Autocatalytic Metallization of Fabrics Using Si Ink, for Biosensors, Batteries and Energy Harvesting

Commercially available metal inks are mainly designed for planar substrates (for example, polyethylene terephthalate foils or ceramics), and they contain hydrophobic polymer binders that fill the pores in fabrics when printed, thus resulting in hydrophobic electrodes. Here, a low‐cost binder‐free me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2019-01, Vol.29 (1), p.1804798-n/a
Hauptverfasser: Grell, Max, Dincer, Can, Le, Thao, Lauri, Alberto, Nunez Bajo, Estefania, Kasimatis, Michael, Barandun, Giandrin, Maier, Stefan A., Cass, Anthony E. G., Güder, Firat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page 1804798
container_title Advanced functional materials
container_volume 29
creator Grell, Max
Dincer, Can
Le, Thao
Lauri, Alberto
Nunez Bajo, Estefania
Kasimatis, Michael
Barandun, Giandrin
Maier, Stefan A.
Cass, Anthony E. G.
Güder, Firat
description Commercially available metal inks are mainly designed for planar substrates (for example, polyethylene terephthalate foils or ceramics), and they contain hydrophobic polymer binders that fill the pores in fabrics when printed, thus resulting in hydrophobic electrodes. Here, a low‐cost binder‐free method for the metallization of woven and nonwoven fabrics is presented that preserves the 3D structure and hydrophilicity of the substrate. Metals such as Au, Ag, and Pt are grown autocatalytically, using metal salts, inside the fibrous network of fabrics at room temperature in a two‐step process, with a water‐based silicon particle ink acting as precursor. Using this method, (patterned) metallized fabrics are being enabled to be produced with low electrical resistance (less than 3.5 Ω sq−1). In addition to fabrics, the method is also compatible with other 3D hydrophilic substrates such as nitrocellulose membranes. The versatility of this method is demonstrated by producing coil antennas for wireless energy harvesting, Ag–Zn batteries for energy storage, electrochemical biosensors for the detection of DNA/proteins, and as a substrate for optical sensing by surface enhanced Raman spectroscopy. In the future, this method of metallization may pave the way for new classes of high‐performance devices using low‐cost fabrics. Hydrophilic metallization on fabrics for new high‐performance devices is demonstrated. A wide range of metals are deposited inside fabrics (paper, cotton) and nitrocellulose membranes, without modifying the surface. Coil antennas are then demonstrated for wireless energy harvesting, Ag–Zn batteries for energy storage, electrochemical biosensors for DNA/protein detection, and a substrate for surface enhanced Raman spectroscopy.
doi_str_mv 10.1002/adfm.201804798
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7384005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429778966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5348-9136a643d0b626f8961026e8a7169f6ab756a0180dae151547daa86dfb56ec0d3</originalsourceid><addsrcrecordid>eNqFkUtPGzEUha2qVXl122VlqZsuSOrHjO3ZIIVHAAnEApDYWXfGntR0Ygd7hir8ehwF0pYNK1_rfvfoHB2EvlIypoSwn2Da-ZgRqkghK_UBbVNBxYgTpj5uZnq3hXZSuieESsmLz2iLM8l5_mwjMxn60EAP3bJ3Db60eercE_QueBxaPIU6uibh2-T8DF87fO5_7-M2RHzoQrI-hZj28SH0vY3OJgze4BNv42yJzyA-2tTnuz30qYUu2S8v7y66nZ7cHJ2NLq5Oz48mF6Om5IUaVZQLEAU3pBZMtKoSlDBhFUgqqlZALUsBq6gGLC1pWUgDoIRp61LYhhi-iw7WuouhnlvTWN9H6PQiujnEpQ7g9P8b737pWXjUkquCkDIL_HgRiOFhyOb13KXGdh14G4akWcEqKbMxkdHvb9D7MESf42lGRQZloUimxmuqiSGlaNuNGUr0qkC9KlBvCswH3_6NsMFfG8tAtQb-uM4u35HTk-Pp5V_xZ8jdqCc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162427480</pqid></control><display><type>article</type><title>Autocatalytic Metallization of Fabrics Using Si Ink, for Biosensors, Batteries and Energy Harvesting</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Grell, Max ; Dincer, Can ; Le, Thao ; Lauri, Alberto ; Nunez Bajo, Estefania ; Kasimatis, Michael ; Barandun, Giandrin ; Maier, Stefan A. ; Cass, Anthony E. G. ; Güder, Firat</creator><creatorcontrib>Grell, Max ; Dincer, Can ; Le, Thao ; Lauri, Alberto ; Nunez Bajo, Estefania ; Kasimatis, Michael ; Barandun, Giandrin ; Maier, Stefan A. ; Cass, Anthony E. G. ; Güder, Firat</creatorcontrib><description>Commercially available metal inks are mainly designed for planar substrates (for example, polyethylene terephthalate foils or ceramics), and they contain hydrophobic polymer binders that fill the pores in fabrics when printed, thus resulting in hydrophobic electrodes. Here, a low‐cost binder‐free method for the metallization of woven and nonwoven fabrics is presented that preserves the 3D structure and hydrophilicity of the substrate. Metals such as Au, Ag, and Pt are grown autocatalytically, using metal salts, inside the fibrous network of fabrics at room temperature in a two‐step process, with a water‐based silicon particle ink acting as precursor. Using this method, (patterned) metallized fabrics are being enabled to be produced with low electrical resistance (less than 3.5 Ω sq−1). In addition to fabrics, the method is also compatible with other 3D hydrophilic substrates such as nitrocellulose membranes. The versatility of this method is demonstrated by producing coil antennas for wireless energy harvesting, Ag–Zn batteries for energy storage, electrochemical biosensors for the detection of DNA/proteins, and as a substrate for optical sensing by surface enhanced Raman spectroscopy. In the future, this method of metallization may pave the way for new classes of high‐performance devices using low‐cost fabrics. Hydrophilic metallization on fabrics for new high‐performance devices is demonstrated. A wide range of metals are deposited inside fabrics (paper, cotton) and nitrocellulose membranes, without modifying the surface. Coil antennas are then demonstrated for wireless energy harvesting, Ag–Zn batteries for energy storage, electrochemical biosensors for DNA/protein detection, and a substrate for surface enhanced Raman spectroscopy.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201804798</identifier><identifier>PMID: 32733177</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biosensors ; Cellulose esters ; Cellulose nitrate ; Coils ; Deoxyribonucleic acid ; DNA ; Energy harvesting ; energy harvesting and storage ; Energy storage ; Fabrics ; Foils ; Gold ; Hydrophobicity ; Inks ; Materials science ; Metallizing ; Platinum ; Polyethylene terephthalate ; Proteins ; Raman spectroscopy ; sensing ; Silicon ; Silver ; Storage batteries ; Substrates ; Textile composites ; textiles</subject><ispartof>Advanced functional materials, 2019-01, Vol.29 (1), p.1804798-n/a</ispartof><rights>2018 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5348-9136a643d0b626f8961026e8a7169f6ab756a0180dae151547daa86dfb56ec0d3</citedby><cites>FETCH-LOGICAL-c5348-9136a643d0b626f8961026e8a7169f6ab756a0180dae151547daa86dfb56ec0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201804798$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201804798$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32733177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grell, Max</creatorcontrib><creatorcontrib>Dincer, Can</creatorcontrib><creatorcontrib>Le, Thao</creatorcontrib><creatorcontrib>Lauri, Alberto</creatorcontrib><creatorcontrib>Nunez Bajo, Estefania</creatorcontrib><creatorcontrib>Kasimatis, Michael</creatorcontrib><creatorcontrib>Barandun, Giandrin</creatorcontrib><creatorcontrib>Maier, Stefan A.</creatorcontrib><creatorcontrib>Cass, Anthony E. G.</creatorcontrib><creatorcontrib>Güder, Firat</creatorcontrib><title>Autocatalytic Metallization of Fabrics Using Si Ink, for Biosensors, Batteries and Energy Harvesting</title><title>Advanced functional materials</title><addtitle>Adv Funct Mater</addtitle><description>Commercially available metal inks are mainly designed for planar substrates (for example, polyethylene terephthalate foils or ceramics), and they contain hydrophobic polymer binders that fill the pores in fabrics when printed, thus resulting in hydrophobic electrodes. Here, a low‐cost binder‐free method for the metallization of woven and nonwoven fabrics is presented that preserves the 3D structure and hydrophilicity of the substrate. Metals such as Au, Ag, and Pt are grown autocatalytically, using metal salts, inside the fibrous network of fabrics at room temperature in a two‐step process, with a water‐based silicon particle ink acting as precursor. Using this method, (patterned) metallized fabrics are being enabled to be produced with low electrical resistance (less than 3.5 Ω sq−1). In addition to fabrics, the method is also compatible with other 3D hydrophilic substrates such as nitrocellulose membranes. The versatility of this method is demonstrated by producing coil antennas for wireless energy harvesting, Ag–Zn batteries for energy storage, electrochemical biosensors for the detection of DNA/proteins, and as a substrate for optical sensing by surface enhanced Raman spectroscopy. In the future, this method of metallization may pave the way for new classes of high‐performance devices using low‐cost fabrics. Hydrophilic metallization on fabrics for new high‐performance devices is demonstrated. A wide range of metals are deposited inside fabrics (paper, cotton) and nitrocellulose membranes, without modifying the surface. Coil antennas are then demonstrated for wireless energy harvesting, Ag–Zn batteries for energy storage, electrochemical biosensors for DNA/protein detection, and a substrate for surface enhanced Raman spectroscopy.</description><subject>Biosensors</subject><subject>Cellulose esters</subject><subject>Cellulose nitrate</subject><subject>Coils</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Energy harvesting</subject><subject>energy harvesting and storage</subject><subject>Energy storage</subject><subject>Fabrics</subject><subject>Foils</subject><subject>Gold</subject><subject>Hydrophobicity</subject><subject>Inks</subject><subject>Materials science</subject><subject>Metallizing</subject><subject>Platinum</subject><subject>Polyethylene terephthalate</subject><subject>Proteins</subject><subject>Raman spectroscopy</subject><subject>sensing</subject><subject>Silicon</subject><subject>Silver</subject><subject>Storage batteries</subject><subject>Substrates</subject><subject>Textile composites</subject><subject>textiles</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkUtPGzEUha2qVXl122VlqZsuSOrHjO3ZIIVHAAnEApDYWXfGntR0Ygd7hir8ehwF0pYNK1_rfvfoHB2EvlIypoSwn2Da-ZgRqkghK_UBbVNBxYgTpj5uZnq3hXZSuieESsmLz2iLM8l5_mwjMxn60EAP3bJ3Db60eercE_QueBxaPIU6uibh2-T8DF87fO5_7-M2RHzoQrI-hZj28SH0vY3OJgze4BNv42yJzyA-2tTnuz30qYUu2S8v7y66nZ7cHJ2NLq5Oz48mF6Om5IUaVZQLEAU3pBZMtKoSlDBhFUgqqlZALUsBq6gGLC1pWUgDoIRp61LYhhi-iw7WuouhnlvTWN9H6PQiujnEpQ7g9P8b737pWXjUkquCkDIL_HgRiOFhyOb13KXGdh14G4akWcEqKbMxkdHvb9D7MESf42lGRQZloUimxmuqiSGlaNuNGUr0qkC9KlBvCswH3_6NsMFfG8tAtQb-uM4u35HTk-Pp5V_xZ8jdqCc</recordid><startdate>20190104</startdate><enddate>20190104</enddate><creator>Grell, Max</creator><creator>Dincer, Can</creator><creator>Le, Thao</creator><creator>Lauri, Alberto</creator><creator>Nunez Bajo, Estefania</creator><creator>Kasimatis, Michael</creator><creator>Barandun, Giandrin</creator><creator>Maier, Stefan A.</creator><creator>Cass, Anthony E. G.</creator><creator>Güder, Firat</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190104</creationdate><title>Autocatalytic Metallization of Fabrics Using Si Ink, for Biosensors, Batteries and Energy Harvesting</title><author>Grell, Max ; Dincer, Can ; Le, Thao ; Lauri, Alberto ; Nunez Bajo, Estefania ; Kasimatis, Michael ; Barandun, Giandrin ; Maier, Stefan A. ; Cass, Anthony E. G. ; Güder, Firat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5348-9136a643d0b626f8961026e8a7169f6ab756a0180dae151547daa86dfb56ec0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biosensors</topic><topic>Cellulose esters</topic><topic>Cellulose nitrate</topic><topic>Coils</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Energy harvesting</topic><topic>energy harvesting and storage</topic><topic>Energy storage</topic><topic>Fabrics</topic><topic>Foils</topic><topic>Gold</topic><topic>Hydrophobicity</topic><topic>Inks</topic><topic>Materials science</topic><topic>Metallizing</topic><topic>Platinum</topic><topic>Polyethylene terephthalate</topic><topic>Proteins</topic><topic>Raman spectroscopy</topic><topic>sensing</topic><topic>Silicon</topic><topic>Silver</topic><topic>Storage batteries</topic><topic>Substrates</topic><topic>Textile composites</topic><topic>textiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grell, Max</creatorcontrib><creatorcontrib>Dincer, Can</creatorcontrib><creatorcontrib>Le, Thao</creatorcontrib><creatorcontrib>Lauri, Alberto</creatorcontrib><creatorcontrib>Nunez Bajo, Estefania</creatorcontrib><creatorcontrib>Kasimatis, Michael</creatorcontrib><creatorcontrib>Barandun, Giandrin</creatorcontrib><creatorcontrib>Maier, Stefan A.</creatorcontrib><creatorcontrib>Cass, Anthony E. G.</creatorcontrib><creatorcontrib>Güder, Firat</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grell, Max</au><au>Dincer, Can</au><au>Le, Thao</au><au>Lauri, Alberto</au><au>Nunez Bajo, Estefania</au><au>Kasimatis, Michael</au><au>Barandun, Giandrin</au><au>Maier, Stefan A.</au><au>Cass, Anthony E. G.</au><au>Güder, Firat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autocatalytic Metallization of Fabrics Using Si Ink, for Biosensors, Batteries and Energy Harvesting</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv Funct Mater</addtitle><date>2019-01-04</date><risdate>2019</risdate><volume>29</volume><issue>1</issue><spage>1804798</spage><epage>n/a</epage><pages>1804798-n/a</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Commercially available metal inks are mainly designed for planar substrates (for example, polyethylene terephthalate foils or ceramics), and they contain hydrophobic polymer binders that fill the pores in fabrics when printed, thus resulting in hydrophobic electrodes. Here, a low‐cost binder‐free method for the metallization of woven and nonwoven fabrics is presented that preserves the 3D structure and hydrophilicity of the substrate. Metals such as Au, Ag, and Pt are grown autocatalytically, using metal salts, inside the fibrous network of fabrics at room temperature in a two‐step process, with a water‐based silicon particle ink acting as precursor. Using this method, (patterned) metallized fabrics are being enabled to be produced with low electrical resistance (less than 3.5 Ω sq−1). In addition to fabrics, the method is also compatible with other 3D hydrophilic substrates such as nitrocellulose membranes. The versatility of this method is demonstrated by producing coil antennas for wireless energy harvesting, Ag–Zn batteries for energy storage, electrochemical biosensors for the detection of DNA/proteins, and as a substrate for optical sensing by surface enhanced Raman spectroscopy. In the future, this method of metallization may pave the way for new classes of high‐performance devices using low‐cost fabrics. Hydrophilic metallization on fabrics for new high‐performance devices is demonstrated. A wide range of metals are deposited inside fabrics (paper, cotton) and nitrocellulose membranes, without modifying the surface. Coil antennas are then demonstrated for wireless energy harvesting, Ag–Zn batteries for energy storage, electrochemical biosensors for DNA/protein detection, and a substrate for surface enhanced Raman spectroscopy.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32733177</pmid><doi>10.1002/adfm.201804798</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2019-01, Vol.29 (1), p.1804798-n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7384005
source Wiley Online Library Journals Frontfile Complete
subjects Biosensors
Cellulose esters
Cellulose nitrate
Coils
Deoxyribonucleic acid
DNA
Energy harvesting
energy harvesting and storage
Energy storage
Fabrics
Foils
Gold
Hydrophobicity
Inks
Materials science
Metallizing
Platinum
Polyethylene terephthalate
Proteins
Raman spectroscopy
sensing
Silicon
Silver
Storage batteries
Substrates
Textile composites
textiles
title Autocatalytic Metallization of Fabrics Using Si Ink, for Biosensors, Batteries and Energy Harvesting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autocatalytic%20Metallization%20of%20Fabrics%20Using%20Si%20Ink,%20for%20Biosensors,%20Batteries%20and%20Energy%20Harvesting&rft.jtitle=Advanced%20functional%20materials&rft.au=Grell,%20Max&rft.date=2019-01-04&rft.volume=29&rft.issue=1&rft.spage=1804798&rft.epage=n/a&rft.pages=1804798-n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201804798&rft_dat=%3Cproquest_pubme%3E2429778966%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162427480&rft_id=info:pmid/32733177&rfr_iscdi=true