WV8Pykd16QvlQDFHAUxrRRnzikigVqFOa4YOE0qJ7y1THrqPBYWV5IChwo0d86r2YyN0N1Wd7matn7mfJeNNmZnzQRbm78_Xf1h5mFtFAOlpcwCVzuBGD5XPvWmrdMmke18WCVDOdVYYg2Q0ct_6CKsYpfjZYpLTBRQlalyS7kYUoq-2psh2GxqMfNotrXkdaN68TvBnv7pgX0DliuJKA</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Alam, Tanvir</creator><creator>Agrawal, Saumya</creator><creator>Severin, Jessica</creator><creator>Young, Robert S</creator><creator>Andersson, Robin</creator><creator>Arner, Erik</creator><creator>Hasegawa, Akira</creator><creator>Lizio, Marina</creator><creator>Ramilowski, Jordan A</creator><creator>Abugessaisa, Imad</creator><creator>Ishizu, Yuri</creator><creator>Noma, Shohei</creator><creator>Tarui, Hiroshi</creator><creator>Taylor, Martin S</creator><creator>Lassmann, Timo</creator><creator>Itoh, Masayoshi</creator><creator>Kasukawa, Takeya</creator><creator>Kawaji, Hideya</creator><creator>Marchionni, Luigi</creator><creator>Sheng, Guojun</creator><creator>R R Forrest, Alistair</creator><creator>Khachigian, Levon M</creator><creator>Hayashizaki, Yoshihide</creator><creator>Carninci, Piero</creator><creator>de Hoon, Michiel J L</creator><general>Cold Spring Harbor Laboratory Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5085-0802</orcidid><orcidid>https://orcid.org/0000-0002-7336-8071</orcidid><orcidid>https://orcid.org/0000-0003-0489-2352</orcidid><orcidid>https://orcid.org/0000-0001-7202-7243</orcidid><orcidid>https://orcid.org/0000-0001-7458-801X</orcidid><orcidid>https://orcid.org/0000-0002-3156-6416</orcidid><orcidid>https://orcid.org/0000-0001-7656-330X</orcidid><orcidid>https://orcid.org/0000-0003-3446-0323</orcidid></search><sort><creationdate>202007</creationdate><title>Comparative transcriptomics of primary cells in vertebrates</title><author>Alam, Tanvir ; Agrawal, Saumya ; Severin, Jessica ; Young, Robert S ; Andersson, Robin ; Arner, Erik ; Hasegawa, Akira ; Lizio, Marina ; Ramilowski, Jordan A ; Abugessaisa, Imad ; Ishizu, Yuri ; Noma, Shohei ; Tarui, Hiroshi ; Taylor, Martin S ; Lassmann, Timo ; Itoh, Masayoshi ; Kasukawa, Takeya ; Kawaji, Hideya ; Marchionni, Luigi ; Sheng, Guojun ; R R Forrest, Alistair ; Khachigian, Levon M ; Hayashizaki, Yoshihide ; Carninci, Piero ; de Hoon, Michiel J L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-75973c295bf743cc71692a7040f39c81fc5eaa36e2ce05a0f62949f984cce7dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cell interactions</topic><topic>Cell signaling</topic><topic>Divergence</topic><topic>Enhancers</topic><topic>Evolutionary conservation</topic><topic>Evolutionary genetics</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Kinases</topic><topic>RNA processing</topic><topic>Species</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alam, Tanvir</creatorcontrib><creatorcontrib>Agrawal, Saumya</creatorcontrib><creatorcontrib>Severin, Jessica</creatorcontrib><creatorcontrib>Young, Robert S</creatorcontrib><creatorcontrib>Andersson, Robin</creatorcontrib><creatorcontrib>Arner, Erik</creatorcontrib><creatorcontrib>Hasegawa, Akira</creatorcontrib><creatorcontrib>Lizio, Marina</creatorcontrib><creatorcontrib>Ramilowski, Jordan A</creatorcontrib><creatorcontrib>Abugessaisa, Imad</creatorcontrib><creatorcontrib>Ishizu, Yuri</creatorcontrib><creatorcontrib>Noma, Shohei</creatorcontrib><creatorcontrib>Tarui, Hiroshi</creatorcontrib><creatorcontrib>Taylor, Martin S</creatorcontrib><creatorcontrib>Lassmann, Timo</creatorcontrib><creatorcontrib>Itoh, Masayoshi</creatorcontrib><creatorcontrib>Kasukawa, Takeya</creatorcontrib><creatorcontrib>Kawaji, Hideya</creatorcontrib><creatorcontrib>Marchionni, Luigi</creatorcontrib><creatorcontrib>Sheng, Guojun</creatorcontrib><creatorcontrib>R R Forrest, Alistair</creatorcontrib><creatorcontrib>Khachigian, Levon M</creatorcontrib><creatorcontrib>Hayashizaki, Yoshihide</creatorcontrib><creatorcontrib>Carninci, Piero</creatorcontrib><creatorcontrib>de Hoon, Michiel J L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alam, Tanvir</au><au>Agrawal, Saumya</au><au>Severin, Jessica</au><au>Young, Robert S</au><au>Andersson, Robin</au><au>Arner, Erik</au><au>Hasegawa, Akira</au><au>Lizio, Marina</au><au>Ramilowski, Jordan A</au><au>Abugessaisa, Imad</au><au>Ishizu, Yuri</au><au>Noma, Shohei</au><au>Tarui, Hiroshi</au><au>Taylor, Martin S</au><au>Lassmann, Timo</au><au>Itoh, Masayoshi</au><au>Kasukawa, Takeya</au><au>Kawaji, Hideya</au><au>Marchionni, Luigi</au><au>Sheng, Guojun</au><au>R R Forrest, Alistair</au><au>Khachigian, Levon M</au><au>Hayashizaki, Yoshihide</au><au>Carninci, Piero</au><au>de Hoon, Michiel J L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative transcriptomics of primary cells in vertebrates</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2020-07</date><risdate>2020</risdate><volume>30</volume><issue>7</issue><spage>951</spage><epage>961</epage><pages>951-961</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>Gene expression profiles in homologous tissues have been observed to be different between species, which may be due to differences between species in the gene expression program in each cell type, but may also reflect differences in cell type composition of each tissue in different species. Here, we compare expression profiles in matching primary cells in human, mouse, rat, dog, and chicken using Cap Analysis Gene Expression (CAGE) and short RNA (sRNA) sequencing data from FANTOM5. While we find that expression profiles of orthologous genes in different species are highly correlated across cell types, in each cell type many genes were differentially expressed between species. Expression of genes with products involved in transcription, RNA processing, and transcriptional regulation was more likely to be conserved, while expression of genes encoding proteins involved in intercellular communication was more likely to have diverged during evolution. Conservation of expression correlated positively with the evolutionary age of genes, suggesting that divergence in expression levels of genes critical for cell function was restricted during evolution. Motif activity analysis showed that both promoters and enhancers are activated by the same transcription factors in different species. An analysis of expression levels of mature miRNAs and of primary miRNAs identified by CAGE revealed that evolutionary old miRNAs are more likely to have conserved expression patterns than young miRNAs. We conclude that key aspects of the regulatory network are conserved, while differential expression of genes involved in cell-to-cell communication may contribute greatly to phenotypic differences between species.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>32718981</pmid><doi>10.1101/gr.255679.119</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5085-0802</orcidid><orcidid>https://orcid.org/0000-0002-7336-8071</orcidid><orcidid>https://orcid.org/0000-0003-0489-2352</orcidid><orcidid>https://orcid.org/0000-0001-7202-7243</orcidid><orcidid>https://orcid.org/0000-0001-7458-801X</orcidid><orcidid>https://orcid.org/0000-0002-3156-6416</orcidid><orcidid>https://orcid.org/0000-0001-7656-330X</orcidid><orcidid>https://orcid.org/0000-0003-3446-0323</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-9051 |
ispartof | Genome research, 2020-07, Vol.30 (7), p.951-961 |
issn | 1088-9051 1549-5469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7397866 |
source | PubMed Central; Alma/SFX Local Collection |
subjects | Cell interactions Cell signaling Divergence Enhancers Evolutionary conservation Evolutionary genetics Gene expression Gene regulation Kinases RNA processing Species Transcription factors |
title | Comparative transcriptomics of primary cells in vertebrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20transcriptomics%20of%20primary%20cells%20in%20vertebrates&rft.jtitle=Genome%20research&rft.au=Alam,%20Tanvir&rft.date=2020-07&rft.volume=30&rft.issue=7&rft.spage=951&rft.epage=961&rft.pages=951-961&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.255679.119&rft_dat=%3Cproquest_pubme%3E2428060899%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446017927&rft_id=info:pmid/32718981&rfr_iscdi=true |