Three-Dimensional Electrodeposition of Calcium Phosphates on Porous Nanofibrous Scaffolds and Their Controlled Release of Calcium for Bone Regeneration

To mimic the bone matrix of mineralized collagen and to impart microporous structure to facilitate cell migration and bone regeneration, we developed a nanofibrous (NF) polymer scaffold with highly interconnected pores and three-dimensional calcium phosphate coating utilizing an electrodeposition te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-07, Vol.12 (29), p.32503-32513
Hauptverfasser: Mi, Xue, Gupte, Melanie J, Zhang, Zhanpeng, Swanson, W. Benton, McCauley, Laurie K, Ma, Peter X
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32513
container_issue 29
container_start_page 32503
container_title ACS applied materials & interfaces
container_volume 12
creator Mi, Xue
Gupte, Melanie J
Zhang, Zhanpeng
Swanson, W. Benton
McCauley, Laurie K
Ma, Peter X
description To mimic the bone matrix of mineralized collagen and to impart microporous structure to facilitate cell migration and bone regeneration, we developed a nanofibrous (NF) polymer scaffold with highly interconnected pores and three-dimensional calcium phosphate coating utilizing an electrodeposition technique. The mineral content, morphology, crystal structure, and chemical composition could be tailored by adjusting the deposition temperature, voltage, and duration. A higher voltage and a higher temperature led to a greater rate of mineralization. Furthermore, nearly linear calcium releasing kinetics was achieved from the mineralized 3D scaffolds. The releasing rate was controlled by varying the initial electrodeposition conditions. A higher deposition voltage and temperature led to slower calcium release, which was associated with the highly crystalline and stoichiometric hydroxyapatite content. This premineralized NF scaffold enhanced bone regeneration over the control scaffold in a subcutaneous implantation model, which was associated with released calcium ions in facilitating osteogenic cell proliferation.
doi_str_mv 10.1021/acsami.0c11003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7384879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423804538</sourcerecordid><originalsourceid>FETCH-LOGICAL-a425t-450f715d9a6cbd84a512f223bc274e11223ed0c09592ae7f817824418a3142d53</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxSMEoqVw5Yh8REjZ-u8muSDBUmilCipYztasPW5cOfFiJ0h8Er4uXna7KgdOHvm9-c1oXlW9ZHTBKGfnYDIMfkENY5SKR9Up66SsW67442Mt5Un1LOc7SpeCU_W0OhF8qTrayNPq97pPiPUHP-CYfRwhkIuAZkrR4jZmP5U_Eh1ZQTB-HshNH_O2hwkzKcJNTHHO5DOM0fnN3_qbAedisJnAaMm6R5_IKo4FGAJa8hUDQsaHSBcTeR9HLNotjphgN_N59cRByPji8J5V3z9erFeX9fWXT1erd9c1SK6mWirqGqZsB0uzsa0ExbjjXGwMbyQyVkq01NBOdRywcS1rdvdgLQgmuVXirHq7527nzYDWYNkUgt4mP0D6pSN4_a8y-l7fxp-6Ea1sm64AXh8AKf6YMU968NlgCDBiuYfmkouWSiXaYl3srSbFnBO64xhG9S5NvU9TH9IsDa8eLne038dXDG_2htKo7-KcSn75f7Q_rAqtXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423804538</pqid></control><display><type>article</type><title>Three-Dimensional Electrodeposition of Calcium Phosphates on Porous Nanofibrous Scaffolds and Their Controlled Release of Calcium for Bone Regeneration</title><source>MEDLINE</source><source>ACS Publications</source><creator>Mi, Xue ; Gupte, Melanie J ; Zhang, Zhanpeng ; Swanson, W. Benton ; McCauley, Laurie K ; Ma, Peter X</creator><creatorcontrib>Mi, Xue ; Gupte, Melanie J ; Zhang, Zhanpeng ; Swanson, W. Benton ; McCauley, Laurie K ; Ma, Peter X</creatorcontrib><description>To mimic the bone matrix of mineralized collagen and to impart microporous structure to facilitate cell migration and bone regeneration, we developed a nanofibrous (NF) polymer scaffold with highly interconnected pores and three-dimensional calcium phosphate coating utilizing an electrodeposition technique. The mineral content, morphology, crystal structure, and chemical composition could be tailored by adjusting the deposition temperature, voltage, and duration. A higher voltage and a higher temperature led to a greater rate of mineralization. Furthermore, nearly linear calcium releasing kinetics was achieved from the mineralized 3D scaffolds. The releasing rate was controlled by varying the initial electrodeposition conditions. A higher deposition voltage and temperature led to slower calcium release, which was associated with the highly crystalline and stoichiometric hydroxyapatite content. This premineralized NF scaffold enhanced bone regeneration over the control scaffold in a subcutaneous implantation model, which was associated with released calcium ions in facilitating osteogenic cell proliferation.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c11003</identifier><identifier>PMID: 32659074</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Biocompatible Materials - chemistry ; Biological and Medical Applications of Materials and Interfaces ; Bone Regeneration ; Calcium - chemistry ; Calcium - metabolism ; Calcium Phosphates - chemistry ; Cells, Cultured ; Electroplating ; Male ; Mice ; Mice, Nude ; Particle Size ; Porosity ; Rabbits ; Surface Properties</subject><ispartof>ACS applied materials &amp; interfaces, 2020-07, Vol.12 (29), p.32503-32513</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a425t-450f715d9a6cbd84a512f223bc274e11223ed0c09592ae7f817824418a3142d53</citedby><cites>FETCH-LOGICAL-a425t-450f715d9a6cbd84a512f223bc274e11223ed0c09592ae7f817824418a3142d53</cites><orcidid>0000-0002-0191-9487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c11003$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c11003$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32659074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mi, Xue</creatorcontrib><creatorcontrib>Gupte, Melanie J</creatorcontrib><creatorcontrib>Zhang, Zhanpeng</creatorcontrib><creatorcontrib>Swanson, W. Benton</creatorcontrib><creatorcontrib>McCauley, Laurie K</creatorcontrib><creatorcontrib>Ma, Peter X</creatorcontrib><title>Three-Dimensional Electrodeposition of Calcium Phosphates on Porous Nanofibrous Scaffolds and Their Controlled Release of Calcium for Bone Regeneration</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>To mimic the bone matrix of mineralized collagen and to impart microporous structure to facilitate cell migration and bone regeneration, we developed a nanofibrous (NF) polymer scaffold with highly interconnected pores and three-dimensional calcium phosphate coating utilizing an electrodeposition technique. The mineral content, morphology, crystal structure, and chemical composition could be tailored by adjusting the deposition temperature, voltage, and duration. A higher voltage and a higher temperature led to a greater rate of mineralization. Furthermore, nearly linear calcium releasing kinetics was achieved from the mineralized 3D scaffolds. The releasing rate was controlled by varying the initial electrodeposition conditions. A higher deposition voltage and temperature led to slower calcium release, which was associated with the highly crystalline and stoichiometric hydroxyapatite content. This premineralized NF scaffold enhanced bone regeneration over the control scaffold in a subcutaneous implantation model, which was associated with released calcium ions in facilitating osteogenic cell proliferation.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>Bone Regeneration</subject><subject>Calcium - chemistry</subject><subject>Calcium - metabolism</subject><subject>Calcium Phosphates - chemistry</subject><subject>Cells, Cultured</subject><subject>Electroplating</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Particle Size</subject><subject>Porosity</subject><subject>Rabbits</subject><subject>Surface Properties</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9v1DAQxSMEoqVw5Yh8REjZ-u8muSDBUmilCipYztasPW5cOfFiJ0h8Er4uXna7KgdOHvm9-c1oXlW9ZHTBKGfnYDIMfkENY5SKR9Up66SsW67442Mt5Un1LOc7SpeCU_W0OhF8qTrayNPq97pPiPUHP-CYfRwhkIuAZkrR4jZmP5U_Eh1ZQTB-HshNH_O2hwkzKcJNTHHO5DOM0fnN3_qbAedisJnAaMm6R5_IKo4FGAJa8hUDQsaHSBcTeR9HLNotjphgN_N59cRByPji8J5V3z9erFeX9fWXT1erd9c1SK6mWirqGqZsB0uzsa0ExbjjXGwMbyQyVkq01NBOdRywcS1rdvdgLQgmuVXirHq7527nzYDWYNkUgt4mP0D6pSN4_a8y-l7fxp-6Ea1sm64AXh8AKf6YMU968NlgCDBiuYfmkouWSiXaYl3srSbFnBO64xhG9S5NvU9TH9IsDa8eLne038dXDG_2htKo7-KcSn75f7Q_rAqtXg</recordid><startdate>20200722</startdate><enddate>20200722</enddate><creator>Mi, Xue</creator><creator>Gupte, Melanie J</creator><creator>Zhang, Zhanpeng</creator><creator>Swanson, W. Benton</creator><creator>McCauley, Laurie K</creator><creator>Ma, Peter X</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0191-9487</orcidid></search><sort><creationdate>20200722</creationdate><title>Three-Dimensional Electrodeposition of Calcium Phosphates on Porous Nanofibrous Scaffolds and Their Controlled Release of Calcium for Bone Regeneration</title><author>Mi, Xue ; Gupte, Melanie J ; Zhang, Zhanpeng ; Swanson, W. Benton ; McCauley, Laurie K ; Ma, Peter X</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a425t-450f715d9a6cbd84a512f223bc274e11223ed0c09592ae7f817824418a3142d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>Bone Regeneration</topic><topic>Calcium - chemistry</topic><topic>Calcium - metabolism</topic><topic>Calcium Phosphates - chemistry</topic><topic>Cells, Cultured</topic><topic>Electroplating</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Particle Size</topic><topic>Porosity</topic><topic>Rabbits</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mi, Xue</creatorcontrib><creatorcontrib>Gupte, Melanie J</creatorcontrib><creatorcontrib>Zhang, Zhanpeng</creatorcontrib><creatorcontrib>Swanson, W. Benton</creatorcontrib><creatorcontrib>McCauley, Laurie K</creatorcontrib><creatorcontrib>Ma, Peter X</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mi, Xue</au><au>Gupte, Melanie J</au><au>Zhang, Zhanpeng</au><au>Swanson, W. Benton</au><au>McCauley, Laurie K</au><au>Ma, Peter X</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Electrodeposition of Calcium Phosphates on Porous Nanofibrous Scaffolds and Their Controlled Release of Calcium for Bone Regeneration</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-07-22</date><risdate>2020</risdate><volume>12</volume><issue>29</issue><spage>32503</spage><epage>32513</epage><pages>32503-32513</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>To mimic the bone matrix of mineralized collagen and to impart microporous structure to facilitate cell migration and bone regeneration, we developed a nanofibrous (NF) polymer scaffold with highly interconnected pores and three-dimensional calcium phosphate coating utilizing an electrodeposition technique. The mineral content, morphology, crystal structure, and chemical composition could be tailored by adjusting the deposition temperature, voltage, and duration. A higher voltage and a higher temperature led to a greater rate of mineralization. Furthermore, nearly linear calcium releasing kinetics was achieved from the mineralized 3D scaffolds. The releasing rate was controlled by varying the initial electrodeposition conditions. A higher deposition voltage and temperature led to slower calcium release, which was associated with the highly crystalline and stoichiometric hydroxyapatite content. This premineralized NF scaffold enhanced bone regeneration over the control scaffold in a subcutaneous implantation model, which was associated with released calcium ions in facilitating osteogenic cell proliferation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32659074</pmid><doi>10.1021/acsami.0c11003</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0191-9487</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-07, Vol.12 (29), p.32503-32513
issn 1944-8244
1944-8252
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7384879
source MEDLINE; ACS Publications
subjects Animals
Biocompatible Materials - chemistry
Biological and Medical Applications of Materials and Interfaces
Bone Regeneration
Calcium - chemistry
Calcium - metabolism
Calcium Phosphates - chemistry
Cells, Cultured
Electroplating
Male
Mice
Mice, Nude
Particle Size
Porosity
Rabbits
Surface Properties
title Three-Dimensional Electrodeposition of Calcium Phosphates on Porous Nanofibrous Scaffolds and Their Controlled Release of Calcium for Bone Regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A07%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Electrodeposition%20of%20Calcium%20Phosphates%20on%20Porous%20Nanofibrous%20Scaffolds%20and%20Their%20Controlled%20Release%20of%20Calcium%20for%20Bone%20Regeneration&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Mi,%20Xue&rft.date=2020-07-22&rft.volume=12&rft.issue=29&rft.spage=32503&rft.epage=32513&rft.pages=32503-32513&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c11003&rft_dat=%3Cproquest_pubme%3E2423804538%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423804538&rft_id=info:pmid/32659074&rfr_iscdi=true