Three-Dimensional Electrodeposition of Calcium Phosphates on Porous Nanofibrous Scaffolds and Their Controlled Release of Calcium for Bone Regeneration
To mimic the bone matrix of mineralized collagen and to impart microporous structure to facilitate cell migration and bone regeneration, we developed a nanofibrous (NF) polymer scaffold with highly interconnected pores and three-dimensional calcium phosphate coating utilizing an electrodeposition te...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-07, Vol.12 (29), p.32503-32513 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32513 |
---|---|
container_issue | 29 |
container_start_page | 32503 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Mi, Xue Gupte, Melanie J Zhang, Zhanpeng Swanson, W. Benton McCauley, Laurie K Ma, Peter X |
description | To mimic the bone matrix of mineralized collagen and to impart microporous structure to facilitate cell migration and bone regeneration, we developed a nanofibrous (NF) polymer scaffold with highly interconnected pores and three-dimensional calcium phosphate coating utilizing an electrodeposition technique. The mineral content, morphology, crystal structure, and chemical composition could be tailored by adjusting the deposition temperature, voltage, and duration. A higher voltage and a higher temperature led to a greater rate of mineralization. Furthermore, nearly linear calcium releasing kinetics was achieved from the mineralized 3D scaffolds. The releasing rate was controlled by varying the initial electrodeposition conditions. A higher deposition voltage and temperature led to slower calcium release, which was associated with the highly crystalline and stoichiometric hydroxyapatite content. This premineralized NF scaffold enhanced bone regeneration over the control scaffold in a subcutaneous implantation model, which was associated with released calcium ions in facilitating osteogenic cell proliferation. |
doi_str_mv | 10.1021/acsami.0c11003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7384879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423804538</sourcerecordid><originalsourceid>FETCH-LOGICAL-a425t-450f715d9a6cbd84a512f223bc274e11223ed0c09592ae7f817824418a3142d53</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxSMEoqVw5Yh8REjZ-u8muSDBUmilCipYztasPW5cOfFiJ0h8Er4uXna7KgdOHvm9-c1oXlW9ZHTBKGfnYDIMfkENY5SKR9Up66SsW67442Mt5Un1LOc7SpeCU_W0OhF8qTrayNPq97pPiPUHP-CYfRwhkIuAZkrR4jZmP5U_Eh1ZQTB-HshNH_O2hwkzKcJNTHHO5DOM0fnN3_qbAedisJnAaMm6R5_IKo4FGAJa8hUDQsaHSBcTeR9HLNotjphgN_N59cRByPji8J5V3z9erFeX9fWXT1erd9c1SK6mWirqGqZsB0uzsa0ExbjjXGwMbyQyVkq01NBOdRywcS1rdvdgLQgmuVXirHq7527nzYDWYNkUgt4mP0D6pSN4_a8y-l7fxp-6Ea1sm64AXh8AKf6YMU968NlgCDBiuYfmkouWSiXaYl3srSbFnBO64xhG9S5NvU9TH9IsDa8eLne038dXDG_2htKo7-KcSn75f7Q_rAqtXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423804538</pqid></control><display><type>article</type><title>Three-Dimensional Electrodeposition of Calcium Phosphates on Porous Nanofibrous Scaffolds and Their Controlled Release of Calcium for Bone Regeneration</title><source>MEDLINE</source><source>ACS Publications</source><creator>Mi, Xue ; Gupte, Melanie J ; Zhang, Zhanpeng ; Swanson, W. Benton ; McCauley, Laurie K ; Ma, Peter X</creator><creatorcontrib>Mi, Xue ; Gupte, Melanie J ; Zhang, Zhanpeng ; Swanson, W. Benton ; McCauley, Laurie K ; Ma, Peter X</creatorcontrib><description>To mimic the bone matrix of mineralized collagen and to impart microporous structure to facilitate cell migration and bone regeneration, we developed a nanofibrous (NF) polymer scaffold with highly interconnected pores and three-dimensional calcium phosphate coating utilizing an electrodeposition technique. The mineral content, morphology, crystal structure, and chemical composition could be tailored by adjusting the deposition temperature, voltage, and duration. A higher voltage and a higher temperature led to a greater rate of mineralization. Furthermore, nearly linear calcium releasing kinetics was achieved from the mineralized 3D scaffolds. The releasing rate was controlled by varying the initial electrodeposition conditions. A higher deposition voltage and temperature led to slower calcium release, which was associated with the highly crystalline and stoichiometric hydroxyapatite content. This premineralized NF scaffold enhanced bone regeneration over the control scaffold in a subcutaneous implantation model, which was associated with released calcium ions in facilitating osteogenic cell proliferation.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c11003</identifier><identifier>PMID: 32659074</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Biocompatible Materials - chemistry ; Biological and Medical Applications of Materials and Interfaces ; Bone Regeneration ; Calcium - chemistry ; Calcium - metabolism ; Calcium Phosphates - chemistry ; Cells, Cultured ; Electroplating ; Male ; Mice ; Mice, Nude ; Particle Size ; Porosity ; Rabbits ; Surface Properties</subject><ispartof>ACS applied materials & interfaces, 2020-07, Vol.12 (29), p.32503-32513</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a425t-450f715d9a6cbd84a512f223bc274e11223ed0c09592ae7f817824418a3142d53</citedby><cites>FETCH-LOGICAL-a425t-450f715d9a6cbd84a512f223bc274e11223ed0c09592ae7f817824418a3142d53</cites><orcidid>0000-0002-0191-9487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c11003$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c11003$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32659074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mi, Xue</creatorcontrib><creatorcontrib>Gupte, Melanie J</creatorcontrib><creatorcontrib>Zhang, Zhanpeng</creatorcontrib><creatorcontrib>Swanson, W. Benton</creatorcontrib><creatorcontrib>McCauley, Laurie K</creatorcontrib><creatorcontrib>Ma, Peter X</creatorcontrib><title>Three-Dimensional Electrodeposition of Calcium Phosphates on Porous Nanofibrous Scaffolds and Their Controlled Release of Calcium for Bone Regeneration</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>To mimic the bone matrix of mineralized collagen and to impart microporous structure to facilitate cell migration and bone regeneration, we developed a nanofibrous (NF) polymer scaffold with highly interconnected pores and three-dimensional calcium phosphate coating utilizing an electrodeposition technique. The mineral content, morphology, crystal structure, and chemical composition could be tailored by adjusting the deposition temperature, voltage, and duration. A higher voltage and a higher temperature led to a greater rate of mineralization. Furthermore, nearly linear calcium releasing kinetics was achieved from the mineralized 3D scaffolds. The releasing rate was controlled by varying the initial electrodeposition conditions. A higher deposition voltage and temperature led to slower calcium release, which was associated with the highly crystalline and stoichiometric hydroxyapatite content. This premineralized NF scaffold enhanced bone regeneration over the control scaffold in a subcutaneous implantation model, which was associated with released calcium ions in facilitating osteogenic cell proliferation.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>Bone Regeneration</subject><subject>Calcium - chemistry</subject><subject>Calcium - metabolism</subject><subject>Calcium Phosphates - chemistry</subject><subject>Cells, Cultured</subject><subject>Electroplating</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Particle Size</subject><subject>Porosity</subject><subject>Rabbits</subject><subject>Surface Properties</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9v1DAQxSMEoqVw5Yh8REjZ-u8muSDBUmilCipYztasPW5cOfFiJ0h8Er4uXna7KgdOHvm9-c1oXlW9ZHTBKGfnYDIMfkENY5SKR9Up66SsW67442Mt5Un1LOc7SpeCU_W0OhF8qTrayNPq97pPiPUHP-CYfRwhkIuAZkrR4jZmP5U_Eh1ZQTB-HshNH_O2hwkzKcJNTHHO5DOM0fnN3_qbAedisJnAaMm6R5_IKo4FGAJa8hUDQsaHSBcTeR9HLNotjphgN_N59cRByPji8J5V3z9erFeX9fWXT1erd9c1SK6mWirqGqZsB0uzsa0ExbjjXGwMbyQyVkq01NBOdRywcS1rdvdgLQgmuVXirHq7527nzYDWYNkUgt4mP0D6pSN4_a8y-l7fxp-6Ea1sm64AXh8AKf6YMU968NlgCDBiuYfmkouWSiXaYl3srSbFnBO64xhG9S5NvU9TH9IsDa8eLne038dXDG_2htKo7-KcSn75f7Q_rAqtXg</recordid><startdate>20200722</startdate><enddate>20200722</enddate><creator>Mi, Xue</creator><creator>Gupte, Melanie J</creator><creator>Zhang, Zhanpeng</creator><creator>Swanson, W. Benton</creator><creator>McCauley, Laurie K</creator><creator>Ma, Peter X</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0191-9487</orcidid></search><sort><creationdate>20200722</creationdate><title>Three-Dimensional Electrodeposition of Calcium Phosphates on Porous Nanofibrous Scaffolds and Their Controlled Release of Calcium for Bone Regeneration</title><author>Mi, Xue ; Gupte, Melanie J ; Zhang, Zhanpeng ; Swanson, W. Benton ; McCauley, Laurie K ; Ma, Peter X</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a425t-450f715d9a6cbd84a512f223bc274e11223ed0c09592ae7f817824418a3142d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>Bone Regeneration</topic><topic>Calcium - chemistry</topic><topic>Calcium - metabolism</topic><topic>Calcium Phosphates - chemistry</topic><topic>Cells, Cultured</topic><topic>Electroplating</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Particle Size</topic><topic>Porosity</topic><topic>Rabbits</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mi, Xue</creatorcontrib><creatorcontrib>Gupte, Melanie J</creatorcontrib><creatorcontrib>Zhang, Zhanpeng</creatorcontrib><creatorcontrib>Swanson, W. Benton</creatorcontrib><creatorcontrib>McCauley, Laurie K</creatorcontrib><creatorcontrib>Ma, Peter X</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mi, Xue</au><au>Gupte, Melanie J</au><au>Zhang, Zhanpeng</au><au>Swanson, W. Benton</au><au>McCauley, Laurie K</au><au>Ma, Peter X</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Electrodeposition of Calcium Phosphates on Porous Nanofibrous Scaffolds and Their Controlled Release of Calcium for Bone Regeneration</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-07-22</date><risdate>2020</risdate><volume>12</volume><issue>29</issue><spage>32503</spage><epage>32513</epage><pages>32503-32513</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>To mimic the bone matrix of mineralized collagen and to impart microporous structure to facilitate cell migration and bone regeneration, we developed a nanofibrous (NF) polymer scaffold with highly interconnected pores and three-dimensional calcium phosphate coating utilizing an electrodeposition technique. The mineral content, morphology, crystal structure, and chemical composition could be tailored by adjusting the deposition temperature, voltage, and duration. A higher voltage and a higher temperature led to a greater rate of mineralization. Furthermore, nearly linear calcium releasing kinetics was achieved from the mineralized 3D scaffolds. The releasing rate was controlled by varying the initial electrodeposition conditions. A higher deposition voltage and temperature led to slower calcium release, which was associated with the highly crystalline and stoichiometric hydroxyapatite content. This premineralized NF scaffold enhanced bone regeneration over the control scaffold in a subcutaneous implantation model, which was associated with released calcium ions in facilitating osteogenic cell proliferation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32659074</pmid><doi>10.1021/acsami.0c11003</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0191-9487</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-07, Vol.12 (29), p.32503-32513 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7384879 |
source | MEDLINE; ACS Publications |
subjects | Animals Biocompatible Materials - chemistry Biological and Medical Applications of Materials and Interfaces Bone Regeneration Calcium - chemistry Calcium - metabolism Calcium Phosphates - chemistry Cells, Cultured Electroplating Male Mice Mice, Nude Particle Size Porosity Rabbits Surface Properties |
title | Three-Dimensional Electrodeposition of Calcium Phosphates on Porous Nanofibrous Scaffolds and Their Controlled Release of Calcium for Bone Regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A07%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Electrodeposition%20of%20Calcium%20Phosphates%20on%20Porous%20Nanofibrous%20Scaffolds%20and%20Their%20Controlled%20Release%20of%20Calcium%20for%20Bone%20Regeneration&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Mi,%20Xue&rft.date=2020-07-22&rft.volume=12&rft.issue=29&rft.spage=32503&rft.epage=32513&rft.pages=32503-32513&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c11003&rft_dat=%3Cproquest_pubme%3E2423804538%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423804538&rft_id=info:pmid/32659074&rfr_iscdi=true |