Growth front smoothing effects in extremely high pressure vapor deposition

Recent experimental chemical vapor depositions of silicon at extreme pressures of ~ 50 MPa (~ 500 atm) have been observed to generate remarkably smooth surfaces not predicted by low-pressure deposition models. In this paper, we propose an anti-shadowing mechanism where the collision of particles wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-07, Vol.10 (1), p.12355-12355, Article 12355
Hauptverfasser: Pittman, Nicholas, Lu, Toh-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12355
container_issue 1
container_start_page 12355
container_title Scientific reports
container_volume 10
creator Pittman, Nicholas
Lu, Toh-Ming
description Recent experimental chemical vapor depositions of silicon at extreme pressures of ~ 50 MPa (~ 500 atm) have been observed to generate remarkably smooth surfaces not predicted by low-pressure deposition models. In this paper, we propose an anti-shadowing mechanism where the collision of particles within the valleys of the surface growth front leads to smoothening. We conduct Monte Carlo simulations to simulate the evolution of film roughness at pressures between 1 and 50 MPa. We observe that surface roughness approaches an asymptotic invariant value that follows power law behavior as a function of pressure. The film thickness at which invariance begins is shown to have a similar power law behavior with respect to pressure. Our simulated results compare favorably with recent experimental observations and provide insight into the fundamental mechanisms underlying film evolution at pressures between one and hundreds of atmospheres.
doi_str_mv 10.1038/s41598-020-69269-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7378247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426354612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-a054fefb5ea546de309a8edfb71fc73acc8410ca0ef4dc787b4207bc83615f573</originalsourceid><addsrcrecordid>eNp9kUtP3TAQhS3UChDwB1hZYtNNip9xskFCqFAqpG5gbTnO-MYosVPbofDvye1F9LHobGak-c7RjA5Cp5R8poQ351lQ2TYVYaSqW1a3ldhDh4wIWTHO2Ic_5gN0kvMjWUuyVtB2Hx1wpoggjB6ibzcp_iwDdimGgvMUYxl82GBwDmzJ2AcMzyXBBOMLHvxmwHOCnJcE-MnMMeEe5ph98TEco4_OjBlO3voRerj-cn_1tbr7fnN7dXlXWSFpqQyRwoHrJBgp6h44aU0DvesUdVZxY20jKLGGgBO9VY3qBCOqsw2vqXRS8SN0sfOdl26C3kIoyYx6Tn4y6UVH4_Xfm-AHvYlPWnHVMLE1-PRmkOKPBXLRk88WxtEEiEvWTDDFSUMYW9Gzf9DHuKSwvrelar5-QLcU21E2xZwTuPdjKNHbtPQuLb2mpX-lpcUq4jtRXuGwgfTb-j-qV5pPl_U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426354612</pqid></control><display><type>article</type><title>Growth front smoothing effects in extremely high pressure vapor deposition</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Pittman, Nicholas ; Lu, Toh-Ming</creator><creatorcontrib>Pittman, Nicholas ; Lu, Toh-Ming</creatorcontrib><description>Recent experimental chemical vapor depositions of silicon at extreme pressures of ~ 50 MPa (~ 500 atm) have been observed to generate remarkably smooth surfaces not predicted by low-pressure deposition models. In this paper, we propose an anti-shadowing mechanism where the collision of particles within the valleys of the surface growth front leads to smoothening. We conduct Monte Carlo simulations to simulate the evolution of film roughness at pressures between 1 and 50 MPa. We observe that surface roughness approaches an asymptotic invariant value that follows power law behavior as a function of pressure. The film thickness at which invariance begins is shown to have a similar power law behavior with respect to pressure. Our simulated results compare favorably with recent experimental observations and provide insight into the fundamental mechanisms underlying film evolution at pressures between one and hundreds of atmospheres.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-69269-4</identifier><identifier>PMID: 32704021</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1037 ; 639/925/357/537 ; Atoms &amp; subatomic particles ; Chemical vapor deposition ; Equilibrium ; High pressure ; Humanities and Social Sciences ; Monte Carlo simulation ; Morphology ; multidisciplinary ; Pressure ; Science ; Science (multidisciplinary) ; Simulation ; Vapors</subject><ispartof>Scientific reports, 2020-07, Vol.10 (1), p.12355-12355, Article 12355</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-a054fefb5ea546de309a8edfb71fc73acc8410ca0ef4dc787b4207bc83615f573</citedby><cites>FETCH-LOGICAL-c451t-a054fefb5ea546de309a8edfb71fc73acc8410ca0ef4dc787b4207bc83615f573</cites><orcidid>0000-0003-3600-9798 ; 0000-0001-9056-2506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378247/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378247/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids></links><search><creatorcontrib>Pittman, Nicholas</creatorcontrib><creatorcontrib>Lu, Toh-Ming</creatorcontrib><title>Growth front smoothing effects in extremely high pressure vapor deposition</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Recent experimental chemical vapor depositions of silicon at extreme pressures of ~ 50 MPa (~ 500 atm) have been observed to generate remarkably smooth surfaces not predicted by low-pressure deposition models. In this paper, we propose an anti-shadowing mechanism where the collision of particles within the valleys of the surface growth front leads to smoothening. We conduct Monte Carlo simulations to simulate the evolution of film roughness at pressures between 1 and 50 MPa. We observe that surface roughness approaches an asymptotic invariant value that follows power law behavior as a function of pressure. The film thickness at which invariance begins is shown to have a similar power law behavior with respect to pressure. Our simulated results compare favorably with recent experimental observations and provide insight into the fundamental mechanisms underlying film evolution at pressures between one and hundreds of atmospheres.</description><subject>639/301/1034/1037</subject><subject>639/925/357/537</subject><subject>Atoms &amp; subatomic particles</subject><subject>Chemical vapor deposition</subject><subject>Equilibrium</subject><subject>High pressure</subject><subject>Humanities and Social Sciences</subject><subject>Monte Carlo simulation</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>Pressure</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Simulation</subject><subject>Vapors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtP3TAQhS3UChDwB1hZYtNNip9xskFCqFAqpG5gbTnO-MYosVPbofDvye1F9LHobGak-c7RjA5Cp5R8poQ351lQ2TYVYaSqW1a3ldhDh4wIWTHO2Ic_5gN0kvMjWUuyVtB2Hx1wpoggjB6ibzcp_iwDdimGgvMUYxl82GBwDmzJ2AcMzyXBBOMLHvxmwHOCnJcE-MnMMeEe5ph98TEco4_OjBlO3voRerj-cn_1tbr7fnN7dXlXWSFpqQyRwoHrJBgp6h44aU0DvesUdVZxY20jKLGGgBO9VY3qBCOqsw2vqXRS8SN0sfOdl26C3kIoyYx6Tn4y6UVH4_Xfm-AHvYlPWnHVMLE1-PRmkOKPBXLRk88WxtEEiEvWTDDFSUMYW9Gzf9DHuKSwvrelar5-QLcU21E2xZwTuPdjKNHbtPQuLb2mpX-lpcUq4jtRXuGwgfTb-j-qV5pPl_U</recordid><startdate>20200723</startdate><enddate>20200723</enddate><creator>Pittman, Nicholas</creator><creator>Lu, Toh-Ming</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3600-9798</orcidid><orcidid>https://orcid.org/0000-0001-9056-2506</orcidid></search><sort><creationdate>20200723</creationdate><title>Growth front smoothing effects in extremely high pressure vapor deposition</title><author>Pittman, Nicholas ; Lu, Toh-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-a054fefb5ea546de309a8edfb71fc73acc8410ca0ef4dc787b4207bc83615f573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1034/1037</topic><topic>639/925/357/537</topic><topic>Atoms &amp; subatomic particles</topic><topic>Chemical vapor deposition</topic><topic>Equilibrium</topic><topic>High pressure</topic><topic>Humanities and Social Sciences</topic><topic>Monte Carlo simulation</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>Pressure</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Simulation</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pittman, Nicholas</creatorcontrib><creatorcontrib>Lu, Toh-Ming</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pittman, Nicholas</au><au>Lu, Toh-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth front smoothing effects in extremely high pressure vapor deposition</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-07-23</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>12355</spage><epage>12355</epage><pages>12355-12355</pages><artnum>12355</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Recent experimental chemical vapor depositions of silicon at extreme pressures of ~ 50 MPa (~ 500 atm) have been observed to generate remarkably smooth surfaces not predicted by low-pressure deposition models. In this paper, we propose an anti-shadowing mechanism where the collision of particles within the valleys of the surface growth front leads to smoothening. We conduct Monte Carlo simulations to simulate the evolution of film roughness at pressures between 1 and 50 MPa. We observe that surface roughness approaches an asymptotic invariant value that follows power law behavior as a function of pressure. The film thickness at which invariance begins is shown to have a similar power law behavior with respect to pressure. Our simulated results compare favorably with recent experimental observations and provide insight into the fundamental mechanisms underlying film evolution at pressures between one and hundreds of atmospheres.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32704021</pmid><doi>10.1038/s41598-020-69269-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3600-9798</orcidid><orcidid>https://orcid.org/0000-0001-9056-2506</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-07, Vol.10 (1), p.12355-12355, Article 12355
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7378247
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 639/301/1034/1037
639/925/357/537
Atoms & subatomic particles
Chemical vapor deposition
Equilibrium
High pressure
Humanities and Social Sciences
Monte Carlo simulation
Morphology
multidisciplinary
Pressure
Science
Science (multidisciplinary)
Simulation
Vapors
title Growth front smoothing effects in extremely high pressure vapor deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20front%20smoothing%20effects%20in%20extremely%20high%20pressure%20vapor%20deposition&rft.jtitle=Scientific%20reports&rft.au=Pittman,%20Nicholas&rft.date=2020-07-23&rft.volume=10&rft.issue=1&rft.spage=12355&rft.epage=12355&rft.pages=12355-12355&rft.artnum=12355&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-69269-4&rft_dat=%3Cproquest_pubme%3E2426354612%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426354612&rft_id=info:pmid/32704021&rfr_iscdi=true