Peptidylglycine α-amidating monooxygenase is required for atrial secretory granule formation

The discovery of atrial secretory granules and the natriuretic peptides stored in them identified the atrium as an endocrine organ. Although neither atrial nor brain natriuretic peptide (ANP, BNP) is amidated, the major membrane protein in atrial granules is peptidylglycine α-amidating monooxygenase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-07, Vol.117 (30), p.17820-17831
Hauptverfasser: Bäck, Nils, Luxmi, Raj, Powers, Kathryn G., Mains, Richard E., Eipper, Betty A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17831
container_issue 30
container_start_page 17820
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Bäck, Nils
Luxmi, Raj
Powers, Kathryn G.
Mains, Richard E.
Eipper, Betty A.
description The discovery of atrial secretory granules and the natriuretic peptides stored in them identified the atrium as an endocrine organ. Although neither atrial nor brain natriuretic peptide (ANP, BNP) is amidated, the major membrane protein in atrial granules is peptidylglycine α-amidating monooxygenase (PAM), an enzyme essential for amidated peptide biosynthesis. Mice lacking cardiomyocyte PAM (PamMyh6-cKO/cKO ) are viable, but a gene dosagedependent drop in atrial ANP and BNP content occurred. Ultrastructural analysis of adult PamMyh6-cKO/cKO atria revealed a 13-fold drop in the number of secretory granules. When primary cultures of Pam0-Cre-cKO/cKO atrial myocytes (no Cre recombinase, PAM floxed) were transduced with Cre-GFP lentivirus, PAM protein levels dropped, followed by a decline in ANP precursor (proANP) levels. Expression of exogenous PAM in PamMyh6-cKO/cKO atrialmyocytes produced a dose-dependent rescue of proANP content; strikingly, this response did not require the monooxygenase activity of PAM. Unlike many prohormones, atrial proANP is stored intact. A threefold increase in the basal rate of proANP secretion by PamMyh6-cKO/cKO myocytes was a major contributor to its reduced levels. While proANP secretion was increased following treatment of control cultures with drugs that block the activation of Golgi-localized Arf proteins and COPI vesicle formation, proANP secretion by PamMyh6-cKO/cKO myocytes was unaffected. In cells lacking secretory granules, expression of exogenous PAM led to the accumulation of fluorescently tagged proANP in the cis-Golgi region. Our data indicate that COPI vesicle-mediated recycling of PAM from the cis-Golgi to the endoplasmic reticulum plays an essential role in the biogenesis of proANP containing atrial granules.
doi_str_mv 10.1073/pnas.2004410117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7395455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26935510</jstor_id><sourcerecordid>26935510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-b8448b036f2ef1d83d6c0c6fd8c7404ff67a930b054d733e9cc8a688ee1fc97c3</originalsourceid><addsrcrecordid>eNpdkcuO1DAQRS0EYpqBNStQJDZsMlOOH3E2SGjESxoJFrBEltspB7cSu8dOEPksfoRvwk0PzWNVi3vq1uMS8pjCBYWWXe6DyRcNAOcUKG3vkA2FjtaSd3CXbACatla84WfkQc47AOiEgvvkjDVSFpxvyOcPuJ99v47DuFofsPrxvTaT783sw1BNMcT4bR2wjMHK5yrhzeIT9pWLqTJz8masMtqEc0xrNSQTlhEP4lQMYnhI7jkzZnx0W8_Jp9evPl69ra_fv3l39fK6tpyzud4qztUWmHQNOtor1ksLVrpe2ZYDd062pmOwBcH7ljHsrFVGKoVIne1ay87Ji6PvftlO2FsMczKj3ic_mbTqaLz-Vwn-ix7iV92yTnAhisHzW4MUbxbMs558tjiOJmBcsm54ozhtKUBBn_2H7uKSQjnvFyVER-mBujxSNsWcE7rTMhT0ITp9iE7_ia50PP37hhP_O6sCPDkCu1y-fdIb2TEhysifKcqiIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428559110</pqid></control><display><type>article</type><title>Peptidylglycine α-amidating monooxygenase is required for atrial secretory granule formation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bäck, Nils ; Luxmi, Raj ; Powers, Kathryn G. ; Mains, Richard E. ; Eipper, Betty A.</creator><creatorcontrib>Bäck, Nils ; Luxmi, Raj ; Powers, Kathryn G. ; Mains, Richard E. ; Eipper, Betty A.</creatorcontrib><description>The discovery of atrial secretory granules and the natriuretic peptides stored in them identified the atrium as an endocrine organ. Although neither atrial nor brain natriuretic peptide (ANP, BNP) is amidated, the major membrane protein in atrial granules is peptidylglycine α-amidating monooxygenase (PAM), an enzyme essential for amidated peptide biosynthesis. Mice lacking cardiomyocyte PAM (PamMyh6-cKO/cKO ) are viable, but a gene dosagedependent drop in atrial ANP and BNP content occurred. Ultrastructural analysis of adult PamMyh6-cKO/cKO atria revealed a 13-fold drop in the number of secretory granules. When primary cultures of Pam0-Cre-cKO/cKO atrial myocytes (no Cre recombinase, PAM floxed) were transduced with Cre-GFP lentivirus, PAM protein levels dropped, followed by a decline in ANP precursor (proANP) levels. Expression of exogenous PAM in PamMyh6-cKO/cKO atrialmyocytes produced a dose-dependent rescue of proANP content; strikingly, this response did not require the monooxygenase activity of PAM. Unlike many prohormones, atrial proANP is stored intact. A threefold increase in the basal rate of proANP secretion by PamMyh6-cKO/cKO myocytes was a major contributor to its reduced levels. While proANP secretion was increased following treatment of control cultures with drugs that block the activation of Golgi-localized Arf proteins and COPI vesicle formation, proANP secretion by PamMyh6-cKO/cKO myocytes was unaffected. In cells lacking secretory granules, expression of exogenous PAM led to the accumulation of fluorescently tagged proANP in the cis-Golgi region. Our data indicate that COPI vesicle-mediated recycling of PAM from the cis-Golgi to the endoplasmic reticulum plays an essential role in the biogenesis of proANP containing atrial granules.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2004410117</identifier><identifier>PMID: 32661174</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amidine-Lyases - genetics ; Amidine-Lyases - metabolism ; Animals ; Atria ; Atrial Natriuretic Factor - metabolism ; Atrium ; Biological Sciences ; Biosynthesis ; Brain natriuretic peptide ; Cardiomyocytes ; Cre recombinase ; Cytoplasmic Granules - metabolism ; Cytoplasmic Granules - ultrastructure ; Endoplasmic reticulum ; Gene dosage ; Gene Expression ; Golgi apparatus ; Golgi Apparatus - metabolism ; Golgi Apparatus - ultrastructure ; Granular materials ; Granule cells ; Heart Atria - metabolism ; Lysosomes - metabolism ; Lysosomes - ultrastructure ; Membrane proteins ; Mice ; Mice, Knockout ; Mixed Function Oxygenases - genetics ; Mixed Function Oxygenases - metabolism ; Monocytes - metabolism ; Muscle Cells - metabolism ; Myocytes ; Peptides ; Peptidylglycine monooxygenase ; Proteins ; Secretion ; Secretory vesicles ; Secretory Vesicles - metabolism ; Secretory Vesicles - ultrastructure</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-07, Vol.117 (30), p.17820-17831</ispartof><rights>Copyright National Academy of Sciences Jul 28, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-b8448b036f2ef1d83d6c0c6fd8c7404ff67a930b054d733e9cc8a688ee1fc97c3</citedby><cites>FETCH-LOGICAL-c443t-b8448b036f2ef1d83d6c0c6fd8c7404ff67a930b054d733e9cc8a688ee1fc97c3</cites><orcidid>0000-0001-9992-3726 ; 0000-0003-1554-0723 ; 0000-0003-1154-1331 ; 0000-0003-1171-5557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26935510$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26935510$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32661174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bäck, Nils</creatorcontrib><creatorcontrib>Luxmi, Raj</creatorcontrib><creatorcontrib>Powers, Kathryn G.</creatorcontrib><creatorcontrib>Mains, Richard E.</creatorcontrib><creatorcontrib>Eipper, Betty A.</creatorcontrib><title>Peptidylglycine α-amidating monooxygenase is required for atrial secretory granule formation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The discovery of atrial secretory granules and the natriuretic peptides stored in them identified the atrium as an endocrine organ. Although neither atrial nor brain natriuretic peptide (ANP, BNP) is amidated, the major membrane protein in atrial granules is peptidylglycine α-amidating monooxygenase (PAM), an enzyme essential for amidated peptide biosynthesis. Mice lacking cardiomyocyte PAM (PamMyh6-cKO/cKO ) are viable, but a gene dosagedependent drop in atrial ANP and BNP content occurred. Ultrastructural analysis of adult PamMyh6-cKO/cKO atria revealed a 13-fold drop in the number of secretory granules. When primary cultures of Pam0-Cre-cKO/cKO atrial myocytes (no Cre recombinase, PAM floxed) were transduced with Cre-GFP lentivirus, PAM protein levels dropped, followed by a decline in ANP precursor (proANP) levels. Expression of exogenous PAM in PamMyh6-cKO/cKO atrialmyocytes produced a dose-dependent rescue of proANP content; strikingly, this response did not require the monooxygenase activity of PAM. Unlike many prohormones, atrial proANP is stored intact. A threefold increase in the basal rate of proANP secretion by PamMyh6-cKO/cKO myocytes was a major contributor to its reduced levels. While proANP secretion was increased following treatment of control cultures with drugs that block the activation of Golgi-localized Arf proteins and COPI vesicle formation, proANP secretion by PamMyh6-cKO/cKO myocytes was unaffected. In cells lacking secretory granules, expression of exogenous PAM led to the accumulation of fluorescently tagged proANP in the cis-Golgi region. Our data indicate that COPI vesicle-mediated recycling of PAM from the cis-Golgi to the endoplasmic reticulum plays an essential role in the biogenesis of proANP containing atrial granules.</description><subject>Amidine-Lyases - genetics</subject><subject>Amidine-Lyases - metabolism</subject><subject>Animals</subject><subject>Atria</subject><subject>Atrial Natriuretic Factor - metabolism</subject><subject>Atrium</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Brain natriuretic peptide</subject><subject>Cardiomyocytes</subject><subject>Cre recombinase</subject><subject>Cytoplasmic Granules - metabolism</subject><subject>Cytoplasmic Granules - ultrastructure</subject><subject>Endoplasmic reticulum</subject><subject>Gene dosage</subject><subject>Gene Expression</subject><subject>Golgi apparatus</subject><subject>Golgi Apparatus - metabolism</subject><subject>Golgi Apparatus - ultrastructure</subject><subject>Granular materials</subject><subject>Granule cells</subject><subject>Heart Atria - metabolism</subject><subject>Lysosomes - metabolism</subject><subject>Lysosomes - ultrastructure</subject><subject>Membrane proteins</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mixed Function Oxygenases - genetics</subject><subject>Mixed Function Oxygenases - metabolism</subject><subject>Monocytes - metabolism</subject><subject>Muscle Cells - metabolism</subject><subject>Myocytes</subject><subject>Peptides</subject><subject>Peptidylglycine monooxygenase</subject><subject>Proteins</subject><subject>Secretion</subject><subject>Secretory vesicles</subject><subject>Secretory Vesicles - metabolism</subject><subject>Secretory Vesicles - ultrastructure</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkcuO1DAQRS0EYpqBNStQJDZsMlOOH3E2SGjESxoJFrBEltspB7cSu8dOEPksfoRvwk0PzWNVi3vq1uMS8pjCBYWWXe6DyRcNAOcUKG3vkA2FjtaSd3CXbACatla84WfkQc47AOiEgvvkjDVSFpxvyOcPuJ99v47DuFofsPrxvTaT783sw1BNMcT4bR2wjMHK5yrhzeIT9pWLqTJz8masMtqEc0xrNSQTlhEP4lQMYnhI7jkzZnx0W8_Jp9evPl69ra_fv3l39fK6tpyzud4qztUWmHQNOtor1ksLVrpe2ZYDd062pmOwBcH7ljHsrFVGKoVIne1ay87Ji6PvftlO2FsMczKj3ic_mbTqaLz-Vwn-ix7iV92yTnAhisHzW4MUbxbMs558tjiOJmBcsm54ozhtKUBBn_2H7uKSQjnvFyVER-mBujxSNsWcE7rTMhT0ITp9iE7_ia50PP37hhP_O6sCPDkCu1y-fdIb2TEhysifKcqiIA</recordid><startdate>20200728</startdate><enddate>20200728</enddate><creator>Bäck, Nils</creator><creator>Luxmi, Raj</creator><creator>Powers, Kathryn G.</creator><creator>Mains, Richard E.</creator><creator>Eipper, Betty A.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9992-3726</orcidid><orcidid>https://orcid.org/0000-0003-1554-0723</orcidid><orcidid>https://orcid.org/0000-0003-1154-1331</orcidid><orcidid>https://orcid.org/0000-0003-1171-5557</orcidid></search><sort><creationdate>20200728</creationdate><title>Peptidylglycine α-amidating monooxygenase is required for atrial secretory granule formation</title><author>Bäck, Nils ; Luxmi, Raj ; Powers, Kathryn G. ; Mains, Richard E. ; Eipper, Betty A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-b8448b036f2ef1d83d6c0c6fd8c7404ff67a930b054d733e9cc8a688ee1fc97c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amidine-Lyases - genetics</topic><topic>Amidine-Lyases - metabolism</topic><topic>Animals</topic><topic>Atria</topic><topic>Atrial Natriuretic Factor - metabolism</topic><topic>Atrium</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Brain natriuretic peptide</topic><topic>Cardiomyocytes</topic><topic>Cre recombinase</topic><topic>Cytoplasmic Granules - metabolism</topic><topic>Cytoplasmic Granules - ultrastructure</topic><topic>Endoplasmic reticulum</topic><topic>Gene dosage</topic><topic>Gene Expression</topic><topic>Golgi apparatus</topic><topic>Golgi Apparatus - metabolism</topic><topic>Golgi Apparatus - ultrastructure</topic><topic>Granular materials</topic><topic>Granule cells</topic><topic>Heart Atria - metabolism</topic><topic>Lysosomes - metabolism</topic><topic>Lysosomes - ultrastructure</topic><topic>Membrane proteins</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mixed Function Oxygenases - genetics</topic><topic>Mixed Function Oxygenases - metabolism</topic><topic>Monocytes - metabolism</topic><topic>Muscle Cells - metabolism</topic><topic>Myocytes</topic><topic>Peptides</topic><topic>Peptidylglycine monooxygenase</topic><topic>Proteins</topic><topic>Secretion</topic><topic>Secretory vesicles</topic><topic>Secretory Vesicles - metabolism</topic><topic>Secretory Vesicles - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bäck, Nils</creatorcontrib><creatorcontrib>Luxmi, Raj</creatorcontrib><creatorcontrib>Powers, Kathryn G.</creatorcontrib><creatorcontrib>Mains, Richard E.</creatorcontrib><creatorcontrib>Eipper, Betty A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bäck, Nils</au><au>Luxmi, Raj</au><au>Powers, Kathryn G.</au><au>Mains, Richard E.</au><au>Eipper, Betty A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peptidylglycine α-amidating monooxygenase is required for atrial secretory granule formation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-07-28</date><risdate>2020</risdate><volume>117</volume><issue>30</issue><spage>17820</spage><epage>17831</epage><pages>17820-17831</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The discovery of atrial secretory granules and the natriuretic peptides stored in them identified the atrium as an endocrine organ. Although neither atrial nor brain natriuretic peptide (ANP, BNP) is amidated, the major membrane protein in atrial granules is peptidylglycine α-amidating monooxygenase (PAM), an enzyme essential for amidated peptide biosynthesis. Mice lacking cardiomyocyte PAM (PamMyh6-cKO/cKO ) are viable, but a gene dosagedependent drop in atrial ANP and BNP content occurred. Ultrastructural analysis of adult PamMyh6-cKO/cKO atria revealed a 13-fold drop in the number of secretory granules. When primary cultures of Pam0-Cre-cKO/cKO atrial myocytes (no Cre recombinase, PAM floxed) were transduced with Cre-GFP lentivirus, PAM protein levels dropped, followed by a decline in ANP precursor (proANP) levels. Expression of exogenous PAM in PamMyh6-cKO/cKO atrialmyocytes produced a dose-dependent rescue of proANP content; strikingly, this response did not require the monooxygenase activity of PAM. Unlike many prohormones, atrial proANP is stored intact. A threefold increase in the basal rate of proANP secretion by PamMyh6-cKO/cKO myocytes was a major contributor to its reduced levels. While proANP secretion was increased following treatment of control cultures with drugs that block the activation of Golgi-localized Arf proteins and COPI vesicle formation, proANP secretion by PamMyh6-cKO/cKO myocytes was unaffected. In cells lacking secretory granules, expression of exogenous PAM led to the accumulation of fluorescently tagged proANP in the cis-Golgi region. Our data indicate that COPI vesicle-mediated recycling of PAM from the cis-Golgi to the endoplasmic reticulum plays an essential role in the biogenesis of proANP containing atrial granules.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32661174</pmid><doi>10.1073/pnas.2004410117</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9992-3726</orcidid><orcidid>https://orcid.org/0000-0003-1554-0723</orcidid><orcidid>https://orcid.org/0000-0003-1154-1331</orcidid><orcidid>https://orcid.org/0000-0003-1171-5557</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-07, Vol.117 (30), p.17820-17831
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7395455
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amidine-Lyases - genetics
Amidine-Lyases - metabolism
Animals
Atria
Atrial Natriuretic Factor - metabolism
Atrium
Biological Sciences
Biosynthesis
Brain natriuretic peptide
Cardiomyocytes
Cre recombinase
Cytoplasmic Granules - metabolism
Cytoplasmic Granules - ultrastructure
Endoplasmic reticulum
Gene dosage
Gene Expression
Golgi apparatus
Golgi Apparatus - metabolism
Golgi Apparatus - ultrastructure
Granular materials
Granule cells
Heart Atria - metabolism
Lysosomes - metabolism
Lysosomes - ultrastructure
Membrane proteins
Mice
Mice, Knockout
Mixed Function Oxygenases - genetics
Mixed Function Oxygenases - metabolism
Monocytes - metabolism
Muscle Cells - metabolism
Myocytes
Peptides
Peptidylglycine monooxygenase
Proteins
Secretion
Secretory vesicles
Secretory Vesicles - metabolism
Secretory Vesicles - ultrastructure
title Peptidylglycine α-amidating monooxygenase is required for atrial secretory granule formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A42%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peptidylglycine%20%CE%B1-amidating%20monooxygenase%20is%20required%20for%20atrial%20secretory%20granule%20formation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=B%C3%A4ck,%20Nils&rft.date=2020-07-28&rft.volume=117&rft.issue=30&rft.spage=17820&rft.epage=17831&rft.pages=17820-17831&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2004410117&rft_dat=%3Cjstor_pubme%3E26935510%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428559110&rft_id=info:pmid/32661174&rft_jstor_id=26935510&rfr_iscdi=true