Raman‐activated sorting of antibiotic‐resistant bacteria in human gut microbiota
Summary The antibiotic‐resistant bacteria (ARB) and antibiotic‐resistant genes (ARGs) in human gut microbiota have significant impact on human health. While high throughput metagenomic sequencing reveals genotypes of microbial communities, the functionality, phenotype and heterogeneity of human gut...
Gespeichert in:
Veröffentlicht in: | Environmental microbiology 2020-07, Vol.22 (7), p.2613-2624 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2624 |
---|---|
container_issue | 7 |
container_start_page | 2613 |
container_title | Environmental microbiology |
container_volume | 22 |
creator | Wang, Yi Xu, Jiabao Kong, Lingchao Li, Bei Li, Hang Huang, Wei E. Zheng, Chunmiao |
description | Summary
The antibiotic‐resistant bacteria (ARB) and antibiotic‐resistant genes (ARGs) in human gut microbiota have significant impact on human health. While high throughput metagenomic sequencing reveals genotypes of microbial communities, the functionality, phenotype and heterogeneity of human gut microbiota are still elusive. In this study, we applied Raman microscopy and deuterium isotope probing (Raman–DIP) to detect metabolic active ARB (MA‐ARB) in situ at the single‐cell level in human gut microbiota from two healthy adults. We analysed the relative abundances of MA‐ARB under different concentrations of amoxicillin, cephalexin, tetracycline, florfenicol and vancomycin. To establish the link between phenotypes and genotypes of the MA‐ARB, Raman‐activated cell sorting (RACS) was used to sort MA‐ARB from human gut microbiota, and mini‐metagenomic DNA of the sorted bacteria was amplified, sequenced and analysed. The sorted MA‐ARB and their associated ARGs were identified. Our results suggest a strong relation between ARB in human gut microbiota and personal medical history. This study demonstrates that the toolkit of Raman–DIP, RACS and DNA sequencing can be useful to unravel both phenotypes and genotypes of ARB in human gut microbiota at the single‐cell level. |
doi_str_mv | 10.1111/1462-2920.14962 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7383503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2422947841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5332-cde68a8409b71a1b1e85bfb90062b4e39976e85819b7510c470d994fec73ecb53</originalsourceid><addsrcrecordid>eNqFkc9KAzEQxoMotlbP3mTBc23-7WZzEUSqFiqC1HNIstk2pd2tSbbSm4_gM_okpm4tejKXJN_85stkBoBzBK9QXANEM9zHHMcr5Rk-AN29crg_I9wBJ97PIUSMMHgMOgQjRBkiXTB5lktZfb5_SB3sWgZTJL52wVbTpC4TWQWrbB2sjoQz3voQpURF2DgrE1slsybmJ9MmJEurXb2l5Sk4KuXCm7Pd3gMvd8PJ7UN__HQ_ur0Z93VKCO7rwmS5zCnkiiGJFDJ5qkrFIcywooZwzrIo5SjGUwQ1ZbDgnJZGM2K0SkkPXLe-q0YtTaFNFZxciJWzS-k2opZW_I1Udiam9VowkpMUkmhwuTNw9WtjfBDzunFVrFlgijGnLKcoUoOWiv_z3ply_wKCYjsGsW202DZdfI8hZlz8LmzP__Q9AmkLvNmF2fznJ4aPo9b4C28ulQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422947841</pqid></control><display><type>article</type><title>Raman‐activated sorting of antibiotic‐resistant bacteria in human gut microbiota</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Yi ; Xu, Jiabao ; Kong, Lingchao ; Li, Bei ; Li, Hang ; Huang, Wei E. ; Zheng, Chunmiao</creator><creatorcontrib>Wang, Yi ; Xu, Jiabao ; Kong, Lingchao ; Li, Bei ; Li, Hang ; Huang, Wei E. ; Zheng, Chunmiao</creatorcontrib><description>Summary
The antibiotic‐resistant bacteria (ARB) and antibiotic‐resistant genes (ARGs) in human gut microbiota have significant impact on human health. While high throughput metagenomic sequencing reveals genotypes of microbial communities, the functionality, phenotype and heterogeneity of human gut microbiota are still elusive. In this study, we applied Raman microscopy and deuterium isotope probing (Raman–DIP) to detect metabolic active ARB (MA‐ARB) in situ at the single‐cell level in human gut microbiota from two healthy adults. We analysed the relative abundances of MA‐ARB under different concentrations of amoxicillin, cephalexin, tetracycline, florfenicol and vancomycin. To establish the link between phenotypes and genotypes of the MA‐ARB, Raman‐activated cell sorting (RACS) was used to sort MA‐ARB from human gut microbiota, and mini‐metagenomic DNA of the sorted bacteria was amplified, sequenced and analysed. The sorted MA‐ARB and their associated ARGs were identified. Our results suggest a strong relation between ARB in human gut microbiota and personal medical history. This study demonstrates that the toolkit of Raman–DIP, RACS and DNA sequencing can be useful to unravel both phenotypes and genotypes of ARB in human gut microbiota at the single‐cell level.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.14962</identifier><identifier>PMID: 32114713</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Adult ; Amoxicillin ; Amoxicillin - pharmacology ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Bacteria ; Bacteria - classification ; Bacteria - drug effects ; Bacteria - genetics ; Cephalexin ; Cephalexin - pharmacology ; Deoxyribonucleic acid ; Deuterium ; DNA ; DNA sequences ; DNA sequencing ; Drug Resistance, Bacterial - genetics ; Florfenicol ; Gastrointestinal Microbiome - drug effects ; Gastrointestinal Microbiome - genetics ; Genotypes ; Heterogeneity ; Humans ; Intestinal flora ; Intestinal microflora ; Isotopes ; Metagenome - genetics ; Metagenomics ; Microbial activity ; Microbiota ; Microorganisms ; Microscopy ; Nonlinear Optical Microscopy ; Nucleotide sequence ; Phenotypes ; Sequence Analysis, DNA ; Sequencing ; Termites ; Tetracycline - pharmacology ; Thiamphenicol - analogs & derivatives ; Thiamphenicol - pharmacology ; Toolkits ; Vancomycin ; Vancomycin - pharmacology</subject><ispartof>Environmental microbiology, 2020-07, Vol.22 (7), p.2613-2624</ispartof><rights>2020 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd.</rights><rights>2020 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5332-cde68a8409b71a1b1e85bfb90062b4e39976e85819b7510c470d994fec73ecb53</citedby><cites>FETCH-LOGICAL-c5332-cde68a8409b71a1b1e85bfb90062b4e39976e85819b7510c470d994fec73ecb53</cites><orcidid>0000-0001-5701-9229 ; 0000-0003-1302-6528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.14962$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.14962$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32114713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Xu, Jiabao</creatorcontrib><creatorcontrib>Kong, Lingchao</creatorcontrib><creatorcontrib>Li, Bei</creatorcontrib><creatorcontrib>Li, Hang</creatorcontrib><creatorcontrib>Huang, Wei E.</creatorcontrib><creatorcontrib>Zheng, Chunmiao</creatorcontrib><title>Raman‐activated sorting of antibiotic‐resistant bacteria in human gut microbiota</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary
The antibiotic‐resistant bacteria (ARB) and antibiotic‐resistant genes (ARGs) in human gut microbiota have significant impact on human health. While high throughput metagenomic sequencing reveals genotypes of microbial communities, the functionality, phenotype and heterogeneity of human gut microbiota are still elusive. In this study, we applied Raman microscopy and deuterium isotope probing (Raman–DIP) to detect metabolic active ARB (MA‐ARB) in situ at the single‐cell level in human gut microbiota from two healthy adults. We analysed the relative abundances of MA‐ARB under different concentrations of amoxicillin, cephalexin, tetracycline, florfenicol and vancomycin. To establish the link between phenotypes and genotypes of the MA‐ARB, Raman‐activated cell sorting (RACS) was used to sort MA‐ARB from human gut microbiota, and mini‐metagenomic DNA of the sorted bacteria was amplified, sequenced and analysed. The sorted MA‐ARB and their associated ARGs were identified. Our results suggest a strong relation between ARB in human gut microbiota and personal medical history. This study demonstrates that the toolkit of Raman–DIP, RACS and DNA sequencing can be useful to unravel both phenotypes and genotypes of ARB in human gut microbiota at the single‐cell level.</description><subject>Adult</subject><subject>Amoxicillin</subject><subject>Amoxicillin - pharmacology</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - genetics</subject><subject>Cephalexin</subject><subject>Cephalexin - pharmacology</subject><subject>Deoxyribonucleic acid</subject><subject>Deuterium</subject><subject>DNA</subject><subject>DNA sequences</subject><subject>DNA sequencing</subject><subject>Drug Resistance, Bacterial - genetics</subject><subject>Florfenicol</subject><subject>Gastrointestinal Microbiome - drug effects</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Genotypes</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Intestinal flora</subject><subject>Intestinal microflora</subject><subject>Isotopes</subject><subject>Metagenome - genetics</subject><subject>Metagenomics</subject><subject>Microbial activity</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Microscopy</subject><subject>Nonlinear Optical Microscopy</subject><subject>Nucleotide sequence</subject><subject>Phenotypes</subject><subject>Sequence Analysis, DNA</subject><subject>Sequencing</subject><subject>Termites</subject><subject>Tetracycline - pharmacology</subject><subject>Thiamphenicol - analogs & derivatives</subject><subject>Thiamphenicol - pharmacology</subject><subject>Toolkits</subject><subject>Vancomycin</subject><subject>Vancomycin - pharmacology</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc9KAzEQxoMotlbP3mTBc23-7WZzEUSqFiqC1HNIstk2pd2tSbbSm4_gM_okpm4tejKXJN_85stkBoBzBK9QXANEM9zHHMcr5Rk-AN29crg_I9wBJ97PIUSMMHgMOgQjRBkiXTB5lktZfb5_SB3sWgZTJL52wVbTpC4TWQWrbB2sjoQz3voQpURF2DgrE1slsybmJ9MmJEurXb2l5Sk4KuXCm7Pd3gMvd8PJ7UN__HQ_ur0Z93VKCO7rwmS5zCnkiiGJFDJ5qkrFIcywooZwzrIo5SjGUwQ1ZbDgnJZGM2K0SkkPXLe-q0YtTaFNFZxciJWzS-k2opZW_I1Udiam9VowkpMUkmhwuTNw9WtjfBDzunFVrFlgijGnLKcoUoOWiv_z3ply_wKCYjsGsW202DZdfI8hZlz8LmzP__Q9AmkLvNmF2fznJ4aPo9b4C28ulQw</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Wang, Yi</creator><creator>Xu, Jiabao</creator><creator>Kong, Lingchao</creator><creator>Li, Bei</creator><creator>Li, Hang</creator><creator>Huang, Wei E.</creator><creator>Zheng, Chunmiao</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5701-9229</orcidid><orcidid>https://orcid.org/0000-0003-1302-6528</orcidid></search><sort><creationdate>202007</creationdate><title>Raman‐activated sorting of antibiotic‐resistant bacteria in human gut microbiota</title><author>Wang, Yi ; Xu, Jiabao ; Kong, Lingchao ; Li, Bei ; Li, Hang ; Huang, Wei E. ; Zheng, Chunmiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5332-cde68a8409b71a1b1e85bfb90062b4e39976e85819b7510c470d994fec73ecb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Amoxicillin</topic><topic>Amoxicillin - pharmacology</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - genetics</topic><topic>Cephalexin</topic><topic>Cephalexin - pharmacology</topic><topic>Deoxyribonucleic acid</topic><topic>Deuterium</topic><topic>DNA</topic><topic>DNA sequences</topic><topic>DNA sequencing</topic><topic>Drug Resistance, Bacterial - genetics</topic><topic>Florfenicol</topic><topic>Gastrointestinal Microbiome - drug effects</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Genotypes</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Intestinal flora</topic><topic>Intestinal microflora</topic><topic>Isotopes</topic><topic>Metagenome - genetics</topic><topic>Metagenomics</topic><topic>Microbial activity</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Microscopy</topic><topic>Nonlinear Optical Microscopy</topic><topic>Nucleotide sequence</topic><topic>Phenotypes</topic><topic>Sequence Analysis, DNA</topic><topic>Sequencing</topic><topic>Termites</topic><topic>Tetracycline - pharmacology</topic><topic>Thiamphenicol - analogs & derivatives</topic><topic>Thiamphenicol - pharmacology</topic><topic>Toolkits</topic><topic>Vancomycin</topic><topic>Vancomycin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Xu, Jiabao</creatorcontrib><creatorcontrib>Kong, Lingchao</creatorcontrib><creatorcontrib>Li, Bei</creatorcontrib><creatorcontrib>Li, Hang</creatorcontrib><creatorcontrib>Huang, Wei E.</creatorcontrib><creatorcontrib>Zheng, Chunmiao</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yi</au><au>Xu, Jiabao</au><au>Kong, Lingchao</au><au>Li, Bei</au><au>Li, Hang</au><au>Huang, Wei E.</au><au>Zheng, Chunmiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raman‐activated sorting of antibiotic‐resistant bacteria in human gut microbiota</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2020-07</date><risdate>2020</risdate><volume>22</volume><issue>7</issue><spage>2613</spage><epage>2624</epage><pages>2613-2624</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary
The antibiotic‐resistant bacteria (ARB) and antibiotic‐resistant genes (ARGs) in human gut microbiota have significant impact on human health. While high throughput metagenomic sequencing reveals genotypes of microbial communities, the functionality, phenotype and heterogeneity of human gut microbiota are still elusive. In this study, we applied Raman microscopy and deuterium isotope probing (Raman–DIP) to detect metabolic active ARB (MA‐ARB) in situ at the single‐cell level in human gut microbiota from two healthy adults. We analysed the relative abundances of MA‐ARB under different concentrations of amoxicillin, cephalexin, tetracycline, florfenicol and vancomycin. To establish the link between phenotypes and genotypes of the MA‐ARB, Raman‐activated cell sorting (RACS) was used to sort MA‐ARB from human gut microbiota, and mini‐metagenomic DNA of the sorted bacteria was amplified, sequenced and analysed. The sorted MA‐ARB and their associated ARGs were identified. Our results suggest a strong relation between ARB in human gut microbiota and personal medical history. This study demonstrates that the toolkit of Raman–DIP, RACS and DNA sequencing can be useful to unravel both phenotypes and genotypes of ARB in human gut microbiota at the single‐cell level.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>32114713</pmid><doi>10.1111/1462-2920.14962</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5701-9229</orcidid><orcidid>https://orcid.org/0000-0003-1302-6528</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-2912 |
ispartof | Environmental microbiology, 2020-07, Vol.22 (7), p.2613-2624 |
issn | 1462-2912 1462-2920 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7383503 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Adult Amoxicillin Amoxicillin - pharmacology Anti-Bacterial Agents - pharmacology Antibiotics Bacteria Bacteria - classification Bacteria - drug effects Bacteria - genetics Cephalexin Cephalexin - pharmacology Deoxyribonucleic acid Deuterium DNA DNA sequences DNA sequencing Drug Resistance, Bacterial - genetics Florfenicol Gastrointestinal Microbiome - drug effects Gastrointestinal Microbiome - genetics Genotypes Heterogeneity Humans Intestinal flora Intestinal microflora Isotopes Metagenome - genetics Metagenomics Microbial activity Microbiota Microorganisms Microscopy Nonlinear Optical Microscopy Nucleotide sequence Phenotypes Sequence Analysis, DNA Sequencing Termites Tetracycline - pharmacology Thiamphenicol - analogs & derivatives Thiamphenicol - pharmacology Toolkits Vancomycin Vancomycin - pharmacology |
title | Raman‐activated sorting of antibiotic‐resistant bacteria in human gut microbiota |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raman%E2%80%90activated%20sorting%20of%20antibiotic%E2%80%90resistant%20bacteria%20in%20human%20gut%20microbiota&rft.jtitle=Environmental%20microbiology&rft.au=Wang,%20Yi&rft.date=2020-07&rft.volume=22&rft.issue=7&rft.spage=2613&rft.epage=2624&rft.pages=2613-2624&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.14962&rft_dat=%3Cproquest_pubme%3E2422947841%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422947841&rft_id=info:pmid/32114713&rfr_iscdi=true |