Co‑transplantation of tonsil‑derived mesenchymal stromal cells in bone marrow transplantation promotes thymus regeneration and T cell diversity following cytotoxic conditioning
Bone marrow (BM) transplantation (BMT) represents a curative treatment for various hematological disorders. Prior to BMT, a large amount of the relevant anticancer drug needed to be administered to eliminate cancer cells. However, during this pre‑BMT cytotoxic conditioning regimen, hematopoietic ste...
Gespeichert in:
Veröffentlicht in: | International journal of molecular medicine 2020-09, Vol.46 (3), p.1166-1174 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1174 |
---|---|
container_issue | 3 |
container_start_page | 1166 |
container_title | International journal of molecular medicine |
container_volume | 46 |
creator | Choi, Da-Won Cho, Kyung-Ah Lee, Hyun-Ji Kim, Yu-Hee Woo, Kyong-Je Park, Joo-Won Ryu, Kyung-Ha Woo, So-Youn |
description | Bone marrow (BM) transplantation (BMT) represents a curative treatment for various hematological disorders. Prior to BMT, a large amount of the relevant anticancer drug needed to be administered to eliminate cancer cells. However, during this pre‑BMT cytotoxic conditioning regimen, hematopoietic stem cells in the BM and thymic epithelial cells were also destroyed. The T cell receptor (TCR) recognizes diverse pathogen, tumor and environmental antigens, and confers immunological memory and self‑tolerance. Delayed thymus reconstitution following pre‑BMT cytotoxic conditioning impedes de novo thymopoiesis and limits T cell‑mediated immunity. Several cytokines, such as RANK ligand, interleukin (IL)‑7, IL‑22 and stem cell factor, were recently reported to improve thymopoiesis and immune function following BMT. In the present study, it was found that the co‑transplantation of tonsil‑derived mesenchymal stromal cells (T‑MSCs) with BM‑derived cells (BMCs) accelerated the recovery of involuted thymuses in mice following partial pre‑BMT conditioning with busulfan‑cyclophosphamide treatment, possibly by inducing FMS‑like tyrosine kinase 3 ligand (FLT3L) and fibroblast growth factor 7 (FGF7) production in T‑MSCs. The co‑transplantation of T‑MSCs with BMCs also replenished the CD3+ cell population by inhibiting thymocyte apoptosis following pre‑BMT cytotoxic conditioning. Furthermore, T‑MSC co‑transplantation improved the recovery of the TCR repertoire and led to increased thymus‑generated T cell diversity. |
doi_str_mv | 10.3892/ijmm.2020.4657 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7387097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A633137509</galeid><sourcerecordid>A633137509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-f0ce22d714a568b14f9cbf37b431cfd3d38f83a7e95c32e1881dca31cb5963153</originalsourceid><addsrcrecordid>eNptUstu1DAUjRCIlsKWJbLEOoNfSewNUjXiJVViUyR2lmNfTz1K7MH2tJ0dv8C_8EV8CQ4t5aHKi2vd87CvfZrmOcErJiR95bfzvKKY4hXvu-FBc0wGSVrK-eeHdU_w0LKh64-aJzlvMaYdl-Jxc8RoJ6iU4rj5vo4_vn4rSYe8m3QouvgYUHSoxJD9VDELyV-CRTNkCObiMOsJ5ZLiUg1MU0Y-oDEGQLNOKV6h_812lRsLZFSqeJ9Rgg0ESDegDhad__JBth6Tsi8H5OI0xSsfNsgcSizx2htkYrB-kdT20-aR01OGZ7f1pPn09s35-n179vHdh_XpWWu46ErrsAFK7UC47noxEu6kGR0bRs6IcZZZJpxgegDZGUaBCEGs0RUbO9kz0rGT5vWN724_zmANhDrbpHbJ11EPKmqv_kWCv1CbeKkGJgYsh2rw8tYgxS97yEVt4z6FemdFOcM95ZTjP6yNnkD54GI1M7PPRp32jJH6g1hW1uoeVl0WZl9fB5yv_fsEJsWcE7i7ixOslvCoJTxqCY9awlMFL_4e947-Oy3sJ8z8yTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430624240</pqid></control><display><type>article</type><title>Co‑transplantation of tonsil‑derived mesenchymal stromal cells in bone marrow transplantation promotes thymus regeneration and T cell diversity following cytotoxic conditioning</title><source>Spandidos Publications Journals</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Choi, Da-Won ; Cho, Kyung-Ah ; Lee, Hyun-Ji ; Kim, Yu-Hee ; Woo, Kyong-Je ; Park, Joo-Won ; Ryu, Kyung-Ha ; Woo, So-Youn</creator><creatorcontrib>Choi, Da-Won ; Cho, Kyung-Ah ; Lee, Hyun-Ji ; Kim, Yu-Hee ; Woo, Kyong-Je ; Park, Joo-Won ; Ryu, Kyung-Ha ; Woo, So-Youn</creatorcontrib><description>Bone marrow (BM) transplantation (BMT) represents a curative treatment for various hematological disorders. Prior to BMT, a large amount of the relevant anticancer drug needed to be administered to eliminate cancer cells. However, during this pre‑BMT cytotoxic conditioning regimen, hematopoietic stem cells in the BM and thymic epithelial cells were also destroyed. The T cell receptor (TCR) recognizes diverse pathogen, tumor and environmental antigens, and confers immunological memory and self‑tolerance. Delayed thymus reconstitution following pre‑BMT cytotoxic conditioning impedes de novo thymopoiesis and limits T cell‑mediated immunity. Several cytokines, such as RANK ligand, interleukin (IL)‑7, IL‑22 and stem cell factor, were recently reported to improve thymopoiesis and immune function following BMT. In the present study, it was found that the co‑transplantation of tonsil‑derived mesenchymal stromal cells (T‑MSCs) with BM‑derived cells (BMCs) accelerated the recovery of involuted thymuses in mice following partial pre‑BMT conditioning with busulfan‑cyclophosphamide treatment, possibly by inducing FMS‑like tyrosine kinase 3 ligand (FLT3L) and fibroblast growth factor 7 (FGF7) production in T‑MSCs. The co‑transplantation of T‑MSCs with BMCs also replenished the CD3+ cell population by inhibiting thymocyte apoptosis following pre‑BMT cytotoxic conditioning. Furthermore, T‑MSC co‑transplantation improved the recovery of the TCR repertoire and led to increased thymus‑generated T cell diversity.</description><identifier>ISSN: 1107-3756</identifier><identifier>EISSN: 1791-244X</identifier><identifier>DOI: 10.3892/ijmm.2020.4657</identifier><identifier>PMID: 32582998</identifier><language>eng</language><publisher>Greece: Spandidos Publications</publisher><subject>Adaptive immunity ; Animals ; Antigens ; Bone marrow ; Bone marrow transplantation ; Bone Marrow Transplantation - methods ; CD3 Complex ; Cell culture ; Cytotoxicity ; EDTA ; Female ; Humidity ; Immunohistochemistry ; Immunologic factors ; In Situ Nick-End Labeling ; Kinases ; Ligands ; Lymphocytes ; Male ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Palatine Tonsil - cytology ; Palatine Tonsil - metabolism ; Rankings ; Reverse Transcriptase Polymerase Chain Reaction ; Stem cell transplantation ; Stem cells ; T cells ; T-Lymphocytes - cytology ; T-Lymphocytes - metabolism ; Thymus gland ; Thymus Gland - cytology</subject><ispartof>International journal of molecular medicine, 2020-09, Vol.46 (3), p.1166-1174</ispartof><rights>COPYRIGHT 2020 Spandidos Publications</rights><rights>Copyright Spandidos Publications UK Ltd. 2020</rights><rights>Copyright: © Choi et al. 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-f0ce22d714a568b14f9cbf37b431cfd3d38f83a7e95c32e1881dca31cb5963153</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32582998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Da-Won</creatorcontrib><creatorcontrib>Cho, Kyung-Ah</creatorcontrib><creatorcontrib>Lee, Hyun-Ji</creatorcontrib><creatorcontrib>Kim, Yu-Hee</creatorcontrib><creatorcontrib>Woo, Kyong-Je</creatorcontrib><creatorcontrib>Park, Joo-Won</creatorcontrib><creatorcontrib>Ryu, Kyung-Ha</creatorcontrib><creatorcontrib>Woo, So-Youn</creatorcontrib><title>Co‑transplantation of tonsil‑derived mesenchymal stromal cells in bone marrow transplantation promotes thymus regeneration and T cell diversity following cytotoxic conditioning</title><title>International journal of molecular medicine</title><addtitle>Int J Mol Med</addtitle><description>Bone marrow (BM) transplantation (BMT) represents a curative treatment for various hematological disorders. Prior to BMT, a large amount of the relevant anticancer drug needed to be administered to eliminate cancer cells. However, during this pre‑BMT cytotoxic conditioning regimen, hematopoietic stem cells in the BM and thymic epithelial cells were also destroyed. The T cell receptor (TCR) recognizes diverse pathogen, tumor and environmental antigens, and confers immunological memory and self‑tolerance. Delayed thymus reconstitution following pre‑BMT cytotoxic conditioning impedes de novo thymopoiesis and limits T cell‑mediated immunity. Several cytokines, such as RANK ligand, interleukin (IL)‑7, IL‑22 and stem cell factor, were recently reported to improve thymopoiesis and immune function following BMT. In the present study, it was found that the co‑transplantation of tonsil‑derived mesenchymal stromal cells (T‑MSCs) with BM‑derived cells (BMCs) accelerated the recovery of involuted thymuses in mice following partial pre‑BMT conditioning with busulfan‑cyclophosphamide treatment, possibly by inducing FMS‑like tyrosine kinase 3 ligand (FLT3L) and fibroblast growth factor 7 (FGF7) production in T‑MSCs. The co‑transplantation of T‑MSCs with BMCs also replenished the CD3+ cell population by inhibiting thymocyte apoptosis following pre‑BMT cytotoxic conditioning. Furthermore, T‑MSC co‑transplantation improved the recovery of the TCR repertoire and led to increased thymus‑generated T cell diversity.</description><subject>Adaptive immunity</subject><subject>Animals</subject><subject>Antigens</subject><subject>Bone marrow</subject><subject>Bone marrow transplantation</subject><subject>Bone Marrow Transplantation - methods</subject><subject>CD3 Complex</subject><subject>Cell culture</subject><subject>Cytotoxicity</subject><subject>EDTA</subject><subject>Female</subject><subject>Humidity</subject><subject>Immunohistochemistry</subject><subject>Immunologic factors</subject><subject>In Situ Nick-End Labeling</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Lymphocytes</subject><subject>Male</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Inbred C57BL</subject><subject>Palatine Tonsil - cytology</subject><subject>Palatine Tonsil - metabolism</subject><subject>Rankings</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>T cells</subject><subject>T-Lymphocytes - cytology</subject><subject>T-Lymphocytes - metabolism</subject><subject>Thymus gland</subject><subject>Thymus Gland - cytology</subject><issn>1107-3756</issn><issn>1791-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNptUstu1DAUjRCIlsKWJbLEOoNfSewNUjXiJVViUyR2lmNfTz1K7MH2tJ0dv8C_8EV8CQ4t5aHKi2vd87CvfZrmOcErJiR95bfzvKKY4hXvu-FBc0wGSVrK-eeHdU_w0LKh64-aJzlvMaYdl-Jxc8RoJ6iU4rj5vo4_vn4rSYe8m3QouvgYUHSoxJD9VDELyV-CRTNkCObiMOsJ5ZLiUg1MU0Y-oDEGQLNOKV6h_812lRsLZFSqeJ9Rgg0ESDegDhad__JBth6Tsi8H5OI0xSsfNsgcSizx2htkYrB-kdT20-aR01OGZ7f1pPn09s35-n179vHdh_XpWWu46ErrsAFK7UC47noxEu6kGR0bRs6IcZZZJpxgegDZGUaBCEGs0RUbO9kz0rGT5vWN724_zmANhDrbpHbJ11EPKmqv_kWCv1CbeKkGJgYsh2rw8tYgxS97yEVt4z6FemdFOcM95ZTjP6yNnkD54GI1M7PPRp32jJH6g1hW1uoeVl0WZl9fB5yv_fsEJsWcE7i7ixOslvCoJTxqCY9awlMFL_4e947-Oy3sJ8z8yTw</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Choi, Da-Won</creator><creator>Cho, Kyung-Ah</creator><creator>Lee, Hyun-Ji</creator><creator>Kim, Yu-Hee</creator><creator>Woo, Kyong-Je</creator><creator>Park, Joo-Won</creator><creator>Ryu, Kyung-Ha</creator><creator>Woo, So-Youn</creator><general>Spandidos Publications</general><general>Spandidos Publications UK Ltd</general><general>D.A. Spandidos</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20200901</creationdate><title>Co‑transplantation of tonsil‑derived mesenchymal stromal cells in bone marrow transplantation promotes thymus regeneration and T cell diversity following cytotoxic conditioning</title><author>Choi, Da-Won ; Cho, Kyung-Ah ; Lee, Hyun-Ji ; Kim, Yu-Hee ; Woo, Kyong-Je ; Park, Joo-Won ; Ryu, Kyung-Ha ; Woo, So-Youn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-f0ce22d714a568b14f9cbf37b431cfd3d38f83a7e95c32e1881dca31cb5963153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive immunity</topic><topic>Animals</topic><topic>Antigens</topic><topic>Bone marrow</topic><topic>Bone marrow transplantation</topic><topic>Bone Marrow Transplantation - methods</topic><topic>CD3 Complex</topic><topic>Cell culture</topic><topic>Cytotoxicity</topic><topic>EDTA</topic><topic>Female</topic><topic>Humidity</topic><topic>Immunohistochemistry</topic><topic>Immunologic factors</topic><topic>In Situ Nick-End Labeling</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Lymphocytes</topic><topic>Male</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Inbred C57BL</topic><topic>Palatine Tonsil - cytology</topic><topic>Palatine Tonsil - metabolism</topic><topic>Rankings</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>T cells</topic><topic>T-Lymphocytes - cytology</topic><topic>T-Lymphocytes - metabolism</topic><topic>Thymus gland</topic><topic>Thymus Gland - cytology</topic><toplevel>online_resources</toplevel><creatorcontrib>Choi, Da-Won</creatorcontrib><creatorcontrib>Cho, Kyung-Ah</creatorcontrib><creatorcontrib>Lee, Hyun-Ji</creatorcontrib><creatorcontrib>Kim, Yu-Hee</creatorcontrib><creatorcontrib>Woo, Kyong-Je</creatorcontrib><creatorcontrib>Park, Joo-Won</creatorcontrib><creatorcontrib>Ryu, Kyung-Ha</creatorcontrib><creatorcontrib>Woo, So-Youn</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Da-Won</au><au>Cho, Kyung-Ah</au><au>Lee, Hyun-Ji</au><au>Kim, Yu-Hee</au><au>Woo, Kyong-Je</au><au>Park, Joo-Won</au><au>Ryu, Kyung-Ha</au><au>Woo, So-Youn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co‑transplantation of tonsil‑derived mesenchymal stromal cells in bone marrow transplantation promotes thymus regeneration and T cell diversity following cytotoxic conditioning</atitle><jtitle>International journal of molecular medicine</jtitle><addtitle>Int J Mol Med</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>46</volume><issue>3</issue><spage>1166</spage><epage>1174</epage><pages>1166-1174</pages><issn>1107-3756</issn><eissn>1791-244X</eissn><abstract>Bone marrow (BM) transplantation (BMT) represents a curative treatment for various hematological disorders. Prior to BMT, a large amount of the relevant anticancer drug needed to be administered to eliminate cancer cells. However, during this pre‑BMT cytotoxic conditioning regimen, hematopoietic stem cells in the BM and thymic epithelial cells were also destroyed. The T cell receptor (TCR) recognizes diverse pathogen, tumor and environmental antigens, and confers immunological memory and self‑tolerance. Delayed thymus reconstitution following pre‑BMT cytotoxic conditioning impedes de novo thymopoiesis and limits T cell‑mediated immunity. Several cytokines, such as RANK ligand, interleukin (IL)‑7, IL‑22 and stem cell factor, were recently reported to improve thymopoiesis and immune function following BMT. In the present study, it was found that the co‑transplantation of tonsil‑derived mesenchymal stromal cells (T‑MSCs) with BM‑derived cells (BMCs) accelerated the recovery of involuted thymuses in mice following partial pre‑BMT conditioning with busulfan‑cyclophosphamide treatment, possibly by inducing FMS‑like tyrosine kinase 3 ligand (FLT3L) and fibroblast growth factor 7 (FGF7) production in T‑MSCs. The co‑transplantation of T‑MSCs with BMCs also replenished the CD3+ cell population by inhibiting thymocyte apoptosis following pre‑BMT cytotoxic conditioning. Furthermore, T‑MSC co‑transplantation improved the recovery of the TCR repertoire and led to increased thymus‑generated T cell diversity.</abstract><cop>Greece</cop><pub>Spandidos Publications</pub><pmid>32582998</pmid><doi>10.3892/ijmm.2020.4657</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1107-3756 |
ispartof | International journal of molecular medicine, 2020-09, Vol.46 (3), p.1166-1174 |
issn | 1107-3756 1791-244X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7387097 |
source | Spandidos Publications Journals; MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Adaptive immunity Animals Antigens Bone marrow Bone marrow transplantation Bone Marrow Transplantation - methods CD3 Complex Cell culture Cytotoxicity EDTA Female Humidity Immunohistochemistry Immunologic factors In Situ Nick-End Labeling Kinases Ligands Lymphocytes Male Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - metabolism Mice Mice, Inbred BALB C Mice, Inbred C57BL Palatine Tonsil - cytology Palatine Tonsil - metabolism Rankings Reverse Transcriptase Polymerase Chain Reaction Stem cell transplantation Stem cells T cells T-Lymphocytes - cytology T-Lymphocytes - metabolism Thymus gland Thymus Gland - cytology |
title | Co‑transplantation of tonsil‑derived mesenchymal stromal cells in bone marrow transplantation promotes thymus regeneration and T cell diversity following cytotoxic conditioning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co%E2%80%91transplantation%20of%20tonsil%E2%80%91derived%20mesenchymal%20stromal%20cells%20in%20bone%20marrow%20transplantation%20promotes%20thymus%20regeneration%20and%20T%20cell%20diversity%20following%20cytotoxic%20conditioning&rft.jtitle=International%20journal%20of%20molecular%20medicine&rft.au=Choi,%20Da-Won&rft.date=2020-09-01&rft.volume=46&rft.issue=3&rft.spage=1166&rft.epage=1174&rft.pages=1166-1174&rft.issn=1107-3756&rft.eissn=1791-244X&rft_id=info:doi/10.3892/ijmm.2020.4657&rft_dat=%3Cgale_pubme%3EA633137509%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430624240&rft_id=info:pmid/32582998&rft_galeid=A633137509&rfr_iscdi=true |