Phenotypic Screen with TSC-Deficient Neurons Reveals Heat-Shock Machinery as a Druggable Pathway for mTORC1 and Reduced Cilia

Tuberous sclerosis complex (TSC) is a neurogenetic disorder that leads to elevated mechanistic targeting of rapamycin complex 1 (mTORC1) activity. Cilia can be affected by mTORC1 signaling, and ciliary deficits are associated with neurodevelopmental disorders. Here, we examine whether neuronal cilia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) 2020-06, Vol.31 (12), p.107780-107780, Article 107780
Hauptverfasser: Di Nardo, Alessia, Lenoël, Isadora, Winden, Kellen D., Rühmkorf, Alina, Modi, Meera E., Barrett, Lee, Ercan-Herbst, Ebru, Venugopal, Pooja, Behne, Robert, Lopes, Carla A.M., Kleiman, Robin J., Bettencourt-Dias, Mónica, Sahin, Mustafa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107780
container_issue 12
container_start_page 107780
container_title Cell reports (Cambridge)
container_volume 31
creator Di Nardo, Alessia
Lenoël, Isadora
Winden, Kellen D.
Rühmkorf, Alina
Modi, Meera E.
Barrett, Lee
Ercan-Herbst, Ebru
Venugopal, Pooja
Behne, Robert
Lopes, Carla A.M.
Kleiman, Robin J.
Bettencourt-Dias, Mónica
Sahin, Mustafa
description Tuberous sclerosis complex (TSC) is a neurogenetic disorder that leads to elevated mechanistic targeting of rapamycin complex 1 (mTORC1) activity. Cilia can be affected by mTORC1 signaling, and ciliary deficits are associated with neurodevelopmental disorders. Here, we examine whether neuronal cilia are affected in TSC. We show that cortical tubers from TSC patients and mutant mouse brains have fewer cilia. Using high-content image-based assays, we demonstrate that mTORC1 activity inversely correlates with ciliation in TSC1/2-deficient neurons. To investigate the mechanistic relationship between mTORC1 and cilia, we perform a phenotypic screen for mTORC1 inhibitors with TSC1/2-deficient neurons. We identify inhibitors of the heat shock protein 90 (Hsp90) that suppress mTORC1 through regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Pharmacological inhibition of Hsp90 rescues ciliation through downregulation of Hsp27. Our study uncovers the heat-shock machinery as a druggable signaling node to restore mTORC1 activity and cilia due to loss of TSC1/2, and it provides broadly applicable platforms for studying TSC-related neuronal dysfunction. [Display omitted] •Tubers from TSC patients have a distinct ciliary gene signature and fewer cilia•High-content assays with TSC-deficient neurons can be used as a drug-screening platform•17-AGG can regulate the mTORC1 signaling cascade at multiple levels•Hsp27 is a druggable target of mTORC1-dependent impaired ciliation Di Nardo et al. find that cortical tubers from TSC patients and mutant mouse brains have fewer cilia. An image-based screening of mTORC1 activity in TSC1/2-deficient neurons leads to the identification of the heat-shock machinery as a druggable signaling node to restore mTORC1 activity and cilia.
doi_str_mv 10.1016/j.celrep.2020.107780
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7381997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124720307609</els_id><sourcerecordid>32579942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-272b4bd0cf646a713ed5d80e8b2c49d75cd0557a558327169723acbed19a10fa3</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0Eogj4A4T8Aym283CyQULhUSSgFS1ra2JPGpc0qZy0VRf8O6kKBTZ4M5ZH94znXkIuOOtzxqOrWV9j6XDRF0xsn6SM2QE5EYJzj4tAHv6698h508xYdyLGeRIck54vQpkkgTghH6MCq7rdLKymY-0QK7q2bUEn49S7xdxqi1VLX3Dp6qqhr7hCKBs6QGi9cVHrd_oMurAVug2FhgK9dcvpFLIS6QjaYg0bmteOzifD15RTqEyHMEuNhqa2tHBGjvKOh-df9ZS83d9N0oH3NHx4TG-ePB1EfusJKbIgM0znURCB5D6a0MQM40zoIDEy1IaFoYQwjH0heZRI4YPO0PAEOMvBPyXXO-5imc3R6G4nB6VaODsHt1E1WPW3U9lCTeuVkn7Mk0R2gGAH0K5uGof5XsuZ2iaiZmqXiNomonaJdLLL33P3om__fz6G3fYri041W8c7g6xD3SpT2_8nfAK39J-r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phenotypic Screen with TSC-Deficient Neurons Reveals Heat-Shock Machinery as a Druggable Pathway for mTORC1 and Reduced Cilia</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Di Nardo, Alessia ; Lenoël, Isadora ; Winden, Kellen D. ; Rühmkorf, Alina ; Modi, Meera E. ; Barrett, Lee ; Ercan-Herbst, Ebru ; Venugopal, Pooja ; Behne, Robert ; Lopes, Carla A.M. ; Kleiman, Robin J. ; Bettencourt-Dias, Mónica ; Sahin, Mustafa</creator><creatorcontrib>Di Nardo, Alessia ; Lenoël, Isadora ; Winden, Kellen D. ; Rühmkorf, Alina ; Modi, Meera E. ; Barrett, Lee ; Ercan-Herbst, Ebru ; Venugopal, Pooja ; Behne, Robert ; Lopes, Carla A.M. ; Kleiman, Robin J. ; Bettencourt-Dias, Mónica ; Sahin, Mustafa</creatorcontrib><description>Tuberous sclerosis complex (TSC) is a neurogenetic disorder that leads to elevated mechanistic targeting of rapamycin complex 1 (mTORC1) activity. Cilia can be affected by mTORC1 signaling, and ciliary deficits are associated with neurodevelopmental disorders. Here, we examine whether neuronal cilia are affected in TSC. We show that cortical tubers from TSC patients and mutant mouse brains have fewer cilia. Using high-content image-based assays, we demonstrate that mTORC1 activity inversely correlates with ciliation in TSC1/2-deficient neurons. To investigate the mechanistic relationship between mTORC1 and cilia, we perform a phenotypic screen for mTORC1 inhibitors with TSC1/2-deficient neurons. We identify inhibitors of the heat shock protein 90 (Hsp90) that suppress mTORC1 through regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Pharmacological inhibition of Hsp90 rescues ciliation through downregulation of Hsp27. Our study uncovers the heat-shock machinery as a druggable signaling node to restore mTORC1 activity and cilia due to loss of TSC1/2, and it provides broadly applicable platforms for studying TSC-related neuronal dysfunction. [Display omitted] •Tubers from TSC patients have a distinct ciliary gene signature and fewer cilia•High-content assays with TSC-deficient neurons can be used as a drug-screening platform•17-AGG can regulate the mTORC1 signaling cascade at multiple levels•Hsp27 is a druggable target of mTORC1-dependent impaired ciliation Di Nardo et al. find that cortical tubers from TSC patients and mutant mouse brains have fewer cilia. An image-based screening of mTORC1 activity in TSC1/2-deficient neurons leads to the identification of the heat-shock machinery as a druggable signaling node to restore mTORC1 activity and cilia.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2020.107780</identifier><identifier>PMID: 32579942</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>17-AGG ; Aging - metabolism ; Animals ; autism ; Benzoquinones - pharmacology ; brain ; Brain - pathology ; cilia ; Cilia - metabolism ; ciliopathy ; Down-Regulation - drug effects ; Heat-Shock Response - drug effects ; Hsp27 ; HSP27 Heat-Shock Proteins - metabolism ; Hsp90 ; HSP90 Heat-Shock Proteins - metabolism ; Humans ; Lactams, Macrocyclic - pharmacology ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mice, Knockout ; mTOR ; Neurons - drug effects ; Neurons - metabolism ; Phenotype ; Phosphatidylinositol 3-Kinases - metabolism ; Proto-Oncogene Proteins c-akt - metabolism ; Rats ; Sirolimus - pharmacology ; Time Factors ; TSC ; Tuberous Sclerosis Complex 1 Protein - metabolism ; Tuberous Sclerosis Complex 2 Protein - metabolism ; Up-Regulation - drug effects</subject><ispartof>Cell reports (Cambridge), 2020-06, Vol.31 (12), p.107780-107780, Article 107780</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-272b4bd0cf646a713ed5d80e8b2c49d75cd0557a558327169723acbed19a10fa3</citedby><cites>FETCH-LOGICAL-c463t-272b4bd0cf646a713ed5d80e8b2c49d75cd0557a558327169723acbed19a10fa3</cites><orcidid>0000-0001-7044-2953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32579942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Nardo, Alessia</creatorcontrib><creatorcontrib>Lenoël, Isadora</creatorcontrib><creatorcontrib>Winden, Kellen D.</creatorcontrib><creatorcontrib>Rühmkorf, Alina</creatorcontrib><creatorcontrib>Modi, Meera E.</creatorcontrib><creatorcontrib>Barrett, Lee</creatorcontrib><creatorcontrib>Ercan-Herbst, Ebru</creatorcontrib><creatorcontrib>Venugopal, Pooja</creatorcontrib><creatorcontrib>Behne, Robert</creatorcontrib><creatorcontrib>Lopes, Carla A.M.</creatorcontrib><creatorcontrib>Kleiman, Robin J.</creatorcontrib><creatorcontrib>Bettencourt-Dias, Mónica</creatorcontrib><creatorcontrib>Sahin, Mustafa</creatorcontrib><title>Phenotypic Screen with TSC-Deficient Neurons Reveals Heat-Shock Machinery as a Druggable Pathway for mTORC1 and Reduced Cilia</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>Tuberous sclerosis complex (TSC) is a neurogenetic disorder that leads to elevated mechanistic targeting of rapamycin complex 1 (mTORC1) activity. Cilia can be affected by mTORC1 signaling, and ciliary deficits are associated with neurodevelopmental disorders. Here, we examine whether neuronal cilia are affected in TSC. We show that cortical tubers from TSC patients and mutant mouse brains have fewer cilia. Using high-content image-based assays, we demonstrate that mTORC1 activity inversely correlates with ciliation in TSC1/2-deficient neurons. To investigate the mechanistic relationship between mTORC1 and cilia, we perform a phenotypic screen for mTORC1 inhibitors with TSC1/2-deficient neurons. We identify inhibitors of the heat shock protein 90 (Hsp90) that suppress mTORC1 through regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Pharmacological inhibition of Hsp90 rescues ciliation through downregulation of Hsp27. Our study uncovers the heat-shock machinery as a druggable signaling node to restore mTORC1 activity and cilia due to loss of TSC1/2, and it provides broadly applicable platforms for studying TSC-related neuronal dysfunction. [Display omitted] •Tubers from TSC patients have a distinct ciliary gene signature and fewer cilia•High-content assays with TSC-deficient neurons can be used as a drug-screening platform•17-AGG can regulate the mTORC1 signaling cascade at multiple levels•Hsp27 is a druggable target of mTORC1-dependent impaired ciliation Di Nardo et al. find that cortical tubers from TSC patients and mutant mouse brains have fewer cilia. An image-based screening of mTORC1 activity in TSC1/2-deficient neurons leads to the identification of the heat-shock machinery as a druggable signaling node to restore mTORC1 activity and cilia.</description><subject>17-AGG</subject><subject>Aging - metabolism</subject><subject>Animals</subject><subject>autism</subject><subject>Benzoquinones - pharmacology</subject><subject>brain</subject><subject>Brain - pathology</subject><subject>cilia</subject><subject>Cilia - metabolism</subject><subject>ciliopathy</subject><subject>Down-Regulation - drug effects</subject><subject>Heat-Shock Response - drug effects</subject><subject>Hsp27</subject><subject>HSP27 Heat-Shock Proteins - metabolism</subject><subject>Hsp90</subject><subject>HSP90 Heat-Shock Proteins - metabolism</subject><subject>Humans</subject><subject>Lactams, Macrocyclic - pharmacology</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mice, Knockout</subject><subject>mTOR</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Phenotype</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Rats</subject><subject>Sirolimus - pharmacology</subject><subject>Time Factors</subject><subject>TSC</subject><subject>Tuberous Sclerosis Complex 1 Protein - metabolism</subject><subject>Tuberous Sclerosis Complex 2 Protein - metabolism</subject><subject>Up-Regulation - drug effects</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctOwzAQRS0Eogj4A4T8Aym283CyQULhUSSgFS1ra2JPGpc0qZy0VRf8O6kKBTZ4M5ZH94znXkIuOOtzxqOrWV9j6XDRF0xsn6SM2QE5EYJzj4tAHv6698h508xYdyLGeRIck54vQpkkgTghH6MCq7rdLKymY-0QK7q2bUEn49S7xdxqi1VLX3Dp6qqhr7hCKBs6QGi9cVHrd_oMurAVug2FhgK9dcvpFLIS6QjaYg0bmteOzifD15RTqEyHMEuNhqa2tHBGjvKOh-df9ZS83d9N0oH3NHx4TG-ePB1EfusJKbIgM0znURCB5D6a0MQM40zoIDEy1IaFoYQwjH0heZRI4YPO0PAEOMvBPyXXO-5imc3R6G4nB6VaODsHt1E1WPW3U9lCTeuVkn7Mk0R2gGAH0K5uGof5XsuZ2iaiZmqXiNomonaJdLLL33P3om__fz6G3fYri041W8c7g6xD3SpT2_8nfAK39J-r</recordid><startdate>20200623</startdate><enddate>20200623</enddate><creator>Di Nardo, Alessia</creator><creator>Lenoël, Isadora</creator><creator>Winden, Kellen D.</creator><creator>Rühmkorf, Alina</creator><creator>Modi, Meera E.</creator><creator>Barrett, Lee</creator><creator>Ercan-Herbst, Ebru</creator><creator>Venugopal, Pooja</creator><creator>Behne, Robert</creator><creator>Lopes, Carla A.M.</creator><creator>Kleiman, Robin J.</creator><creator>Bettencourt-Dias, Mónica</creator><creator>Sahin, Mustafa</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7044-2953</orcidid></search><sort><creationdate>20200623</creationdate><title>Phenotypic Screen with TSC-Deficient Neurons Reveals Heat-Shock Machinery as a Druggable Pathway for mTORC1 and Reduced Cilia</title><author>Di Nardo, Alessia ; Lenoël, Isadora ; Winden, Kellen D. ; Rühmkorf, Alina ; Modi, Meera E. ; Barrett, Lee ; Ercan-Herbst, Ebru ; Venugopal, Pooja ; Behne, Robert ; Lopes, Carla A.M. ; Kleiman, Robin J. ; Bettencourt-Dias, Mónica ; Sahin, Mustafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-272b4bd0cf646a713ed5d80e8b2c49d75cd0557a558327169723acbed19a10fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>17-AGG</topic><topic>Aging - metabolism</topic><topic>Animals</topic><topic>autism</topic><topic>Benzoquinones - pharmacology</topic><topic>brain</topic><topic>Brain - pathology</topic><topic>cilia</topic><topic>Cilia - metabolism</topic><topic>ciliopathy</topic><topic>Down-Regulation - drug effects</topic><topic>Heat-Shock Response - drug effects</topic><topic>Hsp27</topic><topic>HSP27 Heat-Shock Proteins - metabolism</topic><topic>Hsp90</topic><topic>HSP90 Heat-Shock Proteins - metabolism</topic><topic>Humans</topic><topic>Lactams, Macrocyclic - pharmacology</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mice, Knockout</topic><topic>mTOR</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Phenotype</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Rats</topic><topic>Sirolimus - pharmacology</topic><topic>Time Factors</topic><topic>TSC</topic><topic>Tuberous Sclerosis Complex 1 Protein - metabolism</topic><topic>Tuberous Sclerosis Complex 2 Protein - metabolism</topic><topic>Up-Regulation - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Nardo, Alessia</creatorcontrib><creatorcontrib>Lenoël, Isadora</creatorcontrib><creatorcontrib>Winden, Kellen D.</creatorcontrib><creatorcontrib>Rühmkorf, Alina</creatorcontrib><creatorcontrib>Modi, Meera E.</creatorcontrib><creatorcontrib>Barrett, Lee</creatorcontrib><creatorcontrib>Ercan-Herbst, Ebru</creatorcontrib><creatorcontrib>Venugopal, Pooja</creatorcontrib><creatorcontrib>Behne, Robert</creatorcontrib><creatorcontrib>Lopes, Carla A.M.</creatorcontrib><creatorcontrib>Kleiman, Robin J.</creatorcontrib><creatorcontrib>Bettencourt-Dias, Mónica</creatorcontrib><creatorcontrib>Sahin, Mustafa</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Nardo, Alessia</au><au>Lenoël, Isadora</au><au>Winden, Kellen D.</au><au>Rühmkorf, Alina</au><au>Modi, Meera E.</au><au>Barrett, Lee</au><au>Ercan-Herbst, Ebru</au><au>Venugopal, Pooja</au><au>Behne, Robert</au><au>Lopes, Carla A.M.</au><au>Kleiman, Robin J.</au><au>Bettencourt-Dias, Mónica</au><au>Sahin, Mustafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenotypic Screen with TSC-Deficient Neurons Reveals Heat-Shock Machinery as a Druggable Pathway for mTORC1 and Reduced Cilia</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2020-06-23</date><risdate>2020</risdate><volume>31</volume><issue>12</issue><spage>107780</spage><epage>107780</epage><pages>107780-107780</pages><artnum>107780</artnum><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Tuberous sclerosis complex (TSC) is a neurogenetic disorder that leads to elevated mechanistic targeting of rapamycin complex 1 (mTORC1) activity. Cilia can be affected by mTORC1 signaling, and ciliary deficits are associated with neurodevelopmental disorders. Here, we examine whether neuronal cilia are affected in TSC. We show that cortical tubers from TSC patients and mutant mouse brains have fewer cilia. Using high-content image-based assays, we demonstrate that mTORC1 activity inversely correlates with ciliation in TSC1/2-deficient neurons. To investigate the mechanistic relationship between mTORC1 and cilia, we perform a phenotypic screen for mTORC1 inhibitors with TSC1/2-deficient neurons. We identify inhibitors of the heat shock protein 90 (Hsp90) that suppress mTORC1 through regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Pharmacological inhibition of Hsp90 rescues ciliation through downregulation of Hsp27. Our study uncovers the heat-shock machinery as a druggable signaling node to restore mTORC1 activity and cilia due to loss of TSC1/2, and it provides broadly applicable platforms for studying TSC-related neuronal dysfunction. [Display omitted] •Tubers from TSC patients have a distinct ciliary gene signature and fewer cilia•High-content assays with TSC-deficient neurons can be used as a drug-screening platform•17-AGG can regulate the mTORC1 signaling cascade at multiple levels•Hsp27 is a druggable target of mTORC1-dependent impaired ciliation Di Nardo et al. find that cortical tubers from TSC patients and mutant mouse brains have fewer cilia. An image-based screening of mTORC1 activity in TSC1/2-deficient neurons leads to the identification of the heat-shock machinery as a druggable signaling node to restore mTORC1 activity and cilia.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32579942</pmid><doi>10.1016/j.celrep.2020.107780</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7044-2953</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2020-06, Vol.31 (12), p.107780-107780, Article 107780
issn 2211-1247
2211-1247
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7381997
source MEDLINE; DOAJ Directory of Open Access Journals; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects 17-AGG
Aging - metabolism
Animals
autism
Benzoquinones - pharmacology
brain
Brain - pathology
cilia
Cilia - metabolism
ciliopathy
Down-Regulation - drug effects
Heat-Shock Response - drug effects
Hsp27
HSP27 Heat-Shock Proteins - metabolism
Hsp90
HSP90 Heat-Shock Proteins - metabolism
Humans
Lactams, Macrocyclic - pharmacology
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mice, Knockout
mTOR
Neurons - drug effects
Neurons - metabolism
Phenotype
Phosphatidylinositol 3-Kinases - metabolism
Proto-Oncogene Proteins c-akt - metabolism
Rats
Sirolimus - pharmacology
Time Factors
TSC
Tuberous Sclerosis Complex 1 Protein - metabolism
Tuberous Sclerosis Complex 2 Protein - metabolism
Up-Regulation - drug effects
title Phenotypic Screen with TSC-Deficient Neurons Reveals Heat-Shock Machinery as a Druggable Pathway for mTORC1 and Reduced Cilia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenotypic%20Screen%20with%20TSC-Deficient%20Neurons%20Reveals%20Heat-Shock%20Machinery%20as%20a%20Druggable%20Pathway%20for%20mTORC1%20and%20Reduced%20Cilia&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Di%20Nardo,%20Alessia&rft.date=2020-06-23&rft.volume=31&rft.issue=12&rft.spage=107780&rft.epage=107780&rft.pages=107780-107780&rft.artnum=107780&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2020.107780&rft_dat=%3Cpubmed_cross%3E32579942%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32579942&rft_els_id=S2211124720307609&rfr_iscdi=true