Growth front smoothing effects in extremely high pressure vapor deposition
Recent experimental chemical vapor depositions of silicon at extreme pressures of ~ 50 MPa (~ 500 atm) have been observed to generate remarkably smooth surfaces not predicted by low-pressure deposition models. In this paper, we propose an anti-shadowing mechanism where the collision of particles wit...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-07, Vol.10 (1), p.12355-12355, Article 12355 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12355 |
---|---|
container_issue | 1 |
container_start_page | 12355 |
container_title | Scientific reports |
container_volume | 10 |
creator | Pittman, Nicholas Lu, Toh-Ming |
description | Recent experimental chemical vapor depositions of silicon at extreme pressures of ~ 50 MPa (~ 500 atm) have been observed to generate remarkably smooth surfaces not predicted by low-pressure deposition models. In this paper, we propose an anti-shadowing mechanism where the collision of particles within the valleys of the surface growth front leads to smoothening. We conduct Monte Carlo simulations to simulate the evolution of film roughness at pressures between 1 and 50 MPa. We observe that surface roughness approaches an asymptotic invariant value that follows power law behavior as a function of pressure. The film thickness at which invariance begins is shown to have a similar power law behavior with respect to pressure. Our simulated results compare favorably with recent experimental observations and provide insight into the fundamental mechanisms underlying film evolution at pressures between one and hundreds of atmospheres. |
doi_str_mv | 10.1038/s41598-020-69269-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7378247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426354612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-a054fefb5ea546de309a8edfb71fc73acc8410ca0ef4dc787b4207bc83615f573</originalsourceid><addsrcrecordid>eNp9kUtP3TAQhS3UChDwB1hZYtNNip9xskFCqFAqpG5gbTnO-MYosVPbofDvye1F9LHobGak-c7RjA5Cp5R8poQ351lQ2TYVYaSqW1a3ldhDh4wIWTHO2Ic_5gN0kvMjWUuyVtB2Hx1wpoggjB6ibzcp_iwDdimGgvMUYxl82GBwDmzJ2AcMzyXBBOMLHvxmwHOCnJcE-MnMMeEe5ph98TEco4_OjBlO3voRerj-cn_1tbr7fnN7dXlXWSFpqQyRwoHrJBgp6h44aU0DvesUdVZxY20jKLGGgBO9VY3qBCOqsw2vqXRS8SN0sfOdl26C3kIoyYx6Tn4y6UVH4_Xfm-AHvYlPWnHVMLE1-PRmkOKPBXLRk88WxtEEiEvWTDDFSUMYW9Gzf9DHuKSwvrelar5-QLcU21E2xZwTuPdjKNHbtPQuLb2mpX-lpcUq4jtRXuGwgfTb-j-qV5pPl_U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426354612</pqid></control><display><type>article</type><title>Growth front smoothing effects in extremely high pressure vapor deposition</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Pittman, Nicholas ; Lu, Toh-Ming</creator><creatorcontrib>Pittman, Nicholas ; Lu, Toh-Ming</creatorcontrib><description>Recent experimental chemical vapor depositions of silicon at extreme pressures of ~ 50 MPa (~ 500 atm) have been observed to generate remarkably smooth surfaces not predicted by low-pressure deposition models. In this paper, we propose an anti-shadowing mechanism where the collision of particles within the valleys of the surface growth front leads to smoothening. We conduct Monte Carlo simulations to simulate the evolution of film roughness at pressures between 1 and 50 MPa. We observe that surface roughness approaches an asymptotic invariant value that follows power law behavior as a function of pressure. The film thickness at which invariance begins is shown to have a similar power law behavior with respect to pressure. Our simulated results compare favorably with recent experimental observations and provide insight into the fundamental mechanisms underlying film evolution at pressures between one and hundreds of atmospheres.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-69269-4</identifier><identifier>PMID: 32704021</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1037 ; 639/925/357/537 ; Atoms & subatomic particles ; Chemical vapor deposition ; Equilibrium ; High pressure ; Humanities and Social Sciences ; Monte Carlo simulation ; Morphology ; multidisciplinary ; Pressure ; Science ; Science (multidisciplinary) ; Simulation ; Vapors</subject><ispartof>Scientific reports, 2020-07, Vol.10 (1), p.12355-12355, Article 12355</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-a054fefb5ea546de309a8edfb71fc73acc8410ca0ef4dc787b4207bc83615f573</citedby><cites>FETCH-LOGICAL-c451t-a054fefb5ea546de309a8edfb71fc73acc8410ca0ef4dc787b4207bc83615f573</cites><orcidid>0000-0003-3600-9798 ; 0000-0001-9056-2506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378247/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378247/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids></links><search><creatorcontrib>Pittman, Nicholas</creatorcontrib><creatorcontrib>Lu, Toh-Ming</creatorcontrib><title>Growth front smoothing effects in extremely high pressure vapor deposition</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Recent experimental chemical vapor depositions of silicon at extreme pressures of ~ 50 MPa (~ 500 atm) have been observed to generate remarkably smooth surfaces not predicted by low-pressure deposition models. In this paper, we propose an anti-shadowing mechanism where the collision of particles within the valleys of the surface growth front leads to smoothening. We conduct Monte Carlo simulations to simulate the evolution of film roughness at pressures between 1 and 50 MPa. We observe that surface roughness approaches an asymptotic invariant value that follows power law behavior as a function of pressure. The film thickness at which invariance begins is shown to have a similar power law behavior with respect to pressure. Our simulated results compare favorably with recent experimental observations and provide insight into the fundamental mechanisms underlying film evolution at pressures between one and hundreds of atmospheres.</description><subject>639/301/1034/1037</subject><subject>639/925/357/537</subject><subject>Atoms & subatomic particles</subject><subject>Chemical vapor deposition</subject><subject>Equilibrium</subject><subject>High pressure</subject><subject>Humanities and Social Sciences</subject><subject>Monte Carlo simulation</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>Pressure</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Simulation</subject><subject>Vapors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtP3TAQhS3UChDwB1hZYtNNip9xskFCqFAqpG5gbTnO-MYosVPbofDvye1F9LHobGak-c7RjA5Cp5R8poQ351lQ2TYVYaSqW1a3ldhDh4wIWTHO2Ic_5gN0kvMjWUuyVtB2Hx1wpoggjB6ibzcp_iwDdimGgvMUYxl82GBwDmzJ2AcMzyXBBOMLHvxmwHOCnJcE-MnMMeEe5ph98TEco4_OjBlO3voRerj-cn_1tbr7fnN7dXlXWSFpqQyRwoHrJBgp6h44aU0DvesUdVZxY20jKLGGgBO9VY3qBCOqsw2vqXRS8SN0sfOdl26C3kIoyYx6Tn4y6UVH4_Xfm-AHvYlPWnHVMLE1-PRmkOKPBXLRk88WxtEEiEvWTDDFSUMYW9Gzf9DHuKSwvrelar5-QLcU21E2xZwTuPdjKNHbtPQuLb2mpX-lpcUq4jtRXuGwgfTb-j-qV5pPl_U</recordid><startdate>20200723</startdate><enddate>20200723</enddate><creator>Pittman, Nicholas</creator><creator>Lu, Toh-Ming</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3600-9798</orcidid><orcidid>https://orcid.org/0000-0001-9056-2506</orcidid></search><sort><creationdate>20200723</creationdate><title>Growth front smoothing effects in extremely high pressure vapor deposition</title><author>Pittman, Nicholas ; Lu, Toh-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-a054fefb5ea546de309a8edfb71fc73acc8410ca0ef4dc787b4207bc83615f573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1034/1037</topic><topic>639/925/357/537</topic><topic>Atoms & subatomic particles</topic><topic>Chemical vapor deposition</topic><topic>Equilibrium</topic><topic>High pressure</topic><topic>Humanities and Social Sciences</topic><topic>Monte Carlo simulation</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>Pressure</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Simulation</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pittman, Nicholas</creatorcontrib><creatorcontrib>Lu, Toh-Ming</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pittman, Nicholas</au><au>Lu, Toh-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth front smoothing effects in extremely high pressure vapor deposition</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-07-23</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>12355</spage><epage>12355</epage><pages>12355-12355</pages><artnum>12355</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Recent experimental chemical vapor depositions of silicon at extreme pressures of ~ 50 MPa (~ 500 atm) have been observed to generate remarkably smooth surfaces not predicted by low-pressure deposition models. In this paper, we propose an anti-shadowing mechanism where the collision of particles within the valleys of the surface growth front leads to smoothening. We conduct Monte Carlo simulations to simulate the evolution of film roughness at pressures between 1 and 50 MPa. We observe that surface roughness approaches an asymptotic invariant value that follows power law behavior as a function of pressure. The film thickness at which invariance begins is shown to have a similar power law behavior with respect to pressure. Our simulated results compare favorably with recent experimental observations and provide insight into the fundamental mechanisms underlying film evolution at pressures between one and hundreds of atmospheres.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32704021</pmid><doi>10.1038/s41598-020-69269-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3600-9798</orcidid><orcidid>https://orcid.org/0000-0001-9056-2506</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-07, Vol.10 (1), p.12355-12355, Article 12355 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7378247 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 639/301/1034/1037 639/925/357/537 Atoms & subatomic particles Chemical vapor deposition Equilibrium High pressure Humanities and Social Sciences Monte Carlo simulation Morphology multidisciplinary Pressure Science Science (multidisciplinary) Simulation Vapors |
title | Growth front smoothing effects in extremely high pressure vapor deposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20front%20smoothing%20effects%20in%20extremely%20high%20pressure%20vapor%20deposition&rft.jtitle=Scientific%20reports&rft.au=Pittman,%20Nicholas&rft.date=2020-07-23&rft.volume=10&rft.issue=1&rft.spage=12355&rft.epage=12355&rft.pages=12355-12355&rft.artnum=12355&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-69269-4&rft_dat=%3Cproquest_pubme%3E2426354612%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426354612&rft_id=info:pmid/32704021&rfr_iscdi=true |