Prediction of seasonal patterns of porcine reproductive and respiratory syndrome virus RNA detection in the U.S. swine industry
We developed a model to predict the cyclic pattern of porcine reproductive and respiratory syndrome virus (PRRSV) RNA detection by reverse-transcription real-time PCR (RT-rtPCR) from 4 major swine-centric veterinary diagnostic laboratories (VDLs) in the United States and to use historical data to fo...
Gespeichert in:
Veröffentlicht in: | Journal of veterinary diagnostic investigation 2020-05, Vol.32 (3), p.394-400 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 400 |
---|---|
container_issue | 3 |
container_start_page | 394 |
container_title | Journal of veterinary diagnostic investigation |
container_volume | 32 |
creator | Trevisan, Giovani Linhares, Leticia C. M. Crim, Bret Dubey, Poonam Schwartz, Kent J. Burrough, Eric R. Wang, Chong Main, Rodger G. Sundberg, Paul Thurn, Mary Lages, Paulo T. F. Corzo, Cesar A. Torrison, Jerry Henningson, Jamie Herrman, Eric Hanzlicek, Gregg A. Raghavan, Ram Marthaler, Douglas Greseth, Jon Clement, Travis Christopher-Hennings, Jane Muscatello, David Linhares, Daniel C. L. |
description | We developed a model to predict the cyclic pattern of porcine reproductive and respiratory syndrome virus (PRRSV) RNA detection by reverse-transcription real-time PCR (RT-rtPCR) from 4 major swine-centric veterinary diagnostic laboratories (VDLs) in the United States and to use historical data to forecast the upcoming year’s weekly percentage of positive submissions and issue outbreak signals when the pattern of detection was not as expected. Standardized submission data and test results were used. Historical data (2015–2017) composed of the weekly percentage of PCR-positive submissions were used to fit a cyclic robust regression model. The findings were used to forecast the expected weekly percentage of PCR-positive submissions, with a 95% confidence interval (CI), for 2018. During 2018, the proportion of PRRSV-positive submissions crossed 95% CI boundaries at week 2, 14–25, and 48. The relatively higher detection on week 2 and 48 were mostly from submissions containing samples from wean-to-market pigs, and for week 14–25 originated mostly from samples from adult/sow farms. There was a recurring yearly pattern of detection, wherein an increased proportion of PRRSV RNA detection in submissions originating from wean-to-finish farms was followed by increased detection in samples from adult/sow farms. Results from the model described herein confirm the seasonal cyclic pattern of PRRSV detection using test results consolidated from 4 VDLs. Wave crests occurred consistently during winter, and wave troughs occurred consistently during the summer months. Our model was able to correctly identify statistically significant outbreak signals in PRRSV RNA detection at 3 instances during 2018. |
doi_str_mv | 10.1177/1040638720912406 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7377621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1040638720912406</sage_id><sourcerecordid>2388828560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-1e6f7a4b5e67a39689c85ea14d4851bb1f8f98f84c5ae54547f0386912ec955c3</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxS1ERUvhzgn5yCWLHduxc0GqKr6kiiKgZ8vrTFpXWTt4nEV74l_Hqy0VrcRpRvPe_GzNI-QVZyvOtX7LmWSdMLplPW9r-4Sc8F6KRvaie1r7Kjd7_Zg8R7xlTLVK82fkWLStlr2WJ-T31wxD8CWkSNNIERym6CY6u1IgR9wP55R9iEAzzDkNSzVvgbo41AHOIbuS8o7iLg45bYBuQ16QfvtyRgcocCCHSMsN0KvV9xXFX3tWiMOCJe9ekKPRTQgv7-opufrw_sf5p-bi8uPn87OLxkshS8OhG7WTawWddqLvTO-NAsflII3i6zUfzdib0UivHCippB6ZMF29CvheKS9OybsDd17WGxg8xJLdZOccNi7vbHLBPlRiuLHXaWu10LpreQW8uQPk9HMBLHYT0MM0uQhpQdsKY0xrVMeqlR2sPifEDOP9M5zZfW72cW515fW_37tf-BtUNTQHA7prsLdpyTUl_D_wD7MRovQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388828560</pqid></control><display><type>article</type><title>Prediction of seasonal patterns of porcine reproductive and respiratory syndrome virus RNA detection in the U.S. swine industry</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SAGE Complete A-Z List</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Trevisan, Giovani ; Linhares, Leticia C. M. ; Crim, Bret ; Dubey, Poonam ; Schwartz, Kent J. ; Burrough, Eric R. ; Wang, Chong ; Main, Rodger G. ; Sundberg, Paul ; Thurn, Mary ; Lages, Paulo T. F. ; Corzo, Cesar A. ; Torrison, Jerry ; Henningson, Jamie ; Herrman, Eric ; Hanzlicek, Gregg A. ; Raghavan, Ram ; Marthaler, Douglas ; Greseth, Jon ; Clement, Travis ; Christopher-Hennings, Jane ; Muscatello, David ; Linhares, Daniel C. L.</creator><creatorcontrib>Trevisan, Giovani ; Linhares, Leticia C. M. ; Crim, Bret ; Dubey, Poonam ; Schwartz, Kent J. ; Burrough, Eric R. ; Wang, Chong ; Main, Rodger G. ; Sundberg, Paul ; Thurn, Mary ; Lages, Paulo T. F. ; Corzo, Cesar A. ; Torrison, Jerry ; Henningson, Jamie ; Herrman, Eric ; Hanzlicek, Gregg A. ; Raghavan, Ram ; Marthaler, Douglas ; Greseth, Jon ; Clement, Travis ; Christopher-Hennings, Jane ; Muscatello, David ; Linhares, Daniel C. L.</creatorcontrib><description>We developed a model to predict the cyclic pattern of porcine reproductive and respiratory syndrome virus (PRRSV) RNA detection by reverse-transcription real-time PCR (RT-rtPCR) from 4 major swine-centric veterinary diagnostic laboratories (VDLs) in the United States and to use historical data to forecast the upcoming year’s weekly percentage of positive submissions and issue outbreak signals when the pattern of detection was not as expected. Standardized submission data and test results were used. Historical data (2015–2017) composed of the weekly percentage of PCR-positive submissions were used to fit a cyclic robust regression model. The findings were used to forecast the expected weekly percentage of PCR-positive submissions, with a 95% confidence interval (CI), for 2018. During 2018, the proportion of PRRSV-positive submissions crossed 95% CI boundaries at week 2, 14–25, and 48. The relatively higher detection on week 2 and 48 were mostly from submissions containing samples from wean-to-market pigs, and for week 14–25 originated mostly from samples from adult/sow farms. There was a recurring yearly pattern of detection, wherein an increased proportion of PRRSV RNA detection in submissions originating from wean-to-finish farms was followed by increased detection in samples from adult/sow farms. Results from the model described herein confirm the seasonal cyclic pattern of PRRSV detection using test results consolidated from 4 VDLs. Wave crests occurred consistently during winter, and wave troughs occurred consistently during the summer months. Our model was able to correctly identify statistically significant outbreak signals in PRRSV RNA detection at 3 instances during 2018.</description><identifier>ISSN: 1040-6387</identifier><identifier>EISSN: 1943-4936</identifier><identifier>DOI: 10.1177/1040638720912406</identifier><identifier>PMID: 32274974</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Animals ; Disease Outbreaks - veterinary ; Full Scientific Reports ; Polymerase Chain Reaction - veterinary ; Porcine Reproductive and Respiratory Syndrome - epidemiology ; Porcine Reproductive and Respiratory Syndrome - virology ; Porcine respiratory and reproductive syndrome virus - physiology ; RNA, Viral - analysis ; Seasons ; Swine ; United States - epidemiology</subject><ispartof>Journal of veterinary diagnostic investigation, 2020-05, Vol.32 (3), p.394-400</ispartof><rights>2020 The Author(s)</rights><rights>2020 The Author(s) 2020 American Association of Veterinary Laboratory Diagnosticians</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-1e6f7a4b5e67a39689c85ea14d4851bb1f8f98f84c5ae54547f0386912ec955c3</citedby><cites>FETCH-LOGICAL-c434t-1e6f7a4b5e67a39689c85ea14d4851bb1f8f98f84c5ae54547f0386912ec955c3</cites><orcidid>0000-0001-5305-7981 ; 0000-0003-4747-9189 ; 0000-0002-4980-526X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377621/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377621/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,21799,27903,27904,43600,43601,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32274974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trevisan, Giovani</creatorcontrib><creatorcontrib>Linhares, Leticia C. M.</creatorcontrib><creatorcontrib>Crim, Bret</creatorcontrib><creatorcontrib>Dubey, Poonam</creatorcontrib><creatorcontrib>Schwartz, Kent J.</creatorcontrib><creatorcontrib>Burrough, Eric R.</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Main, Rodger G.</creatorcontrib><creatorcontrib>Sundberg, Paul</creatorcontrib><creatorcontrib>Thurn, Mary</creatorcontrib><creatorcontrib>Lages, Paulo T. F.</creatorcontrib><creatorcontrib>Corzo, Cesar A.</creatorcontrib><creatorcontrib>Torrison, Jerry</creatorcontrib><creatorcontrib>Henningson, Jamie</creatorcontrib><creatorcontrib>Herrman, Eric</creatorcontrib><creatorcontrib>Hanzlicek, Gregg A.</creatorcontrib><creatorcontrib>Raghavan, Ram</creatorcontrib><creatorcontrib>Marthaler, Douglas</creatorcontrib><creatorcontrib>Greseth, Jon</creatorcontrib><creatorcontrib>Clement, Travis</creatorcontrib><creatorcontrib>Christopher-Hennings, Jane</creatorcontrib><creatorcontrib>Muscatello, David</creatorcontrib><creatorcontrib>Linhares, Daniel C. L.</creatorcontrib><title>Prediction of seasonal patterns of porcine reproductive and respiratory syndrome virus RNA detection in the U.S. swine industry</title><title>Journal of veterinary diagnostic investigation</title><addtitle>J Vet Diagn Invest</addtitle><description>We developed a model to predict the cyclic pattern of porcine reproductive and respiratory syndrome virus (PRRSV) RNA detection by reverse-transcription real-time PCR (RT-rtPCR) from 4 major swine-centric veterinary diagnostic laboratories (VDLs) in the United States and to use historical data to forecast the upcoming year’s weekly percentage of positive submissions and issue outbreak signals when the pattern of detection was not as expected. Standardized submission data and test results were used. Historical data (2015–2017) composed of the weekly percentage of PCR-positive submissions were used to fit a cyclic robust regression model. The findings were used to forecast the expected weekly percentage of PCR-positive submissions, with a 95% confidence interval (CI), for 2018. During 2018, the proportion of PRRSV-positive submissions crossed 95% CI boundaries at week 2, 14–25, and 48. The relatively higher detection on week 2 and 48 were mostly from submissions containing samples from wean-to-market pigs, and for week 14–25 originated mostly from samples from adult/sow farms. There was a recurring yearly pattern of detection, wherein an increased proportion of PRRSV RNA detection in submissions originating from wean-to-finish farms was followed by increased detection in samples from adult/sow farms. Results from the model described herein confirm the seasonal cyclic pattern of PRRSV detection using test results consolidated from 4 VDLs. Wave crests occurred consistently during winter, and wave troughs occurred consistently during the summer months. Our model was able to correctly identify statistically significant outbreak signals in PRRSV RNA detection at 3 instances during 2018.</description><subject>Animals</subject><subject>Disease Outbreaks - veterinary</subject><subject>Full Scientific Reports</subject><subject>Polymerase Chain Reaction - veterinary</subject><subject>Porcine Reproductive and Respiratory Syndrome - epidemiology</subject><subject>Porcine Reproductive and Respiratory Syndrome - virology</subject><subject>Porcine respiratory and reproductive syndrome virus - physiology</subject><subject>RNA, Viral - analysis</subject><subject>Seasons</subject><subject>Swine</subject><subject>United States - epidemiology</subject><issn>1040-6387</issn><issn>1943-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1v1DAQxS1ERUvhzgn5yCWLHduxc0GqKr6kiiKgZ8vrTFpXWTt4nEV74l_Hqy0VrcRpRvPe_GzNI-QVZyvOtX7LmWSdMLplPW9r-4Sc8F6KRvaie1r7Kjd7_Zg8R7xlTLVK82fkWLStlr2WJ-T31wxD8CWkSNNIERym6CY6u1IgR9wP55R9iEAzzDkNSzVvgbo41AHOIbuS8o7iLg45bYBuQ16QfvtyRgcocCCHSMsN0KvV9xXFX3tWiMOCJe9ekKPRTQgv7-opufrw_sf5p-bi8uPn87OLxkshS8OhG7WTawWddqLvTO-NAsflII3i6zUfzdib0UivHCippB6ZMF29CvheKS9OybsDd17WGxg8xJLdZOccNi7vbHLBPlRiuLHXaWu10LpreQW8uQPk9HMBLHYT0MM0uQhpQdsKY0xrVMeqlR2sPifEDOP9M5zZfW72cW515fW_37tf-BtUNTQHA7prsLdpyTUl_D_wD7MRovQ</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Trevisan, Giovani</creator><creator>Linhares, Leticia C. M.</creator><creator>Crim, Bret</creator><creator>Dubey, Poonam</creator><creator>Schwartz, Kent J.</creator><creator>Burrough, Eric R.</creator><creator>Wang, Chong</creator><creator>Main, Rodger G.</creator><creator>Sundberg, Paul</creator><creator>Thurn, Mary</creator><creator>Lages, Paulo T. F.</creator><creator>Corzo, Cesar A.</creator><creator>Torrison, Jerry</creator><creator>Henningson, Jamie</creator><creator>Herrman, Eric</creator><creator>Hanzlicek, Gregg A.</creator><creator>Raghavan, Ram</creator><creator>Marthaler, Douglas</creator><creator>Greseth, Jon</creator><creator>Clement, Travis</creator><creator>Christopher-Hennings, Jane</creator><creator>Muscatello, David</creator><creator>Linhares, Daniel C. L.</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5305-7981</orcidid><orcidid>https://orcid.org/0000-0003-4747-9189</orcidid><orcidid>https://orcid.org/0000-0002-4980-526X</orcidid></search><sort><creationdate>20200501</creationdate><title>Prediction of seasonal patterns of porcine reproductive and respiratory syndrome virus RNA detection in the U.S. swine industry</title><author>Trevisan, Giovani ; Linhares, Leticia C. M. ; Crim, Bret ; Dubey, Poonam ; Schwartz, Kent J. ; Burrough, Eric R. ; Wang, Chong ; Main, Rodger G. ; Sundberg, Paul ; Thurn, Mary ; Lages, Paulo T. F. ; Corzo, Cesar A. ; Torrison, Jerry ; Henningson, Jamie ; Herrman, Eric ; Hanzlicek, Gregg A. ; Raghavan, Ram ; Marthaler, Douglas ; Greseth, Jon ; Clement, Travis ; Christopher-Hennings, Jane ; Muscatello, David ; Linhares, Daniel C. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-1e6f7a4b5e67a39689c85ea14d4851bb1f8f98f84c5ae54547f0386912ec955c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Disease Outbreaks - veterinary</topic><topic>Full Scientific Reports</topic><topic>Polymerase Chain Reaction - veterinary</topic><topic>Porcine Reproductive and Respiratory Syndrome - epidemiology</topic><topic>Porcine Reproductive and Respiratory Syndrome - virology</topic><topic>Porcine respiratory and reproductive syndrome virus - physiology</topic><topic>RNA, Viral - analysis</topic><topic>Seasons</topic><topic>Swine</topic><topic>United States - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trevisan, Giovani</creatorcontrib><creatorcontrib>Linhares, Leticia C. M.</creatorcontrib><creatorcontrib>Crim, Bret</creatorcontrib><creatorcontrib>Dubey, Poonam</creatorcontrib><creatorcontrib>Schwartz, Kent J.</creatorcontrib><creatorcontrib>Burrough, Eric R.</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Main, Rodger G.</creatorcontrib><creatorcontrib>Sundberg, Paul</creatorcontrib><creatorcontrib>Thurn, Mary</creatorcontrib><creatorcontrib>Lages, Paulo T. F.</creatorcontrib><creatorcontrib>Corzo, Cesar A.</creatorcontrib><creatorcontrib>Torrison, Jerry</creatorcontrib><creatorcontrib>Henningson, Jamie</creatorcontrib><creatorcontrib>Herrman, Eric</creatorcontrib><creatorcontrib>Hanzlicek, Gregg A.</creatorcontrib><creatorcontrib>Raghavan, Ram</creatorcontrib><creatorcontrib>Marthaler, Douglas</creatorcontrib><creatorcontrib>Greseth, Jon</creatorcontrib><creatorcontrib>Clement, Travis</creatorcontrib><creatorcontrib>Christopher-Hennings, Jane</creatorcontrib><creatorcontrib>Muscatello, David</creatorcontrib><creatorcontrib>Linhares, Daniel C. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of veterinary diagnostic investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trevisan, Giovani</au><au>Linhares, Leticia C. M.</au><au>Crim, Bret</au><au>Dubey, Poonam</au><au>Schwartz, Kent J.</au><au>Burrough, Eric R.</au><au>Wang, Chong</au><au>Main, Rodger G.</au><au>Sundberg, Paul</au><au>Thurn, Mary</au><au>Lages, Paulo T. F.</au><au>Corzo, Cesar A.</au><au>Torrison, Jerry</au><au>Henningson, Jamie</au><au>Herrman, Eric</au><au>Hanzlicek, Gregg A.</au><au>Raghavan, Ram</au><au>Marthaler, Douglas</au><au>Greseth, Jon</au><au>Clement, Travis</au><au>Christopher-Hennings, Jane</au><au>Muscatello, David</au><au>Linhares, Daniel C. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of seasonal patterns of porcine reproductive and respiratory syndrome virus RNA detection in the U.S. swine industry</atitle><jtitle>Journal of veterinary diagnostic investigation</jtitle><addtitle>J Vet Diagn Invest</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>32</volume><issue>3</issue><spage>394</spage><epage>400</epage><pages>394-400</pages><issn>1040-6387</issn><eissn>1943-4936</eissn><abstract>We developed a model to predict the cyclic pattern of porcine reproductive and respiratory syndrome virus (PRRSV) RNA detection by reverse-transcription real-time PCR (RT-rtPCR) from 4 major swine-centric veterinary diagnostic laboratories (VDLs) in the United States and to use historical data to forecast the upcoming year’s weekly percentage of positive submissions and issue outbreak signals when the pattern of detection was not as expected. Standardized submission data and test results were used. Historical data (2015–2017) composed of the weekly percentage of PCR-positive submissions were used to fit a cyclic robust regression model. The findings were used to forecast the expected weekly percentage of PCR-positive submissions, with a 95% confidence interval (CI), for 2018. During 2018, the proportion of PRRSV-positive submissions crossed 95% CI boundaries at week 2, 14–25, and 48. The relatively higher detection on week 2 and 48 were mostly from submissions containing samples from wean-to-market pigs, and for week 14–25 originated mostly from samples from adult/sow farms. There was a recurring yearly pattern of detection, wherein an increased proportion of PRRSV RNA detection in submissions originating from wean-to-finish farms was followed by increased detection in samples from adult/sow farms. Results from the model described herein confirm the seasonal cyclic pattern of PRRSV detection using test results consolidated from 4 VDLs. Wave crests occurred consistently during winter, and wave troughs occurred consistently during the summer months. Our model was able to correctly identify statistically significant outbreak signals in PRRSV RNA detection at 3 instances during 2018.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>32274974</pmid><doi>10.1177/1040638720912406</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5305-7981</orcidid><orcidid>https://orcid.org/0000-0003-4747-9189</orcidid><orcidid>https://orcid.org/0000-0002-4980-526X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-6387 |
ispartof | Journal of veterinary diagnostic investigation, 2020-05, Vol.32 (3), p.394-400 |
issn | 1040-6387 1943-4936 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7377621 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SAGE Complete A-Z List; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Disease Outbreaks - veterinary Full Scientific Reports Polymerase Chain Reaction - veterinary Porcine Reproductive and Respiratory Syndrome - epidemiology Porcine Reproductive and Respiratory Syndrome - virology Porcine respiratory and reproductive syndrome virus - physiology RNA, Viral - analysis Seasons Swine United States - epidemiology |
title | Prediction of seasonal patterns of porcine reproductive and respiratory syndrome virus RNA detection in the U.S. swine industry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20seasonal%20patterns%20of%20porcine%20reproductive%20and%20respiratory%20syndrome%20virus%20RNA%20detection%20in%20the%20U.S.%20swine%20industry&rft.jtitle=Journal%20of%20veterinary%20diagnostic%20investigation&rft.au=Trevisan,%20Giovani&rft.date=2020-05-01&rft.volume=32&rft.issue=3&rft.spage=394&rft.epage=400&rft.pages=394-400&rft.issn=1040-6387&rft.eissn=1943-4936&rft_id=info:doi/10.1177/1040638720912406&rft_dat=%3Cproquest_pubme%3E2388828560%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388828560&rft_id=info:pmid/32274974&rft_sage_id=10.1177_1040638720912406&rfr_iscdi=true |