Identification of critical isthmus using coherent mapping in patients with scar‐related atrial tachycardia
Introduction Accurate identification of slow conducting regions in patients with scar‐related atrial tachycardia (AT) is difficult using conventional electrogram annotation for cardiac electroanatomic mapping (EAM). Estimating delays between neighboring mapping sites is a potential option for activa...
Gespeichert in:
Veröffentlicht in: | Journal of cardiovascular electrophysiology 2020-06, Vol.31 (6), p.1436-1447 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1447 |
---|---|
container_issue | 6 |
container_start_page | 1436 |
container_title | Journal of cardiovascular electrophysiology |
container_volume | 31 |
creator | Vicera, Jennifer Jeanne B. Lin, Yenn‐Jiang Lee, Po‐Tseng Chang, Shih‐Lin Lo, Li‐Wei Hu, Yu‐Feng Chung, Fa‐Po Lin, Chin‐Yu Chang, Ting‐Yung Tuan, Ta‐Chuan Chao, Tze‐Fan Liao, Jo‐Nan Wu, Cheng‐I Liu, Chih‐Min Lin, Chung‐Hsing Chuang, Chieh‐Mao Chen, Chun‐Chao Chin, Chye Gen Liu, Shin‐Huei Cheng, Wen‐Han Tai, Le Phat Huang, Sung‐Hao Chou, Ching‐Yao Lugtu, Isaiah Liu, Ching‐Han Chen, Shih‐Ann |
description | Introduction
Accurate identification of slow conducting regions in patients with scar‐related atrial tachycardia (AT) is difficult using conventional electrogram annotation for cardiac electroanatomic mapping (EAM). Estimating delays between neighboring mapping sites is a potential option for activation map computation. We describe our initial experience with CARTO 3 Coherent Mapping (Biosense Webster Inc,) in the ablation of complex ATs.
Methods
Twenty patients (58 ± 10 y/o, 15 males) with complex ATs were included. We created three‐dimensional EAMs using CARTO 3 system with CONFIDENSE and a high‐resolution mapping catheter (Biosense Webster Inc). Local activation time and coherent maps were used to aid in the identification of conduction isthmus (CI) and focal origin sites. System‐defined slow or nonconducting zones and CI, defined by concealed entrainment (postpacing interval |
doi_str_mv | 10.1111/jce.14457 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7383970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384820153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4437-bcc9e7b86945aba5a8758d136395367338db57463b53b3d8a838cd3f690a2c263</originalsourceid><addsrcrecordid>eNp1kcFu1TAQRS1ERUthwQ8gS2xgkdbJ2LGzQUJPBVpVYgNra-I4jZ-SONhOq7frJ_Qb-RJcXqkAidl4PHN8da1LyKuSnZS5TrfGnpScC_mEHJWCs0KVtXyae8ZFAUrCIXke45axEmomnpFDqKpKCmBHZDzv7Jxc7wwm52fqe2qCS_k6UhfTMK2RrtHNV9T4wYbM0gmX5X7gZrrkR3kU6Y1LA40Gw4_bu2BHTLajmILLKgnNsMubzuELctDjGO3Lh_OYfPt49nXzubj88ul88-GyMJyDLFpjGitbVTdcYIsClRSqy96hEVBLANW1QvIaWgEtdAoVKNNBXzcMK1PVcEze73WXtZ1sZ7LFgKNegpsw7LRHp__ezG7QV_5aS1DQSJYF3j4IBP99tTHpyUVjxxFn69eoK1BcVawUkNE3_6Bbv4Y5f09XnCnBpASZqXd7ygQfY7D9o5mS6fsMdc5Q_8ows6__dP9I_g4tA6d74MaNdvd_JX2xOdtL_gQsw6h6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408507737</pqid></control><display><type>article</type><title>Identification of critical isthmus using coherent mapping in patients with scar‐related atrial tachycardia</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Vicera, Jennifer Jeanne B. ; Lin, Yenn‐Jiang ; Lee, Po‐Tseng ; Chang, Shih‐Lin ; Lo, Li‐Wei ; Hu, Yu‐Feng ; Chung, Fa‐Po ; Lin, Chin‐Yu ; Chang, Ting‐Yung ; Tuan, Ta‐Chuan ; Chao, Tze‐Fan ; Liao, Jo‐Nan ; Wu, Cheng‐I ; Liu, Chih‐Min ; Lin, Chung‐Hsing ; Chuang, Chieh‐Mao ; Chen, Chun‐Chao ; Chin, Chye Gen ; Liu, Shin‐Huei ; Cheng, Wen‐Han ; Tai, Le Phat ; Huang, Sung‐Hao ; Chou, Ching‐Yao ; Lugtu, Isaiah ; Liu, Ching‐Han ; Chen, Shih‐Ann</creator><creatorcontrib>Vicera, Jennifer Jeanne B. ; Lin, Yenn‐Jiang ; Lee, Po‐Tseng ; Chang, Shih‐Lin ; Lo, Li‐Wei ; Hu, Yu‐Feng ; Chung, Fa‐Po ; Lin, Chin‐Yu ; Chang, Ting‐Yung ; Tuan, Ta‐Chuan ; Chao, Tze‐Fan ; Liao, Jo‐Nan ; Wu, Cheng‐I ; Liu, Chih‐Min ; Lin, Chung‐Hsing ; Chuang, Chieh‐Mao ; Chen, Chun‐Chao ; Chin, Chye Gen ; Liu, Shin‐Huei ; Cheng, Wen‐Han ; Tai, Le Phat ; Huang, Sung‐Hao ; Chou, Ching‐Yao ; Lugtu, Isaiah ; Liu, Ching‐Han ; Chen, Shih‐Ann</creatorcontrib><description>Introduction
Accurate identification of slow conducting regions in patients with scar‐related atrial tachycardia (AT) is difficult using conventional electrogram annotation for cardiac electroanatomic mapping (EAM). Estimating delays between neighboring mapping sites is a potential option for activation map computation. We describe our initial experience with CARTO 3 Coherent Mapping (Biosense Webster Inc,) in the ablation of complex ATs.
Methods
Twenty patients (58 ± 10 y/o, 15 males) with complex ATs were included. We created three‐dimensional EAMs using CARTO 3 system with CONFIDENSE and a high‐resolution mapping catheter (Biosense Webster Inc). Local activation time and coherent maps were used to aid in the identification of conduction isthmus (CI) and focal origin sites. System‐defined slow or nonconducting zones and CI, defined by concealed entrainment (postpacing interval < 20 ms), CV < 0.3 m/s and local fractionated electrograms were evaluated.
Results
Twenty‐six complex ATs were mapped (mean: 1.3 ± 0.7 maps/pt; 4 focal, 22 isthmus‐dependent). Coherent mapping was better in identifying CI/breakout sites where ablation terminated the tachycardia (96.2% vs 69.2%; P = .010) and identified significantly more CI (mean/chamber 2.0 ± 1.1 vs 1.0 ± 0.7; P < .001) with narrower width (19.8 ± 10.5 vs 43.0 ± 23.9 mm; P < .001) than conventional mapping. Ablation at origin and CI sites was successful in 25 (96.2%) with long‐term recurrence in 25%.
Conclusions
Coherent mapping with conduction velocity vectors derived from adjacent mapping sites significantly improved the identification of CI sites in scar‐related ATs with isthmus‐dependent re‐entry better than conventional mapping. It may be used in conjunction with conventional mapping strategies to facilitate recognition of slow conduction areas and critical sites that are important targets of ablation.</description><identifier>ISSN: 1045-3873</identifier><identifier>EISSN: 1540-8167</identifier><identifier>DOI: 10.1111/jce.14457</identifier><identifier>PMID: 32227530</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Ablation ; Action Potentials ; activation mapping ; Aged ; Algorithms ; atrial tachycardia ; Cardiac arrhythmia ; Catheter Ablation ; Catheters ; Cicatrix - complications ; Cicatrix - diagnosis ; coherent mapping ; Conduction ; Electrophysiologic Techniques, Cardiac ; Entrainment ; Female ; focal atrial tachycardia ; Heart Conduction System - physiopathology ; Heart Conduction System - surgery ; Heart Rate ; Humans ; Identification ; Male ; Mapping ; Middle Aged ; Observer Variation ; Original ; Pilot Projects ; Predictive Value of Tests ; Prospective Studies ; Reproducibility of Results ; scar‐related macro re‐entrant ; Signal Processing, Computer-Assisted ; Tachycardia ; Tachycardia, Supraventricular - diagnosis ; Tachycardia, Supraventricular - etiology ; Tachycardia, Supraventricular - physiopathology ; Tachycardia, Supraventricular - surgery ; Time Factors ; Treatment Outcome</subject><ispartof>Journal of cardiovascular electrophysiology, 2020-06, Vol.31 (6), p.1436-1447</ispartof><rights>2020 The Authors. Published by Wiley Periodicals, Inc.</rights><rights>2020 The Authors. Journal of Cardiovascular Electrophysiology Published by Wiley Periodicals, Inc.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4437-bcc9e7b86945aba5a8758d136395367338db57463b53b3d8a838cd3f690a2c263</citedby><cites>FETCH-LOGICAL-c4437-bcc9e7b86945aba5a8758d136395367338db57463b53b3d8a838cd3f690a2c263</cites><orcidid>0000-0003-0545-2156 ; 0000-0002-7461-2793 ; 0000-0001-6026-353X ; 0000-0003-3282-7523 ; 0000-0002-4888-3709 ; 0000-0001-9102-227X ; 0000-0002-6587-3094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjce.14457$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjce.14457$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32227530$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vicera, Jennifer Jeanne B.</creatorcontrib><creatorcontrib>Lin, Yenn‐Jiang</creatorcontrib><creatorcontrib>Lee, Po‐Tseng</creatorcontrib><creatorcontrib>Chang, Shih‐Lin</creatorcontrib><creatorcontrib>Lo, Li‐Wei</creatorcontrib><creatorcontrib>Hu, Yu‐Feng</creatorcontrib><creatorcontrib>Chung, Fa‐Po</creatorcontrib><creatorcontrib>Lin, Chin‐Yu</creatorcontrib><creatorcontrib>Chang, Ting‐Yung</creatorcontrib><creatorcontrib>Tuan, Ta‐Chuan</creatorcontrib><creatorcontrib>Chao, Tze‐Fan</creatorcontrib><creatorcontrib>Liao, Jo‐Nan</creatorcontrib><creatorcontrib>Wu, Cheng‐I</creatorcontrib><creatorcontrib>Liu, Chih‐Min</creatorcontrib><creatorcontrib>Lin, Chung‐Hsing</creatorcontrib><creatorcontrib>Chuang, Chieh‐Mao</creatorcontrib><creatorcontrib>Chen, Chun‐Chao</creatorcontrib><creatorcontrib>Chin, Chye Gen</creatorcontrib><creatorcontrib>Liu, Shin‐Huei</creatorcontrib><creatorcontrib>Cheng, Wen‐Han</creatorcontrib><creatorcontrib>Tai, Le Phat</creatorcontrib><creatorcontrib>Huang, Sung‐Hao</creatorcontrib><creatorcontrib>Chou, Ching‐Yao</creatorcontrib><creatorcontrib>Lugtu, Isaiah</creatorcontrib><creatorcontrib>Liu, Ching‐Han</creatorcontrib><creatorcontrib>Chen, Shih‐Ann</creatorcontrib><title>Identification of critical isthmus using coherent mapping in patients with scar‐related atrial tachycardia</title><title>Journal of cardiovascular electrophysiology</title><addtitle>J Cardiovasc Electrophysiol</addtitle><description>Introduction
Accurate identification of slow conducting regions in patients with scar‐related atrial tachycardia (AT) is difficult using conventional electrogram annotation for cardiac electroanatomic mapping (EAM). Estimating delays between neighboring mapping sites is a potential option for activation map computation. We describe our initial experience with CARTO 3 Coherent Mapping (Biosense Webster Inc,) in the ablation of complex ATs.
Methods
Twenty patients (58 ± 10 y/o, 15 males) with complex ATs were included. We created three‐dimensional EAMs using CARTO 3 system with CONFIDENSE and a high‐resolution mapping catheter (Biosense Webster Inc). Local activation time and coherent maps were used to aid in the identification of conduction isthmus (CI) and focal origin sites. System‐defined slow or nonconducting zones and CI, defined by concealed entrainment (postpacing interval < 20 ms), CV < 0.3 m/s and local fractionated electrograms were evaluated.
Results
Twenty‐six complex ATs were mapped (mean: 1.3 ± 0.7 maps/pt; 4 focal, 22 isthmus‐dependent). Coherent mapping was better in identifying CI/breakout sites where ablation terminated the tachycardia (96.2% vs 69.2%; P = .010) and identified significantly more CI (mean/chamber 2.0 ± 1.1 vs 1.0 ± 0.7; P < .001) with narrower width (19.8 ± 10.5 vs 43.0 ± 23.9 mm; P < .001) than conventional mapping. Ablation at origin and CI sites was successful in 25 (96.2%) with long‐term recurrence in 25%.
Conclusions
Coherent mapping with conduction velocity vectors derived from adjacent mapping sites significantly improved the identification of CI sites in scar‐related ATs with isthmus‐dependent re‐entry better than conventional mapping. It may be used in conjunction with conventional mapping strategies to facilitate recognition of slow conduction areas and critical sites that are important targets of ablation.</description><subject>Ablation</subject><subject>Action Potentials</subject><subject>activation mapping</subject><subject>Aged</subject><subject>Algorithms</subject><subject>atrial tachycardia</subject><subject>Cardiac arrhythmia</subject><subject>Catheter Ablation</subject><subject>Catheters</subject><subject>Cicatrix - complications</subject><subject>Cicatrix - diagnosis</subject><subject>coherent mapping</subject><subject>Conduction</subject><subject>Electrophysiologic Techniques, Cardiac</subject><subject>Entrainment</subject><subject>Female</subject><subject>focal atrial tachycardia</subject><subject>Heart Conduction System - physiopathology</subject><subject>Heart Conduction System - surgery</subject><subject>Heart Rate</subject><subject>Humans</subject><subject>Identification</subject><subject>Male</subject><subject>Mapping</subject><subject>Middle Aged</subject><subject>Observer Variation</subject><subject>Original</subject><subject>Pilot Projects</subject><subject>Predictive Value of Tests</subject><subject>Prospective Studies</subject><subject>Reproducibility of Results</subject><subject>scar‐related macro re‐entrant</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Tachycardia</subject><subject>Tachycardia, Supraventricular - diagnosis</subject><subject>Tachycardia, Supraventricular - etiology</subject><subject>Tachycardia, Supraventricular - physiopathology</subject><subject>Tachycardia, Supraventricular - surgery</subject><subject>Time Factors</subject><subject>Treatment Outcome</subject><issn>1045-3873</issn><issn>1540-8167</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kcFu1TAQRS1ERUthwQ8gS2xgkdbJ2LGzQUJPBVpVYgNra-I4jZ-SONhOq7frJ_Qb-RJcXqkAidl4PHN8da1LyKuSnZS5TrfGnpScC_mEHJWCs0KVtXyae8ZFAUrCIXke45axEmomnpFDqKpKCmBHZDzv7Jxc7wwm52fqe2qCS_k6UhfTMK2RrtHNV9T4wYbM0gmX5X7gZrrkR3kU6Y1LA40Gw4_bu2BHTLajmILLKgnNsMubzuELctDjGO3Lh_OYfPt49nXzubj88ul88-GyMJyDLFpjGitbVTdcYIsClRSqy96hEVBLANW1QvIaWgEtdAoVKNNBXzcMK1PVcEze73WXtZ1sZ7LFgKNegpsw7LRHp__ezG7QV_5aS1DQSJYF3j4IBP99tTHpyUVjxxFn69eoK1BcVawUkNE3_6Bbv4Y5f09XnCnBpASZqXd7ygQfY7D9o5mS6fsMdc5Q_8ows6__dP9I_g4tA6d74MaNdvd_JX2xOdtL_gQsw6h6</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Vicera, Jennifer Jeanne B.</creator><creator>Lin, Yenn‐Jiang</creator><creator>Lee, Po‐Tseng</creator><creator>Chang, Shih‐Lin</creator><creator>Lo, Li‐Wei</creator><creator>Hu, Yu‐Feng</creator><creator>Chung, Fa‐Po</creator><creator>Lin, Chin‐Yu</creator><creator>Chang, Ting‐Yung</creator><creator>Tuan, Ta‐Chuan</creator><creator>Chao, Tze‐Fan</creator><creator>Liao, Jo‐Nan</creator><creator>Wu, Cheng‐I</creator><creator>Liu, Chih‐Min</creator><creator>Lin, Chung‐Hsing</creator><creator>Chuang, Chieh‐Mao</creator><creator>Chen, Chun‐Chao</creator><creator>Chin, Chye Gen</creator><creator>Liu, Shin‐Huei</creator><creator>Cheng, Wen‐Han</creator><creator>Tai, Le Phat</creator><creator>Huang, Sung‐Hao</creator><creator>Chou, Ching‐Yao</creator><creator>Lugtu, Isaiah</creator><creator>Liu, Ching‐Han</creator><creator>Chen, Shih‐Ann</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0545-2156</orcidid><orcidid>https://orcid.org/0000-0002-7461-2793</orcidid><orcidid>https://orcid.org/0000-0001-6026-353X</orcidid><orcidid>https://orcid.org/0000-0003-3282-7523</orcidid><orcidid>https://orcid.org/0000-0002-4888-3709</orcidid><orcidid>https://orcid.org/0000-0001-9102-227X</orcidid><orcidid>https://orcid.org/0000-0002-6587-3094</orcidid></search><sort><creationdate>202006</creationdate><title>Identification of critical isthmus using coherent mapping in patients with scar‐related atrial tachycardia</title><author>Vicera, Jennifer Jeanne B. ; Lin, Yenn‐Jiang ; Lee, Po‐Tseng ; Chang, Shih‐Lin ; Lo, Li‐Wei ; Hu, Yu‐Feng ; Chung, Fa‐Po ; Lin, Chin‐Yu ; Chang, Ting‐Yung ; Tuan, Ta‐Chuan ; Chao, Tze‐Fan ; Liao, Jo‐Nan ; Wu, Cheng‐I ; Liu, Chih‐Min ; Lin, Chung‐Hsing ; Chuang, Chieh‐Mao ; Chen, Chun‐Chao ; Chin, Chye Gen ; Liu, Shin‐Huei ; Cheng, Wen‐Han ; Tai, Le Phat ; Huang, Sung‐Hao ; Chou, Ching‐Yao ; Lugtu, Isaiah ; Liu, Ching‐Han ; Chen, Shih‐Ann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4437-bcc9e7b86945aba5a8758d136395367338db57463b53b3d8a838cd3f690a2c263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablation</topic><topic>Action Potentials</topic><topic>activation mapping</topic><topic>Aged</topic><topic>Algorithms</topic><topic>atrial tachycardia</topic><topic>Cardiac arrhythmia</topic><topic>Catheter Ablation</topic><topic>Catheters</topic><topic>Cicatrix - complications</topic><topic>Cicatrix - diagnosis</topic><topic>coherent mapping</topic><topic>Conduction</topic><topic>Electrophysiologic Techniques, Cardiac</topic><topic>Entrainment</topic><topic>Female</topic><topic>focal atrial tachycardia</topic><topic>Heart Conduction System - physiopathology</topic><topic>Heart Conduction System - surgery</topic><topic>Heart Rate</topic><topic>Humans</topic><topic>Identification</topic><topic>Male</topic><topic>Mapping</topic><topic>Middle Aged</topic><topic>Observer Variation</topic><topic>Original</topic><topic>Pilot Projects</topic><topic>Predictive Value of Tests</topic><topic>Prospective Studies</topic><topic>Reproducibility of Results</topic><topic>scar‐related macro re‐entrant</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Tachycardia</topic><topic>Tachycardia, Supraventricular - diagnosis</topic><topic>Tachycardia, Supraventricular - etiology</topic><topic>Tachycardia, Supraventricular - physiopathology</topic><topic>Tachycardia, Supraventricular - surgery</topic><topic>Time Factors</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vicera, Jennifer Jeanne B.</creatorcontrib><creatorcontrib>Lin, Yenn‐Jiang</creatorcontrib><creatorcontrib>Lee, Po‐Tseng</creatorcontrib><creatorcontrib>Chang, Shih‐Lin</creatorcontrib><creatorcontrib>Lo, Li‐Wei</creatorcontrib><creatorcontrib>Hu, Yu‐Feng</creatorcontrib><creatorcontrib>Chung, Fa‐Po</creatorcontrib><creatorcontrib>Lin, Chin‐Yu</creatorcontrib><creatorcontrib>Chang, Ting‐Yung</creatorcontrib><creatorcontrib>Tuan, Ta‐Chuan</creatorcontrib><creatorcontrib>Chao, Tze‐Fan</creatorcontrib><creatorcontrib>Liao, Jo‐Nan</creatorcontrib><creatorcontrib>Wu, Cheng‐I</creatorcontrib><creatorcontrib>Liu, Chih‐Min</creatorcontrib><creatorcontrib>Lin, Chung‐Hsing</creatorcontrib><creatorcontrib>Chuang, Chieh‐Mao</creatorcontrib><creatorcontrib>Chen, Chun‐Chao</creatorcontrib><creatorcontrib>Chin, Chye Gen</creatorcontrib><creatorcontrib>Liu, Shin‐Huei</creatorcontrib><creatorcontrib>Cheng, Wen‐Han</creatorcontrib><creatorcontrib>Tai, Le Phat</creatorcontrib><creatorcontrib>Huang, Sung‐Hao</creatorcontrib><creatorcontrib>Chou, Ching‐Yao</creatorcontrib><creatorcontrib>Lugtu, Isaiah</creatorcontrib><creatorcontrib>Liu, Ching‐Han</creatorcontrib><creatorcontrib>Chen, Shih‐Ann</creatorcontrib><collection>Wiley_OA刊</collection><collection>Wiley Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cardiovascular electrophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vicera, Jennifer Jeanne B.</au><au>Lin, Yenn‐Jiang</au><au>Lee, Po‐Tseng</au><au>Chang, Shih‐Lin</au><au>Lo, Li‐Wei</au><au>Hu, Yu‐Feng</au><au>Chung, Fa‐Po</au><au>Lin, Chin‐Yu</au><au>Chang, Ting‐Yung</au><au>Tuan, Ta‐Chuan</au><au>Chao, Tze‐Fan</au><au>Liao, Jo‐Nan</au><au>Wu, Cheng‐I</au><au>Liu, Chih‐Min</au><au>Lin, Chung‐Hsing</au><au>Chuang, Chieh‐Mao</au><au>Chen, Chun‐Chao</au><au>Chin, Chye Gen</au><au>Liu, Shin‐Huei</au><au>Cheng, Wen‐Han</au><au>Tai, Le Phat</au><au>Huang, Sung‐Hao</au><au>Chou, Ching‐Yao</au><au>Lugtu, Isaiah</au><au>Liu, Ching‐Han</au><au>Chen, Shih‐Ann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of critical isthmus using coherent mapping in patients with scar‐related atrial tachycardia</atitle><jtitle>Journal of cardiovascular electrophysiology</jtitle><addtitle>J Cardiovasc Electrophysiol</addtitle><date>2020-06</date><risdate>2020</risdate><volume>31</volume><issue>6</issue><spage>1436</spage><epage>1447</epage><pages>1436-1447</pages><issn>1045-3873</issn><eissn>1540-8167</eissn><abstract>Introduction
Accurate identification of slow conducting regions in patients with scar‐related atrial tachycardia (AT) is difficult using conventional electrogram annotation for cardiac electroanatomic mapping (EAM). Estimating delays between neighboring mapping sites is a potential option for activation map computation. We describe our initial experience with CARTO 3 Coherent Mapping (Biosense Webster Inc,) in the ablation of complex ATs.
Methods
Twenty patients (58 ± 10 y/o, 15 males) with complex ATs were included. We created three‐dimensional EAMs using CARTO 3 system with CONFIDENSE and a high‐resolution mapping catheter (Biosense Webster Inc). Local activation time and coherent maps were used to aid in the identification of conduction isthmus (CI) and focal origin sites. System‐defined slow or nonconducting zones and CI, defined by concealed entrainment (postpacing interval < 20 ms), CV < 0.3 m/s and local fractionated electrograms were evaluated.
Results
Twenty‐six complex ATs were mapped (mean: 1.3 ± 0.7 maps/pt; 4 focal, 22 isthmus‐dependent). Coherent mapping was better in identifying CI/breakout sites where ablation terminated the tachycardia (96.2% vs 69.2%; P = .010) and identified significantly more CI (mean/chamber 2.0 ± 1.1 vs 1.0 ± 0.7; P < .001) with narrower width (19.8 ± 10.5 vs 43.0 ± 23.9 mm; P < .001) than conventional mapping. Ablation at origin and CI sites was successful in 25 (96.2%) with long‐term recurrence in 25%.
Conclusions
Coherent mapping with conduction velocity vectors derived from adjacent mapping sites significantly improved the identification of CI sites in scar‐related ATs with isthmus‐dependent re‐entry better than conventional mapping. It may be used in conjunction with conventional mapping strategies to facilitate recognition of slow conduction areas and critical sites that are important targets of ablation.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32227530</pmid><doi>10.1111/jce.14457</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0545-2156</orcidid><orcidid>https://orcid.org/0000-0002-7461-2793</orcidid><orcidid>https://orcid.org/0000-0001-6026-353X</orcidid><orcidid>https://orcid.org/0000-0003-3282-7523</orcidid><orcidid>https://orcid.org/0000-0002-4888-3709</orcidid><orcidid>https://orcid.org/0000-0001-9102-227X</orcidid><orcidid>https://orcid.org/0000-0002-6587-3094</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-3873 |
ispartof | Journal of cardiovascular electrophysiology, 2020-06, Vol.31 (6), p.1436-1447 |
issn | 1045-3873 1540-8167 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7383970 |
source | Wiley-Blackwell Journals; MEDLINE |
subjects | Ablation Action Potentials activation mapping Aged Algorithms atrial tachycardia Cardiac arrhythmia Catheter Ablation Catheters Cicatrix - complications Cicatrix - diagnosis coherent mapping Conduction Electrophysiologic Techniques, Cardiac Entrainment Female focal atrial tachycardia Heart Conduction System - physiopathology Heart Conduction System - surgery Heart Rate Humans Identification Male Mapping Middle Aged Observer Variation Original Pilot Projects Predictive Value of Tests Prospective Studies Reproducibility of Results scar‐related macro re‐entrant Signal Processing, Computer-Assisted Tachycardia Tachycardia, Supraventricular - diagnosis Tachycardia, Supraventricular - etiology Tachycardia, Supraventricular - physiopathology Tachycardia, Supraventricular - surgery Time Factors Treatment Outcome |
title | Identification of critical isthmus using coherent mapping in patients with scar‐related atrial tachycardia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A29%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20critical%20isthmus%20using%20coherent%20mapping%20in%20patients%20with%20scar%E2%80%90related%20atrial%20tachycardia&rft.jtitle=Journal%20of%20cardiovascular%20electrophysiology&rft.au=Vicera,%20Jennifer%20Jeanne%20B.&rft.date=2020-06&rft.volume=31&rft.issue=6&rft.spage=1436&rft.epage=1447&rft.pages=1436-1447&rft.issn=1045-3873&rft.eissn=1540-8167&rft_id=info:doi/10.1111/jce.14457&rft_dat=%3Cproquest_pubme%3E2384820153%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408507737&rft_id=info:pmid/32227530&rfr_iscdi=true |