Raman‐activated sorting of antibiotic‐resistant bacteria in human gut microbiota

Summary The antibiotic‐resistant bacteria (ARB) and antibiotic‐resistant genes (ARGs) in human gut microbiota have significant impact on human health. While high throughput metagenomic sequencing reveals genotypes of microbial communities, the functionality, phenotype and heterogeneity of human gut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2020-07, Vol.22 (7), p.2613-2624
Hauptverfasser: Wang, Yi, Xu, Jiabao, Kong, Lingchao, Li, Bei, Li, Hang, Huang, Wei E., Zheng, Chunmiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2624
container_issue 7
container_start_page 2613
container_title Environmental microbiology
container_volume 22
creator Wang, Yi
Xu, Jiabao
Kong, Lingchao
Li, Bei
Li, Hang
Huang, Wei E.
Zheng, Chunmiao
description Summary The antibiotic‐resistant bacteria (ARB) and antibiotic‐resistant genes (ARGs) in human gut microbiota have significant impact on human health. While high throughput metagenomic sequencing reveals genotypes of microbial communities, the functionality, phenotype and heterogeneity of human gut microbiota are still elusive. In this study, we applied Raman microscopy and deuterium isotope probing (Raman–DIP) to detect metabolic active ARB (MA‐ARB) in situ at the single‐cell level in human gut microbiota from two healthy adults. We analysed the relative abundances of MA‐ARB under different concentrations of amoxicillin, cephalexin, tetracycline, florfenicol and vancomycin. To establish the link between phenotypes and genotypes of the MA‐ARB, Raman‐activated cell sorting (RACS) was used to sort MA‐ARB from human gut microbiota, and mini‐metagenomic DNA of the sorted bacteria was amplified, sequenced and analysed. The sorted MA‐ARB and their associated ARGs were identified. Our results suggest a strong relation between ARB in human gut microbiota and personal medical history. This study demonstrates that the toolkit of Raman–DIP, RACS and DNA sequencing can be useful to unravel both phenotypes and genotypes of ARB in human gut microbiota at the single‐cell level.
doi_str_mv 10.1111/1462-2920.14962
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7383503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2422947841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5332-cde68a8409b71a1b1e85bfb90062b4e39976e85819b7510c470d994fec73ecb53</originalsourceid><addsrcrecordid>eNqFkc9KAzEQxoMotlbP3mTBc23-7WZzEUSqFiqC1HNIstk2pd2tSbbSm4_gM_okpm4tejKXJN_85stkBoBzBK9QXANEM9zHHMcr5Rk-AN29crg_I9wBJ97PIUSMMHgMOgQjRBkiXTB5lktZfb5_SB3sWgZTJL52wVbTpC4TWQWrbB2sjoQz3voQpURF2DgrE1slsybmJ9MmJEurXb2l5Sk4KuXCm7Pd3gMvd8PJ7UN__HQ_ur0Z93VKCO7rwmS5zCnkiiGJFDJ5qkrFIcywooZwzrIo5SjGUwQ1ZbDgnJZGM2K0SkkPXLe-q0YtTaFNFZxciJWzS-k2opZW_I1Udiam9VowkpMUkmhwuTNw9WtjfBDzunFVrFlgijGnLKcoUoOWiv_z3ply_wKCYjsGsW202DZdfI8hZlz8LmzP__Q9AmkLvNmF2fznJ4aPo9b4C28ulQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422947841</pqid></control><display><type>article</type><title>Raman‐activated sorting of antibiotic‐resistant bacteria in human gut microbiota</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Yi ; Xu, Jiabao ; Kong, Lingchao ; Li, Bei ; Li, Hang ; Huang, Wei E. ; Zheng, Chunmiao</creator><creatorcontrib>Wang, Yi ; Xu, Jiabao ; Kong, Lingchao ; Li, Bei ; Li, Hang ; Huang, Wei E. ; Zheng, Chunmiao</creatorcontrib><description>Summary The antibiotic‐resistant bacteria (ARB) and antibiotic‐resistant genes (ARGs) in human gut microbiota have significant impact on human health. While high throughput metagenomic sequencing reveals genotypes of microbial communities, the functionality, phenotype and heterogeneity of human gut microbiota are still elusive. In this study, we applied Raman microscopy and deuterium isotope probing (Raman–DIP) to detect metabolic active ARB (MA‐ARB) in situ at the single‐cell level in human gut microbiota from two healthy adults. We analysed the relative abundances of MA‐ARB under different concentrations of amoxicillin, cephalexin, tetracycline, florfenicol and vancomycin. To establish the link between phenotypes and genotypes of the MA‐ARB, Raman‐activated cell sorting (RACS) was used to sort MA‐ARB from human gut microbiota, and mini‐metagenomic DNA of the sorted bacteria was amplified, sequenced and analysed. The sorted MA‐ARB and their associated ARGs were identified. Our results suggest a strong relation between ARB in human gut microbiota and personal medical history. This study demonstrates that the toolkit of Raman–DIP, RACS and DNA sequencing can be useful to unravel both phenotypes and genotypes of ARB in human gut microbiota at the single‐cell level.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.14962</identifier><identifier>PMID: 32114713</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adult ; Amoxicillin ; Amoxicillin - pharmacology ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Bacteria ; Bacteria - classification ; Bacteria - drug effects ; Bacteria - genetics ; Cephalexin ; Cephalexin - pharmacology ; Deoxyribonucleic acid ; Deuterium ; DNA ; DNA sequences ; DNA sequencing ; Drug Resistance, Bacterial - genetics ; Florfenicol ; Gastrointestinal Microbiome - drug effects ; Gastrointestinal Microbiome - genetics ; Genotypes ; Heterogeneity ; Humans ; Intestinal flora ; Intestinal microflora ; Isotopes ; Metagenome - genetics ; Metagenomics ; Microbial activity ; Microbiota ; Microorganisms ; Microscopy ; Nonlinear Optical Microscopy ; Nucleotide sequence ; Phenotypes ; Sequence Analysis, DNA ; Sequencing ; Termites ; Tetracycline - pharmacology ; Thiamphenicol - analogs &amp; derivatives ; Thiamphenicol - pharmacology ; Toolkits ; Vancomycin ; Vancomycin - pharmacology</subject><ispartof>Environmental microbiology, 2020-07, Vol.22 (7), p.2613-2624</ispartof><rights>2020 The Authors. published by Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>2020 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5332-cde68a8409b71a1b1e85bfb90062b4e39976e85819b7510c470d994fec73ecb53</citedby><cites>FETCH-LOGICAL-c5332-cde68a8409b71a1b1e85bfb90062b4e39976e85819b7510c470d994fec73ecb53</cites><orcidid>0000-0001-5701-9229 ; 0000-0003-1302-6528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.14962$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.14962$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32114713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Xu, Jiabao</creatorcontrib><creatorcontrib>Kong, Lingchao</creatorcontrib><creatorcontrib>Li, Bei</creatorcontrib><creatorcontrib>Li, Hang</creatorcontrib><creatorcontrib>Huang, Wei E.</creatorcontrib><creatorcontrib>Zheng, Chunmiao</creatorcontrib><title>Raman‐activated sorting of antibiotic‐resistant bacteria in human gut microbiota</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary The antibiotic‐resistant bacteria (ARB) and antibiotic‐resistant genes (ARGs) in human gut microbiota have significant impact on human health. While high throughput metagenomic sequencing reveals genotypes of microbial communities, the functionality, phenotype and heterogeneity of human gut microbiota are still elusive. In this study, we applied Raman microscopy and deuterium isotope probing (Raman–DIP) to detect metabolic active ARB (MA‐ARB) in situ at the single‐cell level in human gut microbiota from two healthy adults. We analysed the relative abundances of MA‐ARB under different concentrations of amoxicillin, cephalexin, tetracycline, florfenicol and vancomycin. To establish the link between phenotypes and genotypes of the MA‐ARB, Raman‐activated cell sorting (RACS) was used to sort MA‐ARB from human gut microbiota, and mini‐metagenomic DNA of the sorted bacteria was amplified, sequenced and analysed. The sorted MA‐ARB and their associated ARGs were identified. Our results suggest a strong relation between ARB in human gut microbiota and personal medical history. This study demonstrates that the toolkit of Raman–DIP, RACS and DNA sequencing can be useful to unravel both phenotypes and genotypes of ARB in human gut microbiota at the single‐cell level.</description><subject>Adult</subject><subject>Amoxicillin</subject><subject>Amoxicillin - pharmacology</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - genetics</subject><subject>Cephalexin</subject><subject>Cephalexin - pharmacology</subject><subject>Deoxyribonucleic acid</subject><subject>Deuterium</subject><subject>DNA</subject><subject>DNA sequences</subject><subject>DNA sequencing</subject><subject>Drug Resistance, Bacterial - genetics</subject><subject>Florfenicol</subject><subject>Gastrointestinal Microbiome - drug effects</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Genotypes</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Intestinal flora</subject><subject>Intestinal microflora</subject><subject>Isotopes</subject><subject>Metagenome - genetics</subject><subject>Metagenomics</subject><subject>Microbial activity</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Microscopy</subject><subject>Nonlinear Optical Microscopy</subject><subject>Nucleotide sequence</subject><subject>Phenotypes</subject><subject>Sequence Analysis, DNA</subject><subject>Sequencing</subject><subject>Termites</subject><subject>Tetracycline - pharmacology</subject><subject>Thiamphenicol - analogs &amp; derivatives</subject><subject>Thiamphenicol - pharmacology</subject><subject>Toolkits</subject><subject>Vancomycin</subject><subject>Vancomycin - pharmacology</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc9KAzEQxoMotlbP3mTBc23-7WZzEUSqFiqC1HNIstk2pd2tSbbSm4_gM_okpm4tejKXJN_85stkBoBzBK9QXANEM9zHHMcr5Rk-AN29crg_I9wBJ97PIUSMMHgMOgQjRBkiXTB5lktZfb5_SB3sWgZTJL52wVbTpC4TWQWrbB2sjoQz3voQpURF2DgrE1slsybmJ9MmJEurXb2l5Sk4KuXCm7Pd3gMvd8PJ7UN__HQ_ur0Z93VKCO7rwmS5zCnkiiGJFDJ5qkrFIcywooZwzrIo5SjGUwQ1ZbDgnJZGM2K0SkkPXLe-q0YtTaFNFZxciJWzS-k2opZW_I1Udiam9VowkpMUkmhwuTNw9WtjfBDzunFVrFlgijGnLKcoUoOWiv_z3ply_wKCYjsGsW202DZdfI8hZlz8LmzP__Q9AmkLvNmF2fznJ4aPo9b4C28ulQw</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Wang, Yi</creator><creator>Xu, Jiabao</creator><creator>Kong, Lingchao</creator><creator>Li, Bei</creator><creator>Li, Hang</creator><creator>Huang, Wei E.</creator><creator>Zheng, Chunmiao</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5701-9229</orcidid><orcidid>https://orcid.org/0000-0003-1302-6528</orcidid></search><sort><creationdate>202007</creationdate><title>Raman‐activated sorting of antibiotic‐resistant bacteria in human gut microbiota</title><author>Wang, Yi ; Xu, Jiabao ; Kong, Lingchao ; Li, Bei ; Li, Hang ; Huang, Wei E. ; Zheng, Chunmiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5332-cde68a8409b71a1b1e85bfb90062b4e39976e85819b7510c470d994fec73ecb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Amoxicillin</topic><topic>Amoxicillin - pharmacology</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - genetics</topic><topic>Cephalexin</topic><topic>Cephalexin - pharmacology</topic><topic>Deoxyribonucleic acid</topic><topic>Deuterium</topic><topic>DNA</topic><topic>DNA sequences</topic><topic>DNA sequencing</topic><topic>Drug Resistance, Bacterial - genetics</topic><topic>Florfenicol</topic><topic>Gastrointestinal Microbiome - drug effects</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Genotypes</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Intestinal flora</topic><topic>Intestinal microflora</topic><topic>Isotopes</topic><topic>Metagenome - genetics</topic><topic>Metagenomics</topic><topic>Microbial activity</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Microscopy</topic><topic>Nonlinear Optical Microscopy</topic><topic>Nucleotide sequence</topic><topic>Phenotypes</topic><topic>Sequence Analysis, DNA</topic><topic>Sequencing</topic><topic>Termites</topic><topic>Tetracycline - pharmacology</topic><topic>Thiamphenicol - analogs &amp; derivatives</topic><topic>Thiamphenicol - pharmacology</topic><topic>Toolkits</topic><topic>Vancomycin</topic><topic>Vancomycin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Xu, Jiabao</creatorcontrib><creatorcontrib>Kong, Lingchao</creatorcontrib><creatorcontrib>Li, Bei</creatorcontrib><creatorcontrib>Li, Hang</creatorcontrib><creatorcontrib>Huang, Wei E.</creatorcontrib><creatorcontrib>Zheng, Chunmiao</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yi</au><au>Xu, Jiabao</au><au>Kong, Lingchao</au><au>Li, Bei</au><au>Li, Hang</au><au>Huang, Wei E.</au><au>Zheng, Chunmiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raman‐activated sorting of antibiotic‐resistant bacteria in human gut microbiota</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2020-07</date><risdate>2020</risdate><volume>22</volume><issue>7</issue><spage>2613</spage><epage>2624</epage><pages>2613-2624</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary The antibiotic‐resistant bacteria (ARB) and antibiotic‐resistant genes (ARGs) in human gut microbiota have significant impact on human health. While high throughput metagenomic sequencing reveals genotypes of microbial communities, the functionality, phenotype and heterogeneity of human gut microbiota are still elusive. In this study, we applied Raman microscopy and deuterium isotope probing (Raman–DIP) to detect metabolic active ARB (MA‐ARB) in situ at the single‐cell level in human gut microbiota from two healthy adults. We analysed the relative abundances of MA‐ARB under different concentrations of amoxicillin, cephalexin, tetracycline, florfenicol and vancomycin. To establish the link between phenotypes and genotypes of the MA‐ARB, Raman‐activated cell sorting (RACS) was used to sort MA‐ARB from human gut microbiota, and mini‐metagenomic DNA of the sorted bacteria was amplified, sequenced and analysed. The sorted MA‐ARB and their associated ARGs were identified. Our results suggest a strong relation between ARB in human gut microbiota and personal medical history. This study demonstrates that the toolkit of Raman–DIP, RACS and DNA sequencing can be useful to unravel both phenotypes and genotypes of ARB in human gut microbiota at the single‐cell level.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32114713</pmid><doi>10.1111/1462-2920.14962</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5701-9229</orcidid><orcidid>https://orcid.org/0000-0003-1302-6528</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2020-07, Vol.22 (7), p.2613-2624
issn 1462-2912
1462-2920
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7383503
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adult
Amoxicillin
Amoxicillin - pharmacology
Anti-Bacterial Agents - pharmacology
Antibiotics
Bacteria
Bacteria - classification
Bacteria - drug effects
Bacteria - genetics
Cephalexin
Cephalexin - pharmacology
Deoxyribonucleic acid
Deuterium
DNA
DNA sequences
DNA sequencing
Drug Resistance, Bacterial - genetics
Florfenicol
Gastrointestinal Microbiome - drug effects
Gastrointestinal Microbiome - genetics
Genotypes
Heterogeneity
Humans
Intestinal flora
Intestinal microflora
Isotopes
Metagenome - genetics
Metagenomics
Microbial activity
Microbiota
Microorganisms
Microscopy
Nonlinear Optical Microscopy
Nucleotide sequence
Phenotypes
Sequence Analysis, DNA
Sequencing
Termites
Tetracycline - pharmacology
Thiamphenicol - analogs & derivatives
Thiamphenicol - pharmacology
Toolkits
Vancomycin
Vancomycin - pharmacology
title Raman‐activated sorting of antibiotic‐resistant bacteria in human gut microbiota
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raman%E2%80%90activated%20sorting%20of%20antibiotic%E2%80%90resistant%20bacteria%20in%20human%20gut%20microbiota&rft.jtitle=Environmental%20microbiology&rft.au=Wang,%20Yi&rft.date=2020-07&rft.volume=22&rft.issue=7&rft.spage=2613&rft.epage=2624&rft.pages=2613-2624&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.14962&rft_dat=%3Cproquest_pubme%3E2422947841%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422947841&rft_id=info:pmid/32114713&rfr_iscdi=true