2B‐Alert App: A mobile application for real‐time individualized prediction of alertness
Knowing how an individual responds to sleep deprivation is a requirement for developing personalized fatigue management strategies. Here we describe and validate the 2B‐Alert App, the first mobile application that progressively learns an individual’s trait‐like response to sleep deprivation in real...
Gespeichert in:
Veröffentlicht in: | Journal of sleep research 2019-04, Vol.28 (2), p.e12725-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e12725 |
container_title | Journal of sleep research |
container_volume | 28 |
creator | Reifman, Jaques Ramakrishnan, Sridhar Liu, Jianbo Kapela, Adam Doty, Tracy J. Balkin, Thomas J. Kumar, Kamal Khitrov, Maxim Y. |
description | Knowing how an individual responds to sleep deprivation is a requirement for developing personalized fatigue management strategies. Here we describe and validate the 2B‐Alert App, the first mobile application that progressively learns an individual’s trait‐like response to sleep deprivation in real time, to generate increasingly more accurate individualized predictions of alertness. We incorporated a Bayesian learning algorithm within the validated Unified Model of Performance to automatically and gradually adapt the model parameters to an individual after each psychomotor vigilance test. We implemented the resulting model and the psychomotor vigilance test as a smartphone application (2B‐Alert App), and prospectively validated its performance in a 62‐hr total sleep deprivation study in which 21 participants used the app to perform psychomotor vigilance tests every 3 hr and obtain real‐time individualized predictions after each test. The temporal profiles of reaction times on the app‐conducted psychomotor vigilance tests were well correlated with and as sensitive as those obtained with a previously characterized psychomotor vigilance test device. The app progressively learned each individual’s trait‐like response to sleep deprivation throughout the study, yielding increasingly more accurate predictions of alertness for the last 24 hr of total sleep deprivation as the number of psychomotor vigilance tests increased. After only 12 psychomotor vigilance tests, the accuracy of the model predictions was comparable to the peak accuracy obtained using all psychomotor vigilance tests. With the ability to make real‐time individualized predictions of the effects of sleep deprivation on future alertness, the 2B‐Alert App can be used to tailor personalized fatigue management strategies, facilitating self‐management of alertness and safety in operational and non‐operational settings. |
doi_str_mv | 10.1111/jsr.12725 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7378949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074134307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4155-6d48c3ef86c18670e7091b0a23208364942d875e2301880a654b2315386e95a73</originalsourceid><addsrcrecordid>eNp1kc1O20AQx1eoFaSUAy9Q7bE9ONkP74d7qORGhbZCQqLticNqY4_porXX7DpU6YlH4Bl5EpwEovbAXOYwP_1mNH-EjimZ0rFm1ylOKVNM7KEJ5VJkTMviFZqQQrKMUiIO0JuUrgmhSvBiHx1wQjiXWk_QJfv8cHdfeogDLvv-Iy5xGxbOA7Z9711lBxc63ISII1g_ooNrAbuudreuXlrv_kKN-wi1qzZkaLBdyzpI6S163Vif4OipH6JfJ19-zr9mZ-en3-blWVblVIhM1rmuODRaVlRLRUCRgi6IZZwRzWVe5KzWSgDjhGpNrBT5gnEquJZQCKv4Ifq09fbLRQt1Bd0QrTd9dK2NKxOsM_9POvfbXIVbo7jSRV6MgvdPghhulpAG07pUgfe2g7BMhhGVU55zst71YYtWMaQUodmtocSswzBjGGYTxsi--_euHfn8_RGYbYE_48NXL5vM9x8XW-UjXFSVIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074134307</pqid></control><display><type>article</type><title>2B‐Alert App: A mobile application for real‐time individualized prediction of alertness</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Reifman, Jaques ; Ramakrishnan, Sridhar ; Liu, Jianbo ; Kapela, Adam ; Doty, Tracy J. ; Balkin, Thomas J. ; Kumar, Kamal ; Khitrov, Maxim Y.</creator><creatorcontrib>Reifman, Jaques ; Ramakrishnan, Sridhar ; Liu, Jianbo ; Kapela, Adam ; Doty, Tracy J. ; Balkin, Thomas J. ; Kumar, Kamal ; Khitrov, Maxim Y.</creatorcontrib><description>Knowing how an individual responds to sleep deprivation is a requirement for developing personalized fatigue management strategies. Here we describe and validate the 2B‐Alert App, the first mobile application that progressively learns an individual’s trait‐like response to sleep deprivation in real time, to generate increasingly more accurate individualized predictions of alertness. We incorporated a Bayesian learning algorithm within the validated Unified Model of Performance to automatically and gradually adapt the model parameters to an individual after each psychomotor vigilance test. We implemented the resulting model and the psychomotor vigilance test as a smartphone application (2B‐Alert App), and prospectively validated its performance in a 62‐hr total sleep deprivation study in which 21 participants used the app to perform psychomotor vigilance tests every 3 hr and obtain real‐time individualized predictions after each test. The temporal profiles of reaction times on the app‐conducted psychomotor vigilance tests were well correlated with and as sensitive as those obtained with a previously characterized psychomotor vigilance test device. The app progressively learned each individual’s trait‐like response to sleep deprivation throughout the study, yielding increasingly more accurate predictions of alertness for the last 24 hr of total sleep deprivation as the number of psychomotor vigilance tests increased. After only 12 psychomotor vigilance tests, the accuracy of the model predictions was comparable to the peak accuracy obtained using all psychomotor vigilance tests. With the ability to make real‐time individualized predictions of the effects of sleep deprivation on future alertness, the 2B‐Alert App can be used to tailor personalized fatigue management strategies, facilitating self‐management of alertness and safety in operational and non‐operational settings.</description><identifier>ISSN: 0962-1105</identifier><identifier>EISSN: 1365-2869</identifier><identifier>DOI: 10.1111/jsr.12725</identifier><identifier>PMID: 30033688</identifier><language>eng</language><publisher>England: John Wiley and Sons Inc</publisher><subject>Adult ; alertness ; Attention - physiology ; caffeine ; Female ; Humans ; individualized predictions ; Male ; Methods in Sleep Research and Sleep Medicine ; Mobile Applications - trends ; psychomotor vigilance test ; Reaction Time - physiology ; Regular Research Paper ; sleep ; smartphone app ; Wakefulness - physiology ; Young Adult</subject><ispartof>Journal of sleep research, 2019-04, Vol.28 (2), p.e12725-n/a</ispartof><rights>2018 The Authors. published by John Wiley & Sons Ltd on behalf of European Sleep Research Society</rights><rights>2018 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4155-6d48c3ef86c18670e7091b0a23208364942d875e2301880a654b2315386e95a73</citedby><cites>FETCH-LOGICAL-c4155-6d48c3ef86c18670e7091b0a23208364942d875e2301880a654b2315386e95a73</cites><orcidid>0000-0001-7292-2029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjsr.12725$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjsr.12725$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30033688$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reifman, Jaques</creatorcontrib><creatorcontrib>Ramakrishnan, Sridhar</creatorcontrib><creatorcontrib>Liu, Jianbo</creatorcontrib><creatorcontrib>Kapela, Adam</creatorcontrib><creatorcontrib>Doty, Tracy J.</creatorcontrib><creatorcontrib>Balkin, Thomas J.</creatorcontrib><creatorcontrib>Kumar, Kamal</creatorcontrib><creatorcontrib>Khitrov, Maxim Y.</creatorcontrib><title>2B‐Alert App: A mobile application for real‐time individualized prediction of alertness</title><title>Journal of sleep research</title><addtitle>J Sleep Res</addtitle><description>Knowing how an individual responds to sleep deprivation is a requirement for developing personalized fatigue management strategies. Here we describe and validate the 2B‐Alert App, the first mobile application that progressively learns an individual’s trait‐like response to sleep deprivation in real time, to generate increasingly more accurate individualized predictions of alertness. We incorporated a Bayesian learning algorithm within the validated Unified Model of Performance to automatically and gradually adapt the model parameters to an individual after each psychomotor vigilance test. We implemented the resulting model and the psychomotor vigilance test as a smartphone application (2B‐Alert App), and prospectively validated its performance in a 62‐hr total sleep deprivation study in which 21 participants used the app to perform psychomotor vigilance tests every 3 hr and obtain real‐time individualized predictions after each test. The temporal profiles of reaction times on the app‐conducted psychomotor vigilance tests were well correlated with and as sensitive as those obtained with a previously characterized psychomotor vigilance test device. The app progressively learned each individual’s trait‐like response to sleep deprivation throughout the study, yielding increasingly more accurate predictions of alertness for the last 24 hr of total sleep deprivation as the number of psychomotor vigilance tests increased. After only 12 psychomotor vigilance tests, the accuracy of the model predictions was comparable to the peak accuracy obtained using all psychomotor vigilance tests. With the ability to make real‐time individualized predictions of the effects of sleep deprivation on future alertness, the 2B‐Alert App can be used to tailor personalized fatigue management strategies, facilitating self‐management of alertness and safety in operational and non‐operational settings.</description><subject>Adult</subject><subject>alertness</subject><subject>Attention - physiology</subject><subject>caffeine</subject><subject>Female</subject><subject>Humans</subject><subject>individualized predictions</subject><subject>Male</subject><subject>Methods in Sleep Research and Sleep Medicine</subject><subject>Mobile Applications - trends</subject><subject>psychomotor vigilance test</subject><subject>Reaction Time - physiology</subject><subject>Regular Research Paper</subject><subject>sleep</subject><subject>smartphone app</subject><subject>Wakefulness - physiology</subject><subject>Young Adult</subject><issn>0962-1105</issn><issn>1365-2869</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc1O20AQx1eoFaSUAy9Q7bE9ONkP74d7qORGhbZCQqLticNqY4_porXX7DpU6YlH4Bl5EpwEovbAXOYwP_1mNH-EjimZ0rFm1ylOKVNM7KEJ5VJkTMviFZqQQrKMUiIO0JuUrgmhSvBiHx1wQjiXWk_QJfv8cHdfeogDLvv-Iy5xGxbOA7Z9711lBxc63ISII1g_ooNrAbuudreuXlrv_kKN-wi1qzZkaLBdyzpI6S163Vif4OipH6JfJ19-zr9mZ-en3-blWVblVIhM1rmuODRaVlRLRUCRgi6IZZwRzWVe5KzWSgDjhGpNrBT5gnEquJZQCKv4Ifq09fbLRQt1Bd0QrTd9dK2NKxOsM_9POvfbXIVbo7jSRV6MgvdPghhulpAG07pUgfe2g7BMhhGVU55zst71YYtWMaQUodmtocSswzBjGGYTxsi--_euHfn8_RGYbYE_48NXL5vM9x8XW-UjXFSVIw</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Reifman, Jaques</creator><creator>Ramakrishnan, Sridhar</creator><creator>Liu, Jianbo</creator><creator>Kapela, Adam</creator><creator>Doty, Tracy J.</creator><creator>Balkin, Thomas J.</creator><creator>Kumar, Kamal</creator><creator>Khitrov, Maxim Y.</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7292-2029</orcidid></search><sort><creationdate>201904</creationdate><title>2B‐Alert App: A mobile application for real‐time individualized prediction of alertness</title><author>Reifman, Jaques ; Ramakrishnan, Sridhar ; Liu, Jianbo ; Kapela, Adam ; Doty, Tracy J. ; Balkin, Thomas J. ; Kumar, Kamal ; Khitrov, Maxim Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4155-6d48c3ef86c18670e7091b0a23208364942d875e2301880a654b2315386e95a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>alertness</topic><topic>Attention - physiology</topic><topic>caffeine</topic><topic>Female</topic><topic>Humans</topic><topic>individualized predictions</topic><topic>Male</topic><topic>Methods in Sleep Research and Sleep Medicine</topic><topic>Mobile Applications - trends</topic><topic>psychomotor vigilance test</topic><topic>Reaction Time - physiology</topic><topic>Regular Research Paper</topic><topic>sleep</topic><topic>smartphone app</topic><topic>Wakefulness - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reifman, Jaques</creatorcontrib><creatorcontrib>Ramakrishnan, Sridhar</creatorcontrib><creatorcontrib>Liu, Jianbo</creatorcontrib><creatorcontrib>Kapela, Adam</creatorcontrib><creatorcontrib>Doty, Tracy J.</creatorcontrib><creatorcontrib>Balkin, Thomas J.</creatorcontrib><creatorcontrib>Kumar, Kamal</creatorcontrib><creatorcontrib>Khitrov, Maxim Y.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of sleep research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reifman, Jaques</au><au>Ramakrishnan, Sridhar</au><au>Liu, Jianbo</au><au>Kapela, Adam</au><au>Doty, Tracy J.</au><au>Balkin, Thomas J.</au><au>Kumar, Kamal</au><au>Khitrov, Maxim Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2B‐Alert App: A mobile application for real‐time individualized prediction of alertness</atitle><jtitle>Journal of sleep research</jtitle><addtitle>J Sleep Res</addtitle><date>2019-04</date><risdate>2019</risdate><volume>28</volume><issue>2</issue><spage>e12725</spage><epage>n/a</epage><pages>e12725-n/a</pages><issn>0962-1105</issn><eissn>1365-2869</eissn><abstract>Knowing how an individual responds to sleep deprivation is a requirement for developing personalized fatigue management strategies. Here we describe and validate the 2B‐Alert App, the first mobile application that progressively learns an individual’s trait‐like response to sleep deprivation in real time, to generate increasingly more accurate individualized predictions of alertness. We incorporated a Bayesian learning algorithm within the validated Unified Model of Performance to automatically and gradually adapt the model parameters to an individual after each psychomotor vigilance test. We implemented the resulting model and the psychomotor vigilance test as a smartphone application (2B‐Alert App), and prospectively validated its performance in a 62‐hr total sleep deprivation study in which 21 participants used the app to perform psychomotor vigilance tests every 3 hr and obtain real‐time individualized predictions after each test. The temporal profiles of reaction times on the app‐conducted psychomotor vigilance tests were well correlated with and as sensitive as those obtained with a previously characterized psychomotor vigilance test device. The app progressively learned each individual’s trait‐like response to sleep deprivation throughout the study, yielding increasingly more accurate predictions of alertness for the last 24 hr of total sleep deprivation as the number of psychomotor vigilance tests increased. After only 12 psychomotor vigilance tests, the accuracy of the model predictions was comparable to the peak accuracy obtained using all psychomotor vigilance tests. With the ability to make real‐time individualized predictions of the effects of sleep deprivation on future alertness, the 2B‐Alert App can be used to tailor personalized fatigue management strategies, facilitating self‐management of alertness and safety in operational and non‐operational settings.</abstract><cop>England</cop><pub>John Wiley and Sons Inc</pub><pmid>30033688</pmid><doi>10.1111/jsr.12725</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7292-2029</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1105 |
ispartof | Journal of sleep research, 2019-04, Vol.28 (2), p.e12725-n/a |
issn | 0962-1105 1365-2869 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7378949 |
source | MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals |
subjects | Adult alertness Attention - physiology caffeine Female Humans individualized predictions Male Methods in Sleep Research and Sleep Medicine Mobile Applications - trends psychomotor vigilance test Reaction Time - physiology Regular Research Paper sleep smartphone app Wakefulness - physiology Young Adult |
title | 2B‐Alert App: A mobile application for real‐time individualized prediction of alertness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2B%E2%80%90Alert%20App:%20A%20mobile%20application%20for%20real%E2%80%90time%20individualized%20prediction%20of%20alertness&rft.jtitle=Journal%20of%20sleep%20research&rft.au=Reifman,%20Jaques&rft.date=2019-04&rft.volume=28&rft.issue=2&rft.spage=e12725&rft.epage=n/a&rft.pages=e12725-n/a&rft.issn=0962-1105&rft.eissn=1365-2869&rft_id=info:doi/10.1111/jsr.12725&rft_dat=%3Cproquest_pubme%3E2074134307%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074134307&rft_id=info:pmid/30033688&rfr_iscdi=true |