Stem cell lineage survival as a noisy competition for niche access

Understanding to what extent stem cell potential is a cell-intrinsic property or an emergent behavior coming from global tissue dynamics and geometry is a key outstanding question of systems and stem cell biology. Here, we propose a theory of stem cell dynamics as a stochastic competition for access...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-07, Vol.117 (29), p.16969-16975
Hauptverfasser: Corominas-Murtra, Bernat, Scheele, Colinda L. G. J., Kishi, Kasumi, Ellenbroek, Saskia I. J., Simons, Benjamin D., van Rheenen, Jacco, Hannezo, Edouard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16975
container_issue 29
container_start_page 16969
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Corominas-Murtra, Bernat
Scheele, Colinda L. G. J.
Kishi, Kasumi
Ellenbroek, Saskia I. J.
Simons, Benjamin D.
van Rheenen, Jacco
Hannezo, Edouard
description Understanding to what extent stem cell potential is a cell-intrinsic property or an emergent behavior coming from global tissue dynamics and geometry is a key outstanding question of systems and stem cell biology. Here, we propose a theory of stem cell dynamics as a stochastic competition for access to a spatially localized niche, giving rise to a stochastic conveyor-belt model. Cell divisions produce a steady cellular stream which advects cells away from the niche, while random rearrangements enable cells away from the niche to be favorably repositioned. Importantly, even when assuming that all cells in a tissue are molecularly equivalent, we predict a common (“universal”) functional dependence of the long-term clonal survival probability on distance from the niche, as well as the emergence of a well-defined number of functional stem cells, dependent only on the rate of random movements vs. mitosis-driven advection. We test the predictions of this theory on datasets of pubertal mammary gland tips and embryonic kidney tips, as well as homeostatic intestinal crypts. Importantly, we find good agreement for the predicted functional dependency of the competition as a function of position, and thus functional stem cell number in each organ. This argues for a key role of positional fluctuations in dictating stem cell number and dynamics, and we discuss the applicability of this theory to other settings.
doi_str_mv 10.1073/pnas.1921205117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7382312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26935399</jstor_id><sourcerecordid>26935399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-ce5babfce19eba7f5550c38eb568250ea66b6399f5aff54a88a1b48e42c8cd43</originalsourceid><addsrcrecordid>eNpdkb1rHDEQxUWIic9O6lQJgjRu1h5JK63UBBxjJwGDi7gXWnnW1rErXaTdA__30XHO5aOa4v3mMW8eIe8ZnDPoxMUmunLODGccJGPdK7JiYFijWgOvyQqAd41ueXtMTkpZA4CRGt6QY8EVY5qpFfnyY8aJehxHOoaI7hFpWfI2bN1IXaGOxhTKM_Vp2uAc5pAiHVKmMfgnpM57LOUtORrcWPDdyzwl9zfX91ffmtu7r9-vLm8bL8HMjUfZu37wyAz2rhuklOCFxl4qzSWgU6pXwphBumGQrdPasb7V2HKv_UMrTsnnve1m6Sd88Bjn7Ea7yWFy-dkmF-y_SgxP9jFtbSc0F4xXg7MXg5x-LlhmO4WyS-4ipqVY3jLTVQ5MRT_9h67TkmNNVymupQJpukpd7CmfUykZh8MxDOyuHrurx_6pp258_DvDgf_dRwU-7IF1mVM-6FwZIetvxC-5FpY_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428560597</pqid></control><display><type>article</type><title>Stem cell lineage survival as a noisy competition for niche access</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Corominas-Murtra, Bernat ; Scheele, Colinda L. G. J. ; Kishi, Kasumi ; Ellenbroek, Saskia I. J. ; Simons, Benjamin D. ; van Rheenen, Jacco ; Hannezo, Edouard</creator><creatorcontrib>Corominas-Murtra, Bernat ; Scheele, Colinda L. G. J. ; Kishi, Kasumi ; Ellenbroek, Saskia I. J. ; Simons, Benjamin D. ; van Rheenen, Jacco ; Hannezo, Edouard</creatorcontrib><description>Understanding to what extent stem cell potential is a cell-intrinsic property or an emergent behavior coming from global tissue dynamics and geometry is a key outstanding question of systems and stem cell biology. Here, we propose a theory of stem cell dynamics as a stochastic competition for access to a spatially localized niche, giving rise to a stochastic conveyor-belt model. Cell divisions produce a steady cellular stream which advects cells away from the niche, while random rearrangements enable cells away from the niche to be favorably repositioned. Importantly, even when assuming that all cells in a tissue are molecularly equivalent, we predict a common (“universal”) functional dependence of the long-term clonal survival probability on distance from the niche, as well as the emergence of a well-defined number of functional stem cells, dependent only on the rate of random movements vs. mitosis-driven advection. We test the predictions of this theory on datasets of pubertal mammary gland tips and embryonic kidney tips, as well as homeostatic intestinal crypts. Importantly, we find good agreement for the predicted functional dependency of the competition as a function of position, and thus functional stem cell number in each organ. This argues for a key role of positional fluctuations in dictating stem cell number and dynamics, and we discuss the applicability of this theory to other settings.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1921205117</identifier><identifier>PMID: 32611816</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Belt conveyors ; Biological Sciences ; Cell Lineage ; Cell number ; Cell Self Renewal ; Cell Survival ; Competition ; Crypts ; Dependence ; Female ; Homeostasis ; Intestine ; Intestines - cytology ; Intestines - growth &amp; development ; Kidney - cytology ; Kidney - growth &amp; development ; Mammary gland ; Mammary glands ; Mammary Glands, Animal - cytology ; Mammary Glands, Animal - growth &amp; development ; Mice ; Mitosis ; Models, Theoretical ; Physical Sciences ; Signal-To-Noise Ratio ; Stem Cell Niche ; Stem cells ; Stem Cells - cytology ; Stem Cells - physiology ; Survival ; Tips</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-07, Vol.117 (29), p.16969-16975</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jul 21, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-ce5babfce19eba7f5550c38eb568250ea66b6399f5aff54a88a1b48e42c8cd43</citedby><cites>FETCH-LOGICAL-c509t-ce5babfce19eba7f5550c38eb568250ea66b6399f5aff54a88a1b48e42c8cd43</cites><orcidid>0000-0001-6005-1561 ; 0000-0002-3875-7071 ; 0000-0001-8007-2634 ; 0000-0001-8999-5451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26935399$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26935399$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32611816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Corominas-Murtra, Bernat</creatorcontrib><creatorcontrib>Scheele, Colinda L. G. J.</creatorcontrib><creatorcontrib>Kishi, Kasumi</creatorcontrib><creatorcontrib>Ellenbroek, Saskia I. J.</creatorcontrib><creatorcontrib>Simons, Benjamin D.</creatorcontrib><creatorcontrib>van Rheenen, Jacco</creatorcontrib><creatorcontrib>Hannezo, Edouard</creatorcontrib><title>Stem cell lineage survival as a noisy competition for niche access</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Understanding to what extent stem cell potential is a cell-intrinsic property or an emergent behavior coming from global tissue dynamics and geometry is a key outstanding question of systems and stem cell biology. Here, we propose a theory of stem cell dynamics as a stochastic competition for access to a spatially localized niche, giving rise to a stochastic conveyor-belt model. Cell divisions produce a steady cellular stream which advects cells away from the niche, while random rearrangements enable cells away from the niche to be favorably repositioned. Importantly, even when assuming that all cells in a tissue are molecularly equivalent, we predict a common (“universal”) functional dependence of the long-term clonal survival probability on distance from the niche, as well as the emergence of a well-defined number of functional stem cells, dependent only on the rate of random movements vs. mitosis-driven advection. We test the predictions of this theory on datasets of pubertal mammary gland tips and embryonic kidney tips, as well as homeostatic intestinal crypts. Importantly, we find good agreement for the predicted functional dependency of the competition as a function of position, and thus functional stem cell number in each organ. This argues for a key role of positional fluctuations in dictating stem cell number and dynamics, and we discuss the applicability of this theory to other settings.</description><subject>Animals</subject><subject>Belt conveyors</subject><subject>Biological Sciences</subject><subject>Cell Lineage</subject><subject>Cell number</subject><subject>Cell Self Renewal</subject><subject>Cell Survival</subject><subject>Competition</subject><subject>Crypts</subject><subject>Dependence</subject><subject>Female</subject><subject>Homeostasis</subject><subject>Intestine</subject><subject>Intestines - cytology</subject><subject>Intestines - growth &amp; development</subject><subject>Kidney - cytology</subject><subject>Kidney - growth &amp; development</subject><subject>Mammary gland</subject><subject>Mammary glands</subject><subject>Mammary Glands, Animal - cytology</subject><subject>Mammary Glands, Animal - growth &amp; development</subject><subject>Mice</subject><subject>Mitosis</subject><subject>Models, Theoretical</subject><subject>Physical Sciences</subject><subject>Signal-To-Noise Ratio</subject><subject>Stem Cell Niche</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - physiology</subject><subject>Survival</subject><subject>Tips</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkb1rHDEQxUWIic9O6lQJgjRu1h5JK63UBBxjJwGDi7gXWnnW1rErXaTdA__30XHO5aOa4v3mMW8eIe8ZnDPoxMUmunLODGccJGPdK7JiYFijWgOvyQqAd41ueXtMTkpZA4CRGt6QY8EVY5qpFfnyY8aJehxHOoaI7hFpWfI2bN1IXaGOxhTKM_Vp2uAc5pAiHVKmMfgnpM57LOUtORrcWPDdyzwl9zfX91ffmtu7r9-vLm8bL8HMjUfZu37wyAz2rhuklOCFxl4qzSWgU6pXwphBumGQrdPasb7V2HKv_UMrTsnnve1m6Sd88Bjn7Ea7yWFy-dkmF-y_SgxP9jFtbSc0F4xXg7MXg5x-LlhmO4WyS-4ipqVY3jLTVQ5MRT_9h67TkmNNVymupQJpukpd7CmfUykZh8MxDOyuHrurx_6pp258_DvDgf_dRwU-7IF1mVM-6FwZIetvxC-5FpY_</recordid><startdate>20200721</startdate><enddate>20200721</enddate><creator>Corominas-Murtra, Bernat</creator><creator>Scheele, Colinda L. G. J.</creator><creator>Kishi, Kasumi</creator><creator>Ellenbroek, Saskia I. J.</creator><creator>Simons, Benjamin D.</creator><creator>van Rheenen, Jacco</creator><creator>Hannezo, Edouard</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6005-1561</orcidid><orcidid>https://orcid.org/0000-0002-3875-7071</orcidid><orcidid>https://orcid.org/0000-0001-8007-2634</orcidid><orcidid>https://orcid.org/0000-0001-8999-5451</orcidid></search><sort><creationdate>20200721</creationdate><title>Stem cell lineage survival as a noisy competition for niche access</title><author>Corominas-Murtra, Bernat ; Scheele, Colinda L. G. J. ; Kishi, Kasumi ; Ellenbroek, Saskia I. J. ; Simons, Benjamin D. ; van Rheenen, Jacco ; Hannezo, Edouard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-ce5babfce19eba7f5550c38eb568250ea66b6399f5aff54a88a1b48e42c8cd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Belt conveyors</topic><topic>Biological Sciences</topic><topic>Cell Lineage</topic><topic>Cell number</topic><topic>Cell Self Renewal</topic><topic>Cell Survival</topic><topic>Competition</topic><topic>Crypts</topic><topic>Dependence</topic><topic>Female</topic><topic>Homeostasis</topic><topic>Intestine</topic><topic>Intestines - cytology</topic><topic>Intestines - growth &amp; development</topic><topic>Kidney - cytology</topic><topic>Kidney - growth &amp; development</topic><topic>Mammary gland</topic><topic>Mammary glands</topic><topic>Mammary Glands, Animal - cytology</topic><topic>Mammary Glands, Animal - growth &amp; development</topic><topic>Mice</topic><topic>Mitosis</topic><topic>Models, Theoretical</topic><topic>Physical Sciences</topic><topic>Signal-To-Noise Ratio</topic><topic>Stem Cell Niche</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - physiology</topic><topic>Survival</topic><topic>Tips</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corominas-Murtra, Bernat</creatorcontrib><creatorcontrib>Scheele, Colinda L. G. J.</creatorcontrib><creatorcontrib>Kishi, Kasumi</creatorcontrib><creatorcontrib>Ellenbroek, Saskia I. J.</creatorcontrib><creatorcontrib>Simons, Benjamin D.</creatorcontrib><creatorcontrib>van Rheenen, Jacco</creatorcontrib><creatorcontrib>Hannezo, Edouard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corominas-Murtra, Bernat</au><au>Scheele, Colinda L. G. J.</au><au>Kishi, Kasumi</au><au>Ellenbroek, Saskia I. J.</au><au>Simons, Benjamin D.</au><au>van Rheenen, Jacco</au><au>Hannezo, Edouard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stem cell lineage survival as a noisy competition for niche access</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-07-21</date><risdate>2020</risdate><volume>117</volume><issue>29</issue><spage>16969</spage><epage>16975</epage><pages>16969-16975</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Understanding to what extent stem cell potential is a cell-intrinsic property or an emergent behavior coming from global tissue dynamics and geometry is a key outstanding question of systems and stem cell biology. Here, we propose a theory of stem cell dynamics as a stochastic competition for access to a spatially localized niche, giving rise to a stochastic conveyor-belt model. Cell divisions produce a steady cellular stream which advects cells away from the niche, while random rearrangements enable cells away from the niche to be favorably repositioned. Importantly, even when assuming that all cells in a tissue are molecularly equivalent, we predict a common (“universal”) functional dependence of the long-term clonal survival probability on distance from the niche, as well as the emergence of a well-defined number of functional stem cells, dependent only on the rate of random movements vs. mitosis-driven advection. We test the predictions of this theory on datasets of pubertal mammary gland tips and embryonic kidney tips, as well as homeostatic intestinal crypts. Importantly, we find good agreement for the predicted functional dependency of the competition as a function of position, and thus functional stem cell number in each organ. This argues for a key role of positional fluctuations in dictating stem cell number and dynamics, and we discuss the applicability of this theory to other settings.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32611816</pmid><doi>10.1073/pnas.1921205117</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6005-1561</orcidid><orcidid>https://orcid.org/0000-0002-3875-7071</orcidid><orcidid>https://orcid.org/0000-0001-8007-2634</orcidid><orcidid>https://orcid.org/0000-0001-8999-5451</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-07, Vol.117 (29), p.16969-16975
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7382312
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Belt conveyors
Biological Sciences
Cell Lineage
Cell number
Cell Self Renewal
Cell Survival
Competition
Crypts
Dependence
Female
Homeostasis
Intestine
Intestines - cytology
Intestines - growth & development
Kidney - cytology
Kidney - growth & development
Mammary gland
Mammary glands
Mammary Glands, Animal - cytology
Mammary Glands, Animal - growth & development
Mice
Mitosis
Models, Theoretical
Physical Sciences
Signal-To-Noise Ratio
Stem Cell Niche
Stem cells
Stem Cells - cytology
Stem Cells - physiology
Survival
Tips
title Stem cell lineage survival as a noisy competition for niche access
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stem%20cell%20lineage%20survival%20as%20a%20noisy%20competition%20for%20niche%20access&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Corominas-Murtra,%20Bernat&rft.date=2020-07-21&rft.volume=117&rft.issue=29&rft.spage=16969&rft.epage=16975&rft.pages=16969-16975&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1921205117&rft_dat=%3Cjstor_pubme%3E26935399%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428560597&rft_id=info:pmid/32611816&rft_jstor_id=26935399&rfr_iscdi=true