Stem cell lineage survival as a noisy competition for niche access
Understanding to what extent stem cell potential is a cell-intrinsic property or an emergent behavior coming from global tissue dynamics and geometry is a key outstanding question of systems and stem cell biology. Here, we propose a theory of stem cell dynamics as a stochastic competition for access...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-07, Vol.117 (29), p.16969-16975 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16975 |
---|---|
container_issue | 29 |
container_start_page | 16969 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Corominas-Murtra, Bernat Scheele, Colinda L. G. J. Kishi, Kasumi Ellenbroek, Saskia I. J. Simons, Benjamin D. van Rheenen, Jacco Hannezo, Edouard |
description | Understanding to what extent stem cell potential is a cell-intrinsic property or an emergent behavior coming from global tissue dynamics and geometry is a key outstanding question of systems and stem cell biology. Here, we propose a theory of stem cell dynamics as a stochastic competition for access to a spatially localized niche, giving rise to a stochastic conveyor-belt model. Cell divisions produce a steady cellular stream which advects cells away from the niche, while random rearrangements enable cells away from the niche to be favorably repositioned. Importantly, even when assuming that all cells in a tissue are molecularly equivalent, we predict a common (“universal”) functional dependence of the long-term clonal survival probability on distance from the niche, as well as the emergence of a well-defined number of functional stem cells, dependent only on the rate of random movements vs. mitosis-driven advection. We test the predictions of this theory on datasets of pubertal mammary gland tips and embryonic kidney tips, as well as homeostatic intestinal crypts. Importantly, we find good agreement for the predicted functional dependency of the competition as a function of position, and thus functional stem cell number in each organ. This argues for a key role of positional fluctuations in dictating stem cell number and dynamics, and we discuss the applicability of this theory to other settings. |
doi_str_mv | 10.1073/pnas.1921205117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7382312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26935399</jstor_id><sourcerecordid>26935399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-ce5babfce19eba7f5550c38eb568250ea66b6399f5aff54a88a1b48e42c8cd43</originalsourceid><addsrcrecordid>eNpdkb1rHDEQxUWIic9O6lQJgjRu1h5JK63UBBxjJwGDi7gXWnnW1rErXaTdA__30XHO5aOa4v3mMW8eIe8ZnDPoxMUmunLODGccJGPdK7JiYFijWgOvyQqAd41ueXtMTkpZA4CRGt6QY8EVY5qpFfnyY8aJehxHOoaI7hFpWfI2bN1IXaGOxhTKM_Vp2uAc5pAiHVKmMfgnpM57LOUtORrcWPDdyzwl9zfX91ffmtu7r9-vLm8bL8HMjUfZu37wyAz2rhuklOCFxl4qzSWgU6pXwphBumGQrdPasb7V2HKv_UMrTsnnve1m6Sd88Bjn7Ea7yWFy-dkmF-y_SgxP9jFtbSc0F4xXg7MXg5x-LlhmO4WyS-4ipqVY3jLTVQ5MRT_9h67TkmNNVymupQJpukpd7CmfUykZh8MxDOyuHrurx_6pp258_DvDgf_dRwU-7IF1mVM-6FwZIetvxC-5FpY_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428560597</pqid></control><display><type>article</type><title>Stem cell lineage survival as a noisy competition for niche access</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Corominas-Murtra, Bernat ; Scheele, Colinda L. G. J. ; Kishi, Kasumi ; Ellenbroek, Saskia I. J. ; Simons, Benjamin D. ; van Rheenen, Jacco ; Hannezo, Edouard</creator><creatorcontrib>Corominas-Murtra, Bernat ; Scheele, Colinda L. G. J. ; Kishi, Kasumi ; Ellenbroek, Saskia I. J. ; Simons, Benjamin D. ; van Rheenen, Jacco ; Hannezo, Edouard</creatorcontrib><description>Understanding to what extent stem cell potential is a cell-intrinsic property or an emergent behavior coming from global tissue dynamics and geometry is a key outstanding question of systems and stem cell biology. Here, we propose a theory of stem cell dynamics as a stochastic competition for access to a spatially localized niche, giving rise to a stochastic conveyor-belt model. Cell divisions produce a steady cellular stream which advects cells away from the niche, while random rearrangements enable cells away from the niche to be favorably repositioned. Importantly, even when assuming that all cells in a tissue are molecularly equivalent, we predict a common (“universal”) functional dependence of the long-term clonal survival probability on distance from the niche, as well as the emergence of a well-defined number of functional stem cells, dependent only on the rate of random movements vs. mitosis-driven advection. We test the predictions of this theory on datasets of pubertal mammary gland tips and embryonic kidney tips, as well as homeostatic intestinal crypts. Importantly, we find good agreement for the predicted functional dependency of the competition as a function of position, and thus functional stem cell number in each organ. This argues for a key role of positional fluctuations in dictating stem cell number and dynamics, and we discuss the applicability of this theory to other settings.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1921205117</identifier><identifier>PMID: 32611816</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Belt conveyors ; Biological Sciences ; Cell Lineage ; Cell number ; Cell Self Renewal ; Cell Survival ; Competition ; Crypts ; Dependence ; Female ; Homeostasis ; Intestine ; Intestines - cytology ; Intestines - growth & development ; Kidney - cytology ; Kidney - growth & development ; Mammary gland ; Mammary glands ; Mammary Glands, Animal - cytology ; Mammary Glands, Animal - growth & development ; Mice ; Mitosis ; Models, Theoretical ; Physical Sciences ; Signal-To-Noise Ratio ; Stem Cell Niche ; Stem cells ; Stem Cells - cytology ; Stem Cells - physiology ; Survival ; Tips</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-07, Vol.117 (29), p.16969-16975</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jul 21, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-ce5babfce19eba7f5550c38eb568250ea66b6399f5aff54a88a1b48e42c8cd43</citedby><cites>FETCH-LOGICAL-c509t-ce5babfce19eba7f5550c38eb568250ea66b6399f5aff54a88a1b48e42c8cd43</cites><orcidid>0000-0001-6005-1561 ; 0000-0002-3875-7071 ; 0000-0001-8007-2634 ; 0000-0001-8999-5451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26935399$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26935399$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32611816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Corominas-Murtra, Bernat</creatorcontrib><creatorcontrib>Scheele, Colinda L. G. J.</creatorcontrib><creatorcontrib>Kishi, Kasumi</creatorcontrib><creatorcontrib>Ellenbroek, Saskia I. J.</creatorcontrib><creatorcontrib>Simons, Benjamin D.</creatorcontrib><creatorcontrib>van Rheenen, Jacco</creatorcontrib><creatorcontrib>Hannezo, Edouard</creatorcontrib><title>Stem cell lineage survival as a noisy competition for niche access</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Understanding to what extent stem cell potential is a cell-intrinsic property or an emergent behavior coming from global tissue dynamics and geometry is a key outstanding question of systems and stem cell biology. Here, we propose a theory of stem cell dynamics as a stochastic competition for access to a spatially localized niche, giving rise to a stochastic conveyor-belt model. Cell divisions produce a steady cellular stream which advects cells away from the niche, while random rearrangements enable cells away from the niche to be favorably repositioned. Importantly, even when assuming that all cells in a tissue are molecularly equivalent, we predict a common (“universal”) functional dependence of the long-term clonal survival probability on distance from the niche, as well as the emergence of a well-defined number of functional stem cells, dependent only on the rate of random movements vs. mitosis-driven advection. We test the predictions of this theory on datasets of pubertal mammary gland tips and embryonic kidney tips, as well as homeostatic intestinal crypts. Importantly, we find good agreement for the predicted functional dependency of the competition as a function of position, and thus functional stem cell number in each organ. This argues for a key role of positional fluctuations in dictating stem cell number and dynamics, and we discuss the applicability of this theory to other settings.</description><subject>Animals</subject><subject>Belt conveyors</subject><subject>Biological Sciences</subject><subject>Cell Lineage</subject><subject>Cell number</subject><subject>Cell Self Renewal</subject><subject>Cell Survival</subject><subject>Competition</subject><subject>Crypts</subject><subject>Dependence</subject><subject>Female</subject><subject>Homeostasis</subject><subject>Intestine</subject><subject>Intestines - cytology</subject><subject>Intestines - growth & development</subject><subject>Kidney - cytology</subject><subject>Kidney - growth & development</subject><subject>Mammary gland</subject><subject>Mammary glands</subject><subject>Mammary Glands, Animal - cytology</subject><subject>Mammary Glands, Animal - growth & development</subject><subject>Mice</subject><subject>Mitosis</subject><subject>Models, Theoretical</subject><subject>Physical Sciences</subject><subject>Signal-To-Noise Ratio</subject><subject>Stem Cell Niche</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - physiology</subject><subject>Survival</subject><subject>Tips</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkb1rHDEQxUWIic9O6lQJgjRu1h5JK63UBBxjJwGDi7gXWnnW1rErXaTdA__30XHO5aOa4v3mMW8eIe8ZnDPoxMUmunLODGccJGPdK7JiYFijWgOvyQqAd41ueXtMTkpZA4CRGt6QY8EVY5qpFfnyY8aJehxHOoaI7hFpWfI2bN1IXaGOxhTKM_Vp2uAc5pAiHVKmMfgnpM57LOUtORrcWPDdyzwl9zfX91ffmtu7r9-vLm8bL8HMjUfZu37wyAz2rhuklOCFxl4qzSWgU6pXwphBumGQrdPasb7V2HKv_UMrTsnnve1m6Sd88Bjn7Ea7yWFy-dkmF-y_SgxP9jFtbSc0F4xXg7MXg5x-LlhmO4WyS-4ipqVY3jLTVQ5MRT_9h67TkmNNVymupQJpukpd7CmfUykZh8MxDOyuHrurx_6pp258_DvDgf_dRwU-7IF1mVM-6FwZIetvxC-5FpY_</recordid><startdate>20200721</startdate><enddate>20200721</enddate><creator>Corominas-Murtra, Bernat</creator><creator>Scheele, Colinda L. G. J.</creator><creator>Kishi, Kasumi</creator><creator>Ellenbroek, Saskia I. J.</creator><creator>Simons, Benjamin D.</creator><creator>van Rheenen, Jacco</creator><creator>Hannezo, Edouard</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6005-1561</orcidid><orcidid>https://orcid.org/0000-0002-3875-7071</orcidid><orcidid>https://orcid.org/0000-0001-8007-2634</orcidid><orcidid>https://orcid.org/0000-0001-8999-5451</orcidid></search><sort><creationdate>20200721</creationdate><title>Stem cell lineage survival as a noisy competition for niche access</title><author>Corominas-Murtra, Bernat ; Scheele, Colinda L. G. J. ; Kishi, Kasumi ; Ellenbroek, Saskia I. J. ; Simons, Benjamin D. ; van Rheenen, Jacco ; Hannezo, Edouard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-ce5babfce19eba7f5550c38eb568250ea66b6399f5aff54a88a1b48e42c8cd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Belt conveyors</topic><topic>Biological Sciences</topic><topic>Cell Lineage</topic><topic>Cell number</topic><topic>Cell Self Renewal</topic><topic>Cell Survival</topic><topic>Competition</topic><topic>Crypts</topic><topic>Dependence</topic><topic>Female</topic><topic>Homeostasis</topic><topic>Intestine</topic><topic>Intestines - cytology</topic><topic>Intestines - growth & development</topic><topic>Kidney - cytology</topic><topic>Kidney - growth & development</topic><topic>Mammary gland</topic><topic>Mammary glands</topic><topic>Mammary Glands, Animal - cytology</topic><topic>Mammary Glands, Animal - growth & development</topic><topic>Mice</topic><topic>Mitosis</topic><topic>Models, Theoretical</topic><topic>Physical Sciences</topic><topic>Signal-To-Noise Ratio</topic><topic>Stem Cell Niche</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - physiology</topic><topic>Survival</topic><topic>Tips</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corominas-Murtra, Bernat</creatorcontrib><creatorcontrib>Scheele, Colinda L. G. J.</creatorcontrib><creatorcontrib>Kishi, Kasumi</creatorcontrib><creatorcontrib>Ellenbroek, Saskia I. J.</creatorcontrib><creatorcontrib>Simons, Benjamin D.</creatorcontrib><creatorcontrib>van Rheenen, Jacco</creatorcontrib><creatorcontrib>Hannezo, Edouard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corominas-Murtra, Bernat</au><au>Scheele, Colinda L. G. J.</au><au>Kishi, Kasumi</au><au>Ellenbroek, Saskia I. J.</au><au>Simons, Benjamin D.</au><au>van Rheenen, Jacco</au><au>Hannezo, Edouard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stem cell lineage survival as a noisy competition for niche access</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-07-21</date><risdate>2020</risdate><volume>117</volume><issue>29</issue><spage>16969</spage><epage>16975</epage><pages>16969-16975</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Understanding to what extent stem cell potential is a cell-intrinsic property or an emergent behavior coming from global tissue dynamics and geometry is a key outstanding question of systems and stem cell biology. Here, we propose a theory of stem cell dynamics as a stochastic competition for access to a spatially localized niche, giving rise to a stochastic conveyor-belt model. Cell divisions produce a steady cellular stream which advects cells away from the niche, while random rearrangements enable cells away from the niche to be favorably repositioned. Importantly, even when assuming that all cells in a tissue are molecularly equivalent, we predict a common (“universal”) functional dependence of the long-term clonal survival probability on distance from the niche, as well as the emergence of a well-defined number of functional stem cells, dependent only on the rate of random movements vs. mitosis-driven advection. We test the predictions of this theory on datasets of pubertal mammary gland tips and embryonic kidney tips, as well as homeostatic intestinal crypts. Importantly, we find good agreement for the predicted functional dependency of the competition as a function of position, and thus functional stem cell number in each organ. This argues for a key role of positional fluctuations in dictating stem cell number and dynamics, and we discuss the applicability of this theory to other settings.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32611816</pmid><doi>10.1073/pnas.1921205117</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6005-1561</orcidid><orcidid>https://orcid.org/0000-0002-3875-7071</orcidid><orcidid>https://orcid.org/0000-0001-8007-2634</orcidid><orcidid>https://orcid.org/0000-0001-8999-5451</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-07, Vol.117 (29), p.16969-16975 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7382312 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Belt conveyors Biological Sciences Cell Lineage Cell number Cell Self Renewal Cell Survival Competition Crypts Dependence Female Homeostasis Intestine Intestines - cytology Intestines - growth & development Kidney - cytology Kidney - growth & development Mammary gland Mammary glands Mammary Glands, Animal - cytology Mammary Glands, Animal - growth & development Mice Mitosis Models, Theoretical Physical Sciences Signal-To-Noise Ratio Stem Cell Niche Stem cells Stem Cells - cytology Stem Cells - physiology Survival Tips |
title | Stem cell lineage survival as a noisy competition for niche access |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stem%20cell%20lineage%20survival%20as%20a%20noisy%20competition%20for%20niche%20access&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Corominas-Murtra,%20Bernat&rft.date=2020-07-21&rft.volume=117&rft.issue=29&rft.spage=16969&rft.epage=16975&rft.pages=16969-16975&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1921205117&rft_dat=%3Cjstor_pubme%3E26935399%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428560597&rft_id=info:pmid/32611816&rft_jstor_id=26935399&rfr_iscdi=true |