High diversity and variability of pipolins among a wide range of pathogenic Escherichia coli strains

Self-synthesizing transposons are integrative mobile genetic elements (MGEs) that encode their own B-family DNA polymerase (PolB). Discovered a few years ago, they are proposed as key players in the evolution of several groups of DNA viruses and virus–host interaction machinery. Pipolins are the mos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-07, Vol.10 (1), p.12452-12452, Article 12452
Hauptverfasser: Flament-Simon, Saskia-Camille, de Toro, María, Chuprikova, Liubov, Blanco, Miguel, Moreno-González, Juan, Salas, Margarita, Blanco, Jorge, Redrejo-Rodríguez, Modesto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12452
container_issue 1
container_start_page 12452
container_title Scientific reports
container_volume 10
creator Flament-Simon, Saskia-Camille
de Toro, María
Chuprikova, Liubov
Blanco, Miguel
Moreno-González, Juan
Salas, Margarita
Blanco, Jorge
Redrejo-Rodríguez, Modesto
description Self-synthesizing transposons are integrative mobile genetic elements (MGEs) that encode their own B-family DNA polymerase (PolB). Discovered a few years ago, they are proposed as key players in the evolution of several groups of DNA viruses and virus–host interaction machinery. Pipolins are the most recent addition to the group, are integrated in the genomes of bacteria from diverse phyla and also present as circular plasmids in mitochondria. Remarkably, pipolins-encoded PolBs are proficient DNA polymerases endowed with DNA priming capacity, hence the name, primer-independent PolB (piPolB). We have now surveyed the presence of pipolins in a collection of 2,238 human and animal pathogenic Escherichia coli strains and found that, although detected in only 25 positive isolates (1.1%), they are present in E. coli strains from a wide variety of pathotypes, serotypes, phylogenetic groups and sequence types. Overall, the pangenome of strains carrying pipolins is highly diverse, despite the fact that a considerable number of strains belong to only three clonal complexes (CC10, CC23 and CC32). Comparative analysis with a set of 67 additional pipolin-harboring genomes from GenBank database spanning strains from diverse origin, further confirmed these results. The genetic structure of pipolins shows great flexibility and variability, with the piPolB gene and the attachment sites being the only common features. Most pipolins contain one or more recombinases that would be involved in excision/integration of the element in the same conserved tRNA gene. This mobilization mechanism might explain the apparent incompatibility of pipolins with other integrative MGEs such as integrons. In addition, analysis of cophylogeny between pipolins and pipolin-harboring strains showed a lack of congruence between several pipolins and their host strains, in agreement with horizontal transfer between hosts. Overall, these results indicate that pipolins can serve as a vehicle for genetic transfer among circulating E. coli and possibly also among other pathogenic bacteria.
doi_str_mv 10.1038/s41598-020-69356-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7385651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428061086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-ca4aa2411c808d51239717479061832bc9f323298179e51ec96b352036a390543</originalsourceid><addsrcrecordid>eNp9UctqGzEUFaUlCW5-IIsi6KabSfSckTaFEtw6EMimXYtrjTwjM5Ycaeziv4-cybOLaiOJ87jnchC6oOSSEq6usqBSq4owUtWay7qqP6AzRoSsGGfs45v3KTrPeU3KkUwLqk_QKWcN1YLIM9QufNfj1u9dyn48YAgt3kPysPTD8R9XeOu3cfAhY9jE0GHAf33rcILQuUcYxj52LniL59n2Lnnbe8C2aHAeExTlZ_RpBUN250_3DP35Of99vahu737dXP-4raykdKwsCAAmKLWKqFZSxnVDG9FoUlPF2dLqFS8LaUUb7SR1VtdLLhnhNXBNpOAz9H3y3e6WG9daF8r8wWyT30A6mAjevEeC700X96bhStaSFoNvTwYp3u9cHs3GZ-uGAYKLu2yYYKqEIaou1K__UNdxl0JZ78hquOZTIjaxbIo5J7d6CUOJOfZoph5N6dE89miO1l_ervEieW6tEPhEyAUqNaTX2f-xfQBuFKfI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427393054</pqid></control><display><type>article</type><title>High diversity and variability of pipolins among a wide range of pathogenic Escherichia coli strains</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Flament-Simon, Saskia-Camille ; de Toro, María ; Chuprikova, Liubov ; Blanco, Miguel ; Moreno-González, Juan ; Salas, Margarita ; Blanco, Jorge ; Redrejo-Rodríguez, Modesto</creator><creatorcontrib>Flament-Simon, Saskia-Camille ; de Toro, María ; Chuprikova, Liubov ; Blanco, Miguel ; Moreno-González, Juan ; Salas, Margarita ; Blanco, Jorge ; Redrejo-Rodríguez, Modesto</creatorcontrib><description>Self-synthesizing transposons are integrative mobile genetic elements (MGEs) that encode their own B-family DNA polymerase (PolB). Discovered a few years ago, they are proposed as key players in the evolution of several groups of DNA viruses and virus–host interaction machinery. Pipolins are the most recent addition to the group, are integrated in the genomes of bacteria from diverse phyla and also present as circular plasmids in mitochondria. Remarkably, pipolins-encoded PolBs are proficient DNA polymerases endowed with DNA priming capacity, hence the name, primer-independent PolB (piPolB). We have now surveyed the presence of pipolins in a collection of 2,238 human and animal pathogenic Escherichia coli strains and found that, although detected in only 25 positive isolates (1.1%), they are present in E. coli strains from a wide variety of pathotypes, serotypes, phylogenetic groups and sequence types. Overall, the pangenome of strains carrying pipolins is highly diverse, despite the fact that a considerable number of strains belong to only three clonal complexes (CC10, CC23 and CC32). Comparative analysis with a set of 67 additional pipolin-harboring genomes from GenBank database spanning strains from diverse origin, further confirmed these results. The genetic structure of pipolins shows great flexibility and variability, with the piPolB gene and the attachment sites being the only common features. Most pipolins contain one or more recombinases that would be involved in excision/integration of the element in the same conserved tRNA gene. This mobilization mechanism might explain the apparent incompatibility of pipolins with other integrative MGEs such as integrons. In addition, analysis of cophylogeny between pipolins and pipolin-harboring strains showed a lack of congruence between several pipolins and their host strains, in agreement with horizontal transfer between hosts. Overall, these results indicate that pipolins can serve as a vehicle for genetic transfer among circulating E. coli and possibly also among other pathogenic bacteria.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-69356-6</identifier><identifier>PMID: 32719405</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/212/2305 ; 631/208/325 ; 631/326/325/1506 ; Animals ; Bacteria ; Comparative analysis ; Deoxyribonucleic acid ; DNA ; DNA Transposable Elements ; DNA viruses ; DNA-directed DNA polymerase ; E coli ; Escherichia coli ; Escherichia coli - classification ; Escherichia coli - genetics ; Escherichia coli - isolation &amp; purification ; Escherichia coli - metabolism ; Escherichia coli Infections - microbiology ; Escherichia coli Infections - veterinary ; Genetic structure ; Genetic Variation ; Genome, Bacterial ; Genomes ; Horizontal transfer ; Humanities and Social Sciences ; Humans ; Mitochondria ; multidisciplinary ; Phylogeny ; Plasmids ; Science ; Science (multidisciplinary) ; Serotypes ; Strains (organisms) ; Transposons ; tRNA</subject><ispartof>Scientific reports, 2020-07, Vol.10 (1), p.12452-12452, Article 12452</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-ca4aa2411c808d51239717479061832bc9f323298179e51ec96b352036a390543</citedby><cites>FETCH-LOGICAL-c511t-ca4aa2411c808d51239717479061832bc9f323298179e51ec96b352036a390543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385651/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385651/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32719405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flament-Simon, Saskia-Camille</creatorcontrib><creatorcontrib>de Toro, María</creatorcontrib><creatorcontrib>Chuprikova, Liubov</creatorcontrib><creatorcontrib>Blanco, Miguel</creatorcontrib><creatorcontrib>Moreno-González, Juan</creatorcontrib><creatorcontrib>Salas, Margarita</creatorcontrib><creatorcontrib>Blanco, Jorge</creatorcontrib><creatorcontrib>Redrejo-Rodríguez, Modesto</creatorcontrib><title>High diversity and variability of pipolins among a wide range of pathogenic Escherichia coli strains</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Self-synthesizing transposons are integrative mobile genetic elements (MGEs) that encode their own B-family DNA polymerase (PolB). Discovered a few years ago, they are proposed as key players in the evolution of several groups of DNA viruses and virus–host interaction machinery. Pipolins are the most recent addition to the group, are integrated in the genomes of bacteria from diverse phyla and also present as circular plasmids in mitochondria. Remarkably, pipolins-encoded PolBs are proficient DNA polymerases endowed with DNA priming capacity, hence the name, primer-independent PolB (piPolB). We have now surveyed the presence of pipolins in a collection of 2,238 human and animal pathogenic Escherichia coli strains and found that, although detected in only 25 positive isolates (1.1%), they are present in E. coli strains from a wide variety of pathotypes, serotypes, phylogenetic groups and sequence types. Overall, the pangenome of strains carrying pipolins is highly diverse, despite the fact that a considerable number of strains belong to only three clonal complexes (CC10, CC23 and CC32). Comparative analysis with a set of 67 additional pipolin-harboring genomes from GenBank database spanning strains from diverse origin, further confirmed these results. The genetic structure of pipolins shows great flexibility and variability, with the piPolB gene and the attachment sites being the only common features. Most pipolins contain one or more recombinases that would be involved in excision/integration of the element in the same conserved tRNA gene. This mobilization mechanism might explain the apparent incompatibility of pipolins with other integrative MGEs such as integrons. In addition, analysis of cophylogeny between pipolins and pipolin-harboring strains showed a lack of congruence between several pipolins and their host strains, in agreement with horizontal transfer between hosts. Overall, these results indicate that pipolins can serve as a vehicle for genetic transfer among circulating E. coli and possibly also among other pathogenic bacteria.</description><subject>631/208/212/2305</subject><subject>631/208/325</subject><subject>631/326/325/1506</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Comparative analysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Transposable Elements</subject><subject>DNA viruses</subject><subject>DNA-directed DNA polymerase</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - classification</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - isolation &amp; purification</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Infections - microbiology</subject><subject>Escherichia coli Infections - veterinary</subject><subject>Genetic structure</subject><subject>Genetic Variation</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Horizontal transfer</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Mitochondria</subject><subject>multidisciplinary</subject><subject>Phylogeny</subject><subject>Plasmids</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Serotypes</subject><subject>Strains (organisms)</subject><subject>Transposons</subject><subject>tRNA</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UctqGzEUFaUlCW5-IIsi6KabSfSckTaFEtw6EMimXYtrjTwjM5Ycaeziv4-cybOLaiOJ87jnchC6oOSSEq6usqBSq4owUtWay7qqP6AzRoSsGGfs45v3KTrPeU3KkUwLqk_QKWcN1YLIM9QufNfj1u9dyn48YAgt3kPysPTD8R9XeOu3cfAhY9jE0GHAf33rcILQuUcYxj52LniL59n2Lnnbe8C2aHAeExTlZ_RpBUN250_3DP35Of99vahu737dXP-4raykdKwsCAAmKLWKqFZSxnVDG9FoUlPF2dLqFS8LaUUb7SR1VtdLLhnhNXBNpOAz9H3y3e6WG9daF8r8wWyT30A6mAjevEeC700X96bhStaSFoNvTwYp3u9cHs3GZ-uGAYKLu2yYYKqEIaou1K__UNdxl0JZ78hquOZTIjaxbIo5J7d6CUOJOfZoph5N6dE89miO1l_ervEieW6tEPhEyAUqNaTX2f-xfQBuFKfI</recordid><startdate>20200727</startdate><enddate>20200727</enddate><creator>Flament-Simon, Saskia-Camille</creator><creator>de Toro, María</creator><creator>Chuprikova, Liubov</creator><creator>Blanco, Miguel</creator><creator>Moreno-González, Juan</creator><creator>Salas, Margarita</creator><creator>Blanco, Jorge</creator><creator>Redrejo-Rodríguez, Modesto</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200727</creationdate><title>High diversity and variability of pipolins among a wide range of pathogenic Escherichia coli strains</title><author>Flament-Simon, Saskia-Camille ; de Toro, María ; Chuprikova, Liubov ; Blanco, Miguel ; Moreno-González, Juan ; Salas, Margarita ; Blanco, Jorge ; Redrejo-Rodríguez, Modesto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-ca4aa2411c808d51239717479061832bc9f323298179e51ec96b352036a390543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/208/212/2305</topic><topic>631/208/325</topic><topic>631/326/325/1506</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Comparative analysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Transposable Elements</topic><topic>DNA viruses</topic><topic>DNA-directed DNA polymerase</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - classification</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - isolation &amp; purification</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Infections - microbiology</topic><topic>Escherichia coli Infections - veterinary</topic><topic>Genetic structure</topic><topic>Genetic Variation</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Horizontal transfer</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Mitochondria</topic><topic>multidisciplinary</topic><topic>Phylogeny</topic><topic>Plasmids</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Serotypes</topic><topic>Strains (organisms)</topic><topic>Transposons</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flament-Simon, Saskia-Camille</creatorcontrib><creatorcontrib>de Toro, María</creatorcontrib><creatorcontrib>Chuprikova, Liubov</creatorcontrib><creatorcontrib>Blanco, Miguel</creatorcontrib><creatorcontrib>Moreno-González, Juan</creatorcontrib><creatorcontrib>Salas, Margarita</creatorcontrib><creatorcontrib>Blanco, Jorge</creatorcontrib><creatorcontrib>Redrejo-Rodríguez, Modesto</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flament-Simon, Saskia-Camille</au><au>de Toro, María</au><au>Chuprikova, Liubov</au><au>Blanco, Miguel</au><au>Moreno-González, Juan</au><au>Salas, Margarita</au><au>Blanco, Jorge</au><au>Redrejo-Rodríguez, Modesto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High diversity and variability of pipolins among a wide range of pathogenic Escherichia coli strains</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-07-27</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>12452</spage><epage>12452</epage><pages>12452-12452</pages><artnum>12452</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Self-synthesizing transposons are integrative mobile genetic elements (MGEs) that encode their own B-family DNA polymerase (PolB). Discovered a few years ago, they are proposed as key players in the evolution of several groups of DNA viruses and virus–host interaction machinery. Pipolins are the most recent addition to the group, are integrated in the genomes of bacteria from diverse phyla and also present as circular plasmids in mitochondria. Remarkably, pipolins-encoded PolBs are proficient DNA polymerases endowed with DNA priming capacity, hence the name, primer-independent PolB (piPolB). We have now surveyed the presence of pipolins in a collection of 2,238 human and animal pathogenic Escherichia coli strains and found that, although detected in only 25 positive isolates (1.1%), they are present in E. coli strains from a wide variety of pathotypes, serotypes, phylogenetic groups and sequence types. Overall, the pangenome of strains carrying pipolins is highly diverse, despite the fact that a considerable number of strains belong to only three clonal complexes (CC10, CC23 and CC32). Comparative analysis with a set of 67 additional pipolin-harboring genomes from GenBank database spanning strains from diverse origin, further confirmed these results. The genetic structure of pipolins shows great flexibility and variability, with the piPolB gene and the attachment sites being the only common features. Most pipolins contain one or more recombinases that would be involved in excision/integration of the element in the same conserved tRNA gene. This mobilization mechanism might explain the apparent incompatibility of pipolins with other integrative MGEs such as integrons. In addition, analysis of cophylogeny between pipolins and pipolin-harboring strains showed a lack of congruence between several pipolins and their host strains, in agreement with horizontal transfer between hosts. Overall, these results indicate that pipolins can serve as a vehicle for genetic transfer among circulating E. coli and possibly also among other pathogenic bacteria.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32719405</pmid><doi>10.1038/s41598-020-69356-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-07, Vol.10 (1), p.12452-12452, Article 12452
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7385651
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 631/208/212/2305
631/208/325
631/326/325/1506
Animals
Bacteria
Comparative analysis
Deoxyribonucleic acid
DNA
DNA Transposable Elements
DNA viruses
DNA-directed DNA polymerase
E coli
Escherichia coli
Escherichia coli - classification
Escherichia coli - genetics
Escherichia coli - isolation & purification
Escherichia coli - metabolism
Escherichia coli Infections - microbiology
Escherichia coli Infections - veterinary
Genetic structure
Genetic Variation
Genome, Bacterial
Genomes
Horizontal transfer
Humanities and Social Sciences
Humans
Mitochondria
multidisciplinary
Phylogeny
Plasmids
Science
Science (multidisciplinary)
Serotypes
Strains (organisms)
Transposons
tRNA
title High diversity and variability of pipolins among a wide range of pathogenic Escherichia coli strains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20diversity%20and%20variability%20of%20pipolins%20among%20a%20wide%20range%20of%20pathogenic%20Escherichia%20coli%20strains&rft.jtitle=Scientific%20reports&rft.au=Flament-Simon,%20Saskia-Camille&rft.date=2020-07-27&rft.volume=10&rft.issue=1&rft.spage=12452&rft.epage=12452&rft.pages=12452-12452&rft.artnum=12452&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-69356-6&rft_dat=%3Cproquest_pubme%3E2428061086%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427393054&rft_id=info:pmid/32719405&rfr_iscdi=true