Sodium Butyrate-Modulated Mitochondrial Function in High-Insulin Induced HepG2 Cell Dysfunction

The liver plays a pivotal role in maintaining euglycemia. Biogenesis and function of mitochondria within hepatocytes are often the first to be damaged in a diabetic population, and restoring its function is recently believed to be a promising strategy on inhibiting the progression of diabetes. Previ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oxidative medicine and cellular longevity 2020, Vol.2020 (2020), p.1-16
Hauptverfasser: Zhou, Hua, Sun, Qingmin, Zhou, Enchao, Liu, Zhilong, Xu, Youhua, Zhang, Wei, Zheng, Ying, Zhao, Yonghua, Zhang, Wenqian, Wang, Zhe, Zhang, Huixia, Gu, Junling, Zhao, Tingting, Zhang, Guilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 2020
container_start_page 1
container_title Oxidative medicine and cellular longevity
container_volume 2020
creator Zhou, Hua
Sun, Qingmin
Zhou, Enchao
Liu, Zhilong
Xu, Youhua
Zhang, Wei
Zheng, Ying
Zhao, Yonghua
Zhang, Wenqian
Wang, Zhe
Zhang, Huixia
Gu, Junling
Zhao, Tingting
Zhang, Guilin
description The liver plays a pivotal role in maintaining euglycemia. Biogenesis and function of mitochondria within hepatocytes are often the first to be damaged in a diabetic population, and restoring its function is recently believed to be a promising strategy on inhibiting the progression of diabetes. Previously, we demonstrated that the gut microbiota metabolite butyrate could reduce hyperglycemia and modulate the metabolism of glycogen in both db/db mice and HepG2 cells. To further explore the mechanism of butyrate in controlling energy metabolism, we investigated its influence and underlying mechanism on the biogenesis and function of mitochondria within high insulin-induced hepatocytes in this study. We found that butyrate significantly modulated the expression of 54 genes participating in mitochondrial energy metabolism by a PCR array kit, both the content of mitochondrial DNA and production of ATP were enhanced, expressions of histone deacetylases 3 and 4 were inhibited, beta-oxidation of fatty acids was increased, and oxidative stress damage was ameliorated at the same time. A mechanism study showed that expression of GPR43 and its downstream protein beta-arrestin2 was increased on butyrate administration and that activation of Akt was inhibited, while the AMPK-PGC-1alpha signaling pathway and expression of p-GSK3 were enhanced. In conclusion, we found in the present study that butyrate could significantly promote biogenesis and function of mitochondria under high insulin circumstances, and the GPR43-β-arrestin2-AMPK-PGC1-alpha signaling pathway contributed to these effects. Our present findings will bring new insight on the pivotal role of metabolites from microbiota on maintaining euglycemia in diabetic population.
doi_str_mv 10.1155/2020/1904609
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7382753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A637849899</galeid><sourcerecordid>A637849899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-bdc6d8879789330d85f300474188f68e91991a57d9f152a3b2856676e18229ad3</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_Agiq2tN88y4EVop82vyY-LUFfbXWjxoJ5DNsnspswm22Ri2f_eDLu01IunvJAP37zHA-ADghcIdd0lhhheIgkpg_IVOEaS4hZKSV8_1RAegXc530PICKboLTgimGNKhTwG6me0vmyar2XcJT269i7aMtTCNnd-jGYdg01eD811CWb0MTQ-NHO_WreLkMtQL4tgi6l87rY3uJm5YWi-7XJ_4KfgTa-H7N4fzhPw-_r7r9m8vf1xs5hd3baGcja2S2uYFYJLLiQh0IquJxBSTpEQPRNOIimR7riVPeqwJkssOsY4c0hgLLUlJ-DLPndblhtnjQtj0oPaJr_Raaei9urlS_BrtYp_FCcC847UgM-HgBQfisuj2vhs6jQ6uFiywhSL2g2mstJP_9D7WFKo402KYyQ5oc9qpQenfOhj_ddMoeqKES6oFHLKOt8rk2LOyfVPLSOopv2qab_qsN_Kz_Z87YPVj_5_-uNeu2pcr581hkR0kPwF9wyq9w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427219734</pqid></control><display><type>article</type><title>Sodium Butyrate-Modulated Mitochondrial Function in High-Insulin Induced HepG2 Cell Dysfunction</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zhou, Hua ; Sun, Qingmin ; Zhou, Enchao ; Liu, Zhilong ; Xu, Youhua ; Zhang, Wei ; Zheng, Ying ; Zhao, Yonghua ; Zhang, Wenqian ; Wang, Zhe ; Zhang, Huixia ; Gu, Junling ; Zhao, Tingting ; Zhang, Guilin</creator><contributor>Liu, Yue ; Yue Liu</contributor><creatorcontrib>Zhou, Hua ; Sun, Qingmin ; Zhou, Enchao ; Liu, Zhilong ; Xu, Youhua ; Zhang, Wei ; Zheng, Ying ; Zhao, Yonghua ; Zhang, Wenqian ; Wang, Zhe ; Zhang, Huixia ; Gu, Junling ; Zhao, Tingting ; Zhang, Guilin ; Liu, Yue ; Yue Liu</creatorcontrib><description>The liver plays a pivotal role in maintaining euglycemia. Biogenesis and function of mitochondria within hepatocytes are often the first to be damaged in a diabetic population, and restoring its function is recently believed to be a promising strategy on inhibiting the progression of diabetes. Previously, we demonstrated that the gut microbiota metabolite butyrate could reduce hyperglycemia and modulate the metabolism of glycogen in both db/db mice and HepG2 cells. To further explore the mechanism of butyrate in controlling energy metabolism, we investigated its influence and underlying mechanism on the biogenesis and function of mitochondria within high insulin-induced hepatocytes in this study. We found that butyrate significantly modulated the expression of 54 genes participating in mitochondrial energy metabolism by a PCR array kit, both the content of mitochondrial DNA and production of ATP were enhanced, expressions of histone deacetylases 3 and 4 were inhibited, beta-oxidation of fatty acids was increased, and oxidative stress damage was ameliorated at the same time. A mechanism study showed that expression of GPR43 and its downstream protein beta-arrestin2 was increased on butyrate administration and that activation of Akt was inhibited, while the AMPK-PGC-1alpha signaling pathway and expression of p-GSK3 were enhanced. In conclusion, we found in the present study that butyrate could significantly promote biogenesis and function of mitochondria under high insulin circumstances, and the GPR43-β-arrestin2-AMPK-PGC1-alpha signaling pathway contributed to these effects. Our present findings will bring new insight on the pivotal role of metabolites from microbiota on maintaining euglycemia in diabetic population.</description><identifier>ISSN: 1942-0900</identifier><identifier>EISSN: 1942-0994</identifier><identifier>DOI: 10.1155/2020/1904609</identifier><identifier>PMID: 32724489</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Biosynthesis ; Deoxyribonucleic acid ; Development and progression ; Diabetes ; DNA ; Energy ; Esters ; Experiments ; Fatty acids ; Gene expression ; Genes ; Glucose ; Glucose metabolism ; Glycogen ; Insulin ; Insulin resistance ; Liver ; Metabolism ; Metabolites ; Microbiota ; Microbiota (Symbiotic organisms) ; Mitochondria ; Mitochondrial DNA ; Productivity ; Software ; Type 2 diabetes</subject><ispartof>Oxidative medicine and cellular longevity, 2020, Vol.2020 (2020), p.1-16</ispartof><rights>Copyright © 2020 Tingting Zhao et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 Tingting Zhao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2020 Tingting Zhao et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-bdc6d8879789330d85f300474188f68e91991a57d9f152a3b2856676e18229ad3</citedby><cites>FETCH-LOGICAL-c476t-bdc6d8879789330d85f300474188f68e91991a57d9f152a3b2856676e18229ad3</cites><orcidid>0000-0002-3258-013X ; 0000-0003-2569-5657 ; 0000-0002-8340-0821 ; 0000-0002-7854-7642 ; 0000-0002-7025-3690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382753/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382753/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,4012,27910,27911,27912,53778,53780</link.rule.ids></links><search><contributor>Liu, Yue</contributor><contributor>Yue Liu</contributor><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Sun, Qingmin</creatorcontrib><creatorcontrib>Zhou, Enchao</creatorcontrib><creatorcontrib>Liu, Zhilong</creatorcontrib><creatorcontrib>Xu, Youhua</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zheng, Ying</creatorcontrib><creatorcontrib>Zhao, Yonghua</creatorcontrib><creatorcontrib>Zhang, Wenqian</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Zhang, Huixia</creatorcontrib><creatorcontrib>Gu, Junling</creatorcontrib><creatorcontrib>Zhao, Tingting</creatorcontrib><creatorcontrib>Zhang, Guilin</creatorcontrib><title>Sodium Butyrate-Modulated Mitochondrial Function in High-Insulin Induced HepG2 Cell Dysfunction</title><title>Oxidative medicine and cellular longevity</title><description>The liver plays a pivotal role in maintaining euglycemia. Biogenesis and function of mitochondria within hepatocytes are often the first to be damaged in a diabetic population, and restoring its function is recently believed to be a promising strategy on inhibiting the progression of diabetes. Previously, we demonstrated that the gut microbiota metabolite butyrate could reduce hyperglycemia and modulate the metabolism of glycogen in both db/db mice and HepG2 cells. To further explore the mechanism of butyrate in controlling energy metabolism, we investigated its influence and underlying mechanism on the biogenesis and function of mitochondria within high insulin-induced hepatocytes in this study. We found that butyrate significantly modulated the expression of 54 genes participating in mitochondrial energy metabolism by a PCR array kit, both the content of mitochondrial DNA and production of ATP were enhanced, expressions of histone deacetylases 3 and 4 were inhibited, beta-oxidation of fatty acids was increased, and oxidative stress damage was ameliorated at the same time. A mechanism study showed that expression of GPR43 and its downstream protein beta-arrestin2 was increased on butyrate administration and that activation of Akt was inhibited, while the AMPK-PGC-1alpha signaling pathway and expression of p-GSK3 were enhanced. In conclusion, we found in the present study that butyrate could significantly promote biogenesis and function of mitochondria under high insulin circumstances, and the GPR43-β-arrestin2-AMPK-PGC1-alpha signaling pathway contributed to these effects. Our present findings will bring new insight on the pivotal role of metabolites from microbiota on maintaining euglycemia in diabetic population.</description><subject>Biosynthesis</subject><subject>Deoxyribonucleic acid</subject><subject>Development and progression</subject><subject>Diabetes</subject><subject>DNA</subject><subject>Energy</subject><subject>Esters</subject><subject>Experiments</subject><subject>Fatty acids</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Glycogen</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Liver</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Productivity</subject><subject>Software</subject><subject>Type 2 diabetes</subject><issn>1942-0900</issn><issn>1942-0994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0c9rFDEUB_Agiq2tN88y4EVop82vyY-LUFfbXWjxoJ5DNsnspswm22Ri2f_eDLu01IunvJAP37zHA-ADghcIdd0lhhheIgkpg_IVOEaS4hZKSV8_1RAegXc530PICKboLTgimGNKhTwG6me0vmyar2XcJT269i7aMtTCNnd-jGYdg01eD811CWb0MTQ-NHO_WreLkMtQL4tgi6l87rY3uJm5YWi-7XJ_4KfgTa-H7N4fzhPw-_r7r9m8vf1xs5hd3baGcja2S2uYFYJLLiQh0IquJxBSTpEQPRNOIimR7riVPeqwJkssOsY4c0hgLLUlJ-DLPndblhtnjQtj0oPaJr_Raaei9urlS_BrtYp_FCcC847UgM-HgBQfisuj2vhs6jQ6uFiywhSL2g2mstJP_9D7WFKo402KYyQ5oc9qpQenfOhj_ddMoeqKES6oFHLKOt8rk2LOyfVPLSOopv2qab_qsN_Kz_Z87YPVj_5_-uNeu2pcr581hkR0kPwF9wyq9w</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhou, Hua</creator><creator>Sun, Qingmin</creator><creator>Zhou, Enchao</creator><creator>Liu, Zhilong</creator><creator>Xu, Youhua</creator><creator>Zhang, Wei</creator><creator>Zheng, Ying</creator><creator>Zhao, Yonghua</creator><creator>Zhang, Wenqian</creator><creator>Wang, Zhe</creator><creator>Zhang, Huixia</creator><creator>Gu, Junling</creator><creator>Zhao, Tingting</creator><creator>Zhang, Guilin</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3258-013X</orcidid><orcidid>https://orcid.org/0000-0003-2569-5657</orcidid><orcidid>https://orcid.org/0000-0002-8340-0821</orcidid><orcidid>https://orcid.org/0000-0002-7854-7642</orcidid><orcidid>https://orcid.org/0000-0002-7025-3690</orcidid></search><sort><creationdate>2020</creationdate><title>Sodium Butyrate-Modulated Mitochondrial Function in High-Insulin Induced HepG2 Cell Dysfunction</title><author>Zhou, Hua ; Sun, Qingmin ; Zhou, Enchao ; Liu, Zhilong ; Xu, Youhua ; Zhang, Wei ; Zheng, Ying ; Zhao, Yonghua ; Zhang, Wenqian ; Wang, Zhe ; Zhang, Huixia ; Gu, Junling ; Zhao, Tingting ; Zhang, Guilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-bdc6d8879789330d85f300474188f68e91991a57d9f152a3b2856676e18229ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biosynthesis</topic><topic>Deoxyribonucleic acid</topic><topic>Development and progression</topic><topic>Diabetes</topic><topic>DNA</topic><topic>Energy</topic><topic>Esters</topic><topic>Experiments</topic><topic>Fatty acids</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Glycogen</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Liver</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Productivity</topic><topic>Software</topic><topic>Type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Sun, Qingmin</creatorcontrib><creatorcontrib>Zhou, Enchao</creatorcontrib><creatorcontrib>Liu, Zhilong</creatorcontrib><creatorcontrib>Xu, Youhua</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zheng, Ying</creatorcontrib><creatorcontrib>Zhao, Yonghua</creatorcontrib><creatorcontrib>Zhang, Wenqian</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Zhang, Huixia</creatorcontrib><creatorcontrib>Gu, Junling</creatorcontrib><creatorcontrib>Zhao, Tingting</creatorcontrib><creatorcontrib>Zhang, Guilin</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oxidative medicine and cellular longevity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Hua</au><au>Sun, Qingmin</au><au>Zhou, Enchao</au><au>Liu, Zhilong</au><au>Xu, Youhua</au><au>Zhang, Wei</au><au>Zheng, Ying</au><au>Zhao, Yonghua</au><au>Zhang, Wenqian</au><au>Wang, Zhe</au><au>Zhang, Huixia</au><au>Gu, Junling</au><au>Zhao, Tingting</au><au>Zhang, Guilin</au><au>Liu, Yue</au><au>Yue Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodium Butyrate-Modulated Mitochondrial Function in High-Insulin Induced HepG2 Cell Dysfunction</atitle><jtitle>Oxidative medicine and cellular longevity</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1942-0900</issn><eissn>1942-0994</eissn><abstract>The liver plays a pivotal role in maintaining euglycemia. Biogenesis and function of mitochondria within hepatocytes are often the first to be damaged in a diabetic population, and restoring its function is recently believed to be a promising strategy on inhibiting the progression of diabetes. Previously, we demonstrated that the gut microbiota metabolite butyrate could reduce hyperglycemia and modulate the metabolism of glycogen in both db/db mice and HepG2 cells. To further explore the mechanism of butyrate in controlling energy metabolism, we investigated its influence and underlying mechanism on the biogenesis and function of mitochondria within high insulin-induced hepatocytes in this study. We found that butyrate significantly modulated the expression of 54 genes participating in mitochondrial energy metabolism by a PCR array kit, both the content of mitochondrial DNA and production of ATP were enhanced, expressions of histone deacetylases 3 and 4 were inhibited, beta-oxidation of fatty acids was increased, and oxidative stress damage was ameliorated at the same time. A mechanism study showed that expression of GPR43 and its downstream protein beta-arrestin2 was increased on butyrate administration and that activation of Akt was inhibited, while the AMPK-PGC-1alpha signaling pathway and expression of p-GSK3 were enhanced. In conclusion, we found in the present study that butyrate could significantly promote biogenesis and function of mitochondria under high insulin circumstances, and the GPR43-β-arrestin2-AMPK-PGC1-alpha signaling pathway contributed to these effects. Our present findings will bring new insight on the pivotal role of metabolites from microbiota on maintaining euglycemia in diabetic population.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>32724489</pmid><doi>10.1155/2020/1904609</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3258-013X</orcidid><orcidid>https://orcid.org/0000-0003-2569-5657</orcidid><orcidid>https://orcid.org/0000-0002-8340-0821</orcidid><orcidid>https://orcid.org/0000-0002-7854-7642</orcidid><orcidid>https://orcid.org/0000-0002-7025-3690</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1942-0900
ispartof Oxidative medicine and cellular longevity, 2020, Vol.2020 (2020), p.1-16
issn 1942-0900
1942-0994
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7382753
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection
subjects Biosynthesis
Deoxyribonucleic acid
Development and progression
Diabetes
DNA
Energy
Esters
Experiments
Fatty acids
Gene expression
Genes
Glucose
Glucose metabolism
Glycogen
Insulin
Insulin resistance
Liver
Metabolism
Metabolites
Microbiota
Microbiota (Symbiotic organisms)
Mitochondria
Mitochondrial DNA
Productivity
Software
Type 2 diabetes
title Sodium Butyrate-Modulated Mitochondrial Function in High-Insulin Induced HepG2 Cell Dysfunction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodium%20Butyrate-Modulated%20Mitochondrial%20Function%20in%20High-Insulin%20Induced%20HepG2%20Cell%20Dysfunction&rft.jtitle=Oxidative%20medicine%20and%20cellular%20longevity&rft.au=Zhou,%20Hua&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1942-0900&rft.eissn=1942-0994&rft_id=info:doi/10.1155/2020/1904609&rft_dat=%3Cgale_pubme%3EA637849899%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427219734&rft_id=info:pmid/32724489&rft_galeid=A637849899&rfr_iscdi=true