Modeling of the transport, hygroscopic growth, and deposition of multi-component droplets in a simplified airway with realistic thermal boundary conditions

Accurate predictions of the droplet transport, evolution, and deposition in human airways are critical for the quantitative analysis of the health risks due to the exposure to the airborne pollutant or virus transmission. The droplet/particle-vapor interaction, i.e., the evaporation or condensation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of aerosol science 2021-01, Vol.151, p.105626-105626, Article 105626
Hauptverfasser: Chen, Xiaole, Zhou, Xianguang, Xia, Xueying, Xie, Xiaojian, Lu, Ping, Feng, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105626
container_issue
container_start_page 105626
container_title Journal of aerosol science
container_volume 151
creator Chen, Xiaole
Zhou, Xianguang
Xia, Xueying
Xie, Xiaojian
Lu, Ping
Feng, Yu
description Accurate predictions of the droplet transport, evolution, and deposition in human airways are critical for the quantitative analysis of the health risks due to the exposure to the airborne pollutant or virus transmission. The droplet/particle-vapor interaction, i.e., the evaporation or condensation of the multi-component droplet/particle, is one of the key mechanisms that need to be precisely modeled. Using a validated computational model, the transport, evaporation, hygroscopic growth, and deposition of multi-component droplets were simulated in a simplified airway geometry. A mucus-tissue layer is explicitly modeled in the airway geometry to describe mucus evaporation and heat transfer. Pulmonary flow and aerosol dynamics patterns associated with different inhalation flow rates are visualized and compared. Investigated variables include temperature distributions, relative humidity (RH) distributions, deposition efficiencies, droplet/particle distributions, and droplet growth ratio distributions. Numerical results indicate that the droplet/particle-vapor interaction and the heat and mass transfer of the mucus-tissue layer must be considered in the computational lung aerosol dynamics study, since they can significantly influence the precise predictions of the aerosol transport and deposition. Furthermore, the modeling framework in this study is ready to be expanded to predict transport dynamics of cough/sneeze droplets starting from their generation and transmission in the indoor environment to the deposition in the human respiratory system. •Investigated the transport and deposition of droplets in an airway.•Considered hygroscopic growth of multicomponent droplets/particles.•Modeled non-uniformed boundary temperature and mucus evaporation.•Simulations carried out for different activity strengths.•Discussed deposition efficiencies, final locations and sizes of the droplets and particles.
doi_str_mv 10.1016/j.jaerosci.2020.105626
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7378524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021850220301142</els_id><sourcerecordid>2437121551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-674e0644c55c02c5d3156f41224fe75e45118f510a3e1c2db767cdd32025f9453</originalsourceid><addsrcrecordid>eNqFUcuOFCEUrRiN047-woSli6kWKB7VG6OZ-ErGuNE1oeFWFx0KSqCn09_iz0rZMxNduYJwz-NyTtNcEbwmmIg3-_VeQ4rZuDXFdHnkgoonzYr0ctOSjWBPmxXGlLQ9x_SieZHzHmMsN4Q_by462neik92q-fU1WvAu7FAcUBkBlaRDnmMq12g87RaHODuD6u1Yxmukg0UW5phdcTEspOngi2tNnOYYIBRkU5w9lIxcQBplN83eDQ4s0i4d9QkdXRlRAu1dLlW4eqZJe7SNh2B1OiETg_0jnl82zwbtM7y6Py-bHx8_fL_53N5--_Tl5v1ta5gkpRWSARaMGc4NpobbjnAxMEIpG0ByYJyQfuAE6w6IoXYrhTTWdjU3PmwY7y6bt2fd-bCdwJr6i6S9mpOb6kIqaqf-nQQ3ql28U7KTPaesCry-F0jx5wFyUZPLBrzXAeIhqwqRhBLOSYWKM9TUaHOC4dGGYLU0q_bqoVm1NKvOzVbi1d9LPtIeqqyAd2cA1KjuHCRVJSAYsC6BKcpG9z-P3xXCvP4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437121551</pqid></control><display><type>article</type><title>Modeling of the transport, hygroscopic growth, and deposition of multi-component droplets in a simplified airway with realistic thermal boundary conditions</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chen, Xiaole ; Zhou, Xianguang ; Xia, Xueying ; Xie, Xiaojian ; Lu, Ping ; Feng, Yu</creator><creatorcontrib>Chen, Xiaole ; Zhou, Xianguang ; Xia, Xueying ; Xie, Xiaojian ; Lu, Ping ; Feng, Yu</creatorcontrib><description>Accurate predictions of the droplet transport, evolution, and deposition in human airways are critical for the quantitative analysis of the health risks due to the exposure to the airborne pollutant or virus transmission. The droplet/particle-vapor interaction, i.e., the evaporation or condensation of the multi-component droplet/particle, is one of the key mechanisms that need to be precisely modeled. Using a validated computational model, the transport, evaporation, hygroscopic growth, and deposition of multi-component droplets were simulated in a simplified airway geometry. A mucus-tissue layer is explicitly modeled in the airway geometry to describe mucus evaporation and heat transfer. Pulmonary flow and aerosol dynamics patterns associated with different inhalation flow rates are visualized and compared. Investigated variables include temperature distributions, relative humidity (RH) distributions, deposition efficiencies, droplet/particle distributions, and droplet growth ratio distributions. Numerical results indicate that the droplet/particle-vapor interaction and the heat and mass transfer of the mucus-tissue layer must be considered in the computational lung aerosol dynamics study, since they can significantly influence the precise predictions of the aerosol transport and deposition. Furthermore, the modeling framework in this study is ready to be expanded to predict transport dynamics of cough/sneeze droplets starting from their generation and transmission in the indoor environment to the deposition in the human respiratory system. •Investigated the transport and deposition of droplets in an airway.•Considered hygroscopic growth of multicomponent droplets/particles.•Modeled non-uniformed boundary temperature and mucus evaporation.•Simulations carried out for different activity strengths.•Discussed deposition efficiencies, final locations and sizes of the droplets and particles.</description><identifier>ISSN: 0021-8502</identifier><identifier>EISSN: 1879-1964</identifier><identifier>EISSN: 0021-8502</identifier><identifier>DOI: 10.1016/j.jaerosci.2020.105626</identifier><identifier>PMID: 32836373</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Airway ; Deposition ; Droplet ; Hygroscopicity ; Multi-component</subject><ispartof>Journal of aerosol science, 2021-01, Vol.151, p.105626-105626, Article 105626</ispartof><rights>2020</rights><rights>2020 Published by Elsevier Ltd.</rights><rights>2020 Published by Elsevier Ltd. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-674e0644c55c02c5d3156f41224fe75e45118f510a3e1c2db767cdd32025f9453</citedby><cites>FETCH-LOGICAL-c471t-674e0644c55c02c5d3156f41224fe75e45118f510a3e1c2db767cdd32025f9453</cites><orcidid>0000-0002-3666-5499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021850220301142$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32836373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xiaole</creatorcontrib><creatorcontrib>Zhou, Xianguang</creatorcontrib><creatorcontrib>Xia, Xueying</creatorcontrib><creatorcontrib>Xie, Xiaojian</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><title>Modeling of the transport, hygroscopic growth, and deposition of multi-component droplets in a simplified airway with realistic thermal boundary conditions</title><title>Journal of aerosol science</title><addtitle>J Aerosol Sci</addtitle><description>Accurate predictions of the droplet transport, evolution, and deposition in human airways are critical for the quantitative analysis of the health risks due to the exposure to the airborne pollutant or virus transmission. The droplet/particle-vapor interaction, i.e., the evaporation or condensation of the multi-component droplet/particle, is one of the key mechanisms that need to be precisely modeled. Using a validated computational model, the transport, evaporation, hygroscopic growth, and deposition of multi-component droplets were simulated in a simplified airway geometry. A mucus-tissue layer is explicitly modeled in the airway geometry to describe mucus evaporation and heat transfer. Pulmonary flow and aerosol dynamics patterns associated with different inhalation flow rates are visualized and compared. Investigated variables include temperature distributions, relative humidity (RH) distributions, deposition efficiencies, droplet/particle distributions, and droplet growth ratio distributions. Numerical results indicate that the droplet/particle-vapor interaction and the heat and mass transfer of the mucus-tissue layer must be considered in the computational lung aerosol dynamics study, since they can significantly influence the precise predictions of the aerosol transport and deposition. Furthermore, the modeling framework in this study is ready to be expanded to predict transport dynamics of cough/sneeze droplets starting from their generation and transmission in the indoor environment to the deposition in the human respiratory system. •Investigated the transport and deposition of droplets in an airway.•Considered hygroscopic growth of multicomponent droplets/particles.•Modeled non-uniformed boundary temperature and mucus evaporation.•Simulations carried out for different activity strengths.•Discussed deposition efficiencies, final locations and sizes of the droplets and particles.</description><subject>Airway</subject><subject>Deposition</subject><subject>Droplet</subject><subject>Hygroscopicity</subject><subject>Multi-component</subject><issn>0021-8502</issn><issn>1879-1964</issn><issn>0021-8502</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUcuOFCEUrRiN047-woSli6kWKB7VG6OZ-ErGuNE1oeFWFx0KSqCn09_iz0rZMxNduYJwz-NyTtNcEbwmmIg3-_VeQ4rZuDXFdHnkgoonzYr0ctOSjWBPmxXGlLQ9x_SieZHzHmMsN4Q_by462neik92q-fU1WvAu7FAcUBkBlaRDnmMq12g87RaHODuD6u1Yxmukg0UW5phdcTEspOngi2tNnOYYIBRkU5w9lIxcQBplN83eDQ4s0i4d9QkdXRlRAu1dLlW4eqZJe7SNh2B1OiETg_0jnl82zwbtM7y6Py-bHx8_fL_53N5--_Tl5v1ta5gkpRWSARaMGc4NpobbjnAxMEIpG0ByYJyQfuAE6w6IoXYrhTTWdjU3PmwY7y6bt2fd-bCdwJr6i6S9mpOb6kIqaqf-nQQ3ql28U7KTPaesCry-F0jx5wFyUZPLBrzXAeIhqwqRhBLOSYWKM9TUaHOC4dGGYLU0q_bqoVm1NKvOzVbi1d9LPtIeqqyAd2cA1KjuHCRVJSAYsC6BKcpG9z-P3xXCvP4</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Chen, Xiaole</creator><creator>Zhou, Xianguang</creator><creator>Xia, Xueying</creator><creator>Xie, Xiaojian</creator><creator>Lu, Ping</creator><creator>Feng, Yu</creator><general>Elsevier Ltd</general><general>Published by Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3666-5499</orcidid></search><sort><creationdate>20210101</creationdate><title>Modeling of the transport, hygroscopic growth, and deposition of multi-component droplets in a simplified airway with realistic thermal boundary conditions</title><author>Chen, Xiaole ; Zhou, Xianguang ; Xia, Xueying ; Xie, Xiaojian ; Lu, Ping ; Feng, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-674e0644c55c02c5d3156f41224fe75e45118f510a3e1c2db767cdd32025f9453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Airway</topic><topic>Deposition</topic><topic>Droplet</topic><topic>Hygroscopicity</topic><topic>Multi-component</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaole</creatorcontrib><creatorcontrib>Zhou, Xianguang</creatorcontrib><creatorcontrib>Xia, Xueying</creatorcontrib><creatorcontrib>Xie, Xiaojian</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of aerosol science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiaole</au><au>Zhou, Xianguang</au><au>Xia, Xueying</au><au>Xie, Xiaojian</au><au>Lu, Ping</au><au>Feng, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of the transport, hygroscopic growth, and deposition of multi-component droplets in a simplified airway with realistic thermal boundary conditions</atitle><jtitle>Journal of aerosol science</jtitle><addtitle>J Aerosol Sci</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>151</volume><spage>105626</spage><epage>105626</epage><pages>105626-105626</pages><artnum>105626</artnum><issn>0021-8502</issn><eissn>1879-1964</eissn><eissn>0021-8502</eissn><abstract>Accurate predictions of the droplet transport, evolution, and deposition in human airways are critical for the quantitative analysis of the health risks due to the exposure to the airborne pollutant or virus transmission. The droplet/particle-vapor interaction, i.e., the evaporation or condensation of the multi-component droplet/particle, is one of the key mechanisms that need to be precisely modeled. Using a validated computational model, the transport, evaporation, hygroscopic growth, and deposition of multi-component droplets were simulated in a simplified airway geometry. A mucus-tissue layer is explicitly modeled in the airway geometry to describe mucus evaporation and heat transfer. Pulmonary flow and aerosol dynamics patterns associated with different inhalation flow rates are visualized and compared. Investigated variables include temperature distributions, relative humidity (RH) distributions, deposition efficiencies, droplet/particle distributions, and droplet growth ratio distributions. Numerical results indicate that the droplet/particle-vapor interaction and the heat and mass transfer of the mucus-tissue layer must be considered in the computational lung aerosol dynamics study, since they can significantly influence the precise predictions of the aerosol transport and deposition. Furthermore, the modeling framework in this study is ready to be expanded to predict transport dynamics of cough/sneeze droplets starting from their generation and transmission in the indoor environment to the deposition in the human respiratory system. •Investigated the transport and deposition of droplets in an airway.•Considered hygroscopic growth of multicomponent droplets/particles.•Modeled non-uniformed boundary temperature and mucus evaporation.•Simulations carried out for different activity strengths.•Discussed deposition efficiencies, final locations and sizes of the droplets and particles.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32836373</pmid><doi>10.1016/j.jaerosci.2020.105626</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3666-5499</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8502
ispartof Journal of aerosol science, 2021-01, Vol.151, p.105626-105626, Article 105626
issn 0021-8502
1879-1964
0021-8502
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7378524
source ScienceDirect Journals (5 years ago - present)
subjects Airway
Deposition
Droplet
Hygroscopicity
Multi-component
title Modeling of the transport, hygroscopic growth, and deposition of multi-component droplets in a simplified airway with realistic thermal boundary conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A28%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20the%20transport,%20hygroscopic%20growth,%20and%20deposition%20of%20multi-component%20droplets%20in%20a%20simplified%20airway%20with%20realistic%20thermal%20boundary%20conditions&rft.jtitle=Journal%20of%20aerosol%20science&rft.au=Chen,%20Xiaole&rft.date=2021-01-01&rft.volume=151&rft.spage=105626&rft.epage=105626&rft.pages=105626-105626&rft.artnum=105626&rft.issn=0021-8502&rft.eissn=1879-1964&rft_id=info:doi/10.1016/j.jaerosci.2020.105626&rft_dat=%3Cproquest_pubme%3E2437121551%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437121551&rft_id=info:pmid/32836373&rft_els_id=S0021850220301142&rfr_iscdi=true