Prediction of seasonal patterns of porcine reproductive and respiratory syndrome virus RNA detection in the U.S. swine industry

We developed a model to predict the cyclic pattern of porcine reproductive and respiratory syndrome virus (PRRSV) RNA detection by reverse-transcription real-time PCR (RT-rtPCR) from 4 major swine-centric veterinary diagnostic laboratories (VDLs) in the United States and to use historical data to fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of veterinary diagnostic investigation 2020-05, Vol.32 (3), p.394-400
Hauptverfasser: Trevisan, Giovani, Linhares, Leticia C. M., Crim, Bret, Dubey, Poonam, Schwartz, Kent J., Burrough, Eric R., Wang, Chong, Main, Rodger G., Sundberg, Paul, Thurn, Mary, Lages, Paulo T. F., Corzo, Cesar A., Torrison, Jerry, Henningson, Jamie, Herrman, Eric, Hanzlicek, Gregg A., Raghavan, Ram, Marthaler, Douglas, Greseth, Jon, Clement, Travis, Christopher-Hennings, Jane, Muscatello, David, Linhares, Daniel C. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 400
container_issue 3
container_start_page 394
container_title Journal of veterinary diagnostic investigation
container_volume 32
creator Trevisan, Giovani
Linhares, Leticia C. M.
Crim, Bret
Dubey, Poonam
Schwartz, Kent J.
Burrough, Eric R.
Wang, Chong
Main, Rodger G.
Sundberg, Paul
Thurn, Mary
Lages, Paulo T. F.
Corzo, Cesar A.
Torrison, Jerry
Henningson, Jamie
Herrman, Eric
Hanzlicek, Gregg A.
Raghavan, Ram
Marthaler, Douglas
Greseth, Jon
Clement, Travis
Christopher-Hennings, Jane
Muscatello, David
Linhares, Daniel C. L.
description We developed a model to predict the cyclic pattern of porcine reproductive and respiratory syndrome virus (PRRSV) RNA detection by reverse-transcription real-time PCR (RT-rtPCR) from 4 major swine-centric veterinary diagnostic laboratories (VDLs) in the United States and to use historical data to forecast the upcoming year’s weekly percentage of positive submissions and issue outbreak signals when the pattern of detection was not as expected. Standardized submission data and test results were used. Historical data (2015–2017) composed of the weekly percentage of PCR-positive submissions were used to fit a cyclic robust regression model. The findings were used to forecast the expected weekly percentage of PCR-positive submissions, with a 95% confidence interval (CI), for 2018. During 2018, the proportion of PRRSV-positive submissions crossed 95% CI boundaries at week 2, 14–25, and 48. The relatively higher detection on week 2 and 48 were mostly from submissions containing samples from wean-to-market pigs, and for week 14–25 originated mostly from samples from adult/sow farms. There was a recurring yearly pattern of detection, wherein an increased proportion of PRRSV RNA detection in submissions originating from wean-to-finish farms was followed by increased detection in samples from adult/sow farms. Results from the model described herein confirm the seasonal cyclic pattern of PRRSV detection using test results consolidated from 4 VDLs. Wave crests occurred consistently during winter, and wave troughs occurred consistently during the summer months. Our model was able to correctly identify statistically significant outbreak signals in PRRSV RNA detection at 3 instances during 2018.
doi_str_mv 10.1177/1040638720912406
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7377621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1040638720912406</sage_id><sourcerecordid>2388828560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-1e6f7a4b5e67a39689c85ea14d4851bb1f8f98f84c5ae54547f0386912ec955c3</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxS1ERUvhzgn5yCWLHduxc0GqKr6kiiKgZ8vrTFpXWTt4nEV74l_Hqy0VrcRpRvPe_GzNI-QVZyvOtX7LmWSdMLplPW9r-4Sc8F6KRvaie1r7Kjd7_Zg8R7xlTLVK82fkWLStlr2WJ-T31wxD8CWkSNNIERym6CY6u1IgR9wP55R9iEAzzDkNSzVvgbo41AHOIbuS8o7iLg45bYBuQ16QfvtyRgcocCCHSMsN0KvV9xXFX3tWiMOCJe9ekKPRTQgv7-opufrw_sf5p-bi8uPn87OLxkshS8OhG7WTawWddqLvTO-NAsflII3i6zUfzdib0UivHCippB6ZMF29CvheKS9OybsDd17WGxg8xJLdZOccNi7vbHLBPlRiuLHXaWu10LpreQW8uQPk9HMBLHYT0MM0uQhpQdsKY0xrVMeqlR2sPifEDOP9M5zZfW72cW515fW_37tf-BtUNTQHA7prsLdpyTUl_D_wD7MRovQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388828560</pqid></control><display><type>article</type><title>Prediction of seasonal patterns of porcine reproductive and respiratory syndrome virus RNA detection in the U.S. swine industry</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SAGE Complete A-Z List</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Trevisan, Giovani ; Linhares, Leticia C. M. ; Crim, Bret ; Dubey, Poonam ; Schwartz, Kent J. ; Burrough, Eric R. ; Wang, Chong ; Main, Rodger G. ; Sundberg, Paul ; Thurn, Mary ; Lages, Paulo T. F. ; Corzo, Cesar A. ; Torrison, Jerry ; Henningson, Jamie ; Herrman, Eric ; Hanzlicek, Gregg A. ; Raghavan, Ram ; Marthaler, Douglas ; Greseth, Jon ; Clement, Travis ; Christopher-Hennings, Jane ; Muscatello, David ; Linhares, Daniel C. L.</creator><creatorcontrib>Trevisan, Giovani ; Linhares, Leticia C. M. ; Crim, Bret ; Dubey, Poonam ; Schwartz, Kent J. ; Burrough, Eric R. ; Wang, Chong ; Main, Rodger G. ; Sundberg, Paul ; Thurn, Mary ; Lages, Paulo T. F. ; Corzo, Cesar A. ; Torrison, Jerry ; Henningson, Jamie ; Herrman, Eric ; Hanzlicek, Gregg A. ; Raghavan, Ram ; Marthaler, Douglas ; Greseth, Jon ; Clement, Travis ; Christopher-Hennings, Jane ; Muscatello, David ; Linhares, Daniel C. L.</creatorcontrib><description>We developed a model to predict the cyclic pattern of porcine reproductive and respiratory syndrome virus (PRRSV) RNA detection by reverse-transcription real-time PCR (RT-rtPCR) from 4 major swine-centric veterinary diagnostic laboratories (VDLs) in the United States and to use historical data to forecast the upcoming year’s weekly percentage of positive submissions and issue outbreak signals when the pattern of detection was not as expected. Standardized submission data and test results were used. Historical data (2015–2017) composed of the weekly percentage of PCR-positive submissions were used to fit a cyclic robust regression model. The findings were used to forecast the expected weekly percentage of PCR-positive submissions, with a 95% confidence interval (CI), for 2018. During 2018, the proportion of PRRSV-positive submissions crossed 95% CI boundaries at week 2, 14–25, and 48. The relatively higher detection on week 2 and 48 were mostly from submissions containing samples from wean-to-market pigs, and for week 14–25 originated mostly from samples from adult/sow farms. There was a recurring yearly pattern of detection, wherein an increased proportion of PRRSV RNA detection in submissions originating from wean-to-finish farms was followed by increased detection in samples from adult/sow farms. Results from the model described herein confirm the seasonal cyclic pattern of PRRSV detection using test results consolidated from 4 VDLs. Wave crests occurred consistently during winter, and wave troughs occurred consistently during the summer months. Our model was able to correctly identify statistically significant outbreak signals in PRRSV RNA detection at 3 instances during 2018.</description><identifier>ISSN: 1040-6387</identifier><identifier>EISSN: 1943-4936</identifier><identifier>DOI: 10.1177/1040638720912406</identifier><identifier>PMID: 32274974</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Animals ; Disease Outbreaks - veterinary ; Full Scientific Reports ; Polymerase Chain Reaction - veterinary ; Porcine Reproductive and Respiratory Syndrome - epidemiology ; Porcine Reproductive and Respiratory Syndrome - virology ; Porcine respiratory and reproductive syndrome virus - physiology ; RNA, Viral - analysis ; Seasons ; Swine ; United States - epidemiology</subject><ispartof>Journal of veterinary diagnostic investigation, 2020-05, Vol.32 (3), p.394-400</ispartof><rights>2020 The Author(s)</rights><rights>2020 The Author(s) 2020 American Association of Veterinary Laboratory Diagnosticians</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-1e6f7a4b5e67a39689c85ea14d4851bb1f8f98f84c5ae54547f0386912ec955c3</citedby><cites>FETCH-LOGICAL-c434t-1e6f7a4b5e67a39689c85ea14d4851bb1f8f98f84c5ae54547f0386912ec955c3</cites><orcidid>0000-0001-5305-7981 ; 0000-0003-4747-9189 ; 0000-0002-4980-526X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377621/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377621/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,21799,27903,27904,43600,43601,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32274974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trevisan, Giovani</creatorcontrib><creatorcontrib>Linhares, Leticia C. M.</creatorcontrib><creatorcontrib>Crim, Bret</creatorcontrib><creatorcontrib>Dubey, Poonam</creatorcontrib><creatorcontrib>Schwartz, Kent J.</creatorcontrib><creatorcontrib>Burrough, Eric R.</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Main, Rodger G.</creatorcontrib><creatorcontrib>Sundberg, Paul</creatorcontrib><creatorcontrib>Thurn, Mary</creatorcontrib><creatorcontrib>Lages, Paulo T. F.</creatorcontrib><creatorcontrib>Corzo, Cesar A.</creatorcontrib><creatorcontrib>Torrison, Jerry</creatorcontrib><creatorcontrib>Henningson, Jamie</creatorcontrib><creatorcontrib>Herrman, Eric</creatorcontrib><creatorcontrib>Hanzlicek, Gregg A.</creatorcontrib><creatorcontrib>Raghavan, Ram</creatorcontrib><creatorcontrib>Marthaler, Douglas</creatorcontrib><creatorcontrib>Greseth, Jon</creatorcontrib><creatorcontrib>Clement, Travis</creatorcontrib><creatorcontrib>Christopher-Hennings, Jane</creatorcontrib><creatorcontrib>Muscatello, David</creatorcontrib><creatorcontrib>Linhares, Daniel C. L.</creatorcontrib><title>Prediction of seasonal patterns of porcine reproductive and respiratory syndrome virus RNA detection in the U.S. swine industry</title><title>Journal of veterinary diagnostic investigation</title><addtitle>J Vet Diagn Invest</addtitle><description>We developed a model to predict the cyclic pattern of porcine reproductive and respiratory syndrome virus (PRRSV) RNA detection by reverse-transcription real-time PCR (RT-rtPCR) from 4 major swine-centric veterinary diagnostic laboratories (VDLs) in the United States and to use historical data to forecast the upcoming year’s weekly percentage of positive submissions and issue outbreak signals when the pattern of detection was not as expected. Standardized submission data and test results were used. Historical data (2015–2017) composed of the weekly percentage of PCR-positive submissions were used to fit a cyclic robust regression model. The findings were used to forecast the expected weekly percentage of PCR-positive submissions, with a 95% confidence interval (CI), for 2018. During 2018, the proportion of PRRSV-positive submissions crossed 95% CI boundaries at week 2, 14–25, and 48. The relatively higher detection on week 2 and 48 were mostly from submissions containing samples from wean-to-market pigs, and for week 14–25 originated mostly from samples from adult/sow farms. There was a recurring yearly pattern of detection, wherein an increased proportion of PRRSV RNA detection in submissions originating from wean-to-finish farms was followed by increased detection in samples from adult/sow farms. Results from the model described herein confirm the seasonal cyclic pattern of PRRSV detection using test results consolidated from 4 VDLs. Wave crests occurred consistently during winter, and wave troughs occurred consistently during the summer months. Our model was able to correctly identify statistically significant outbreak signals in PRRSV RNA detection at 3 instances during 2018.</description><subject>Animals</subject><subject>Disease Outbreaks - veterinary</subject><subject>Full Scientific Reports</subject><subject>Polymerase Chain Reaction - veterinary</subject><subject>Porcine Reproductive and Respiratory Syndrome - epidemiology</subject><subject>Porcine Reproductive and Respiratory Syndrome - virology</subject><subject>Porcine respiratory and reproductive syndrome virus - physiology</subject><subject>RNA, Viral - analysis</subject><subject>Seasons</subject><subject>Swine</subject><subject>United States - epidemiology</subject><issn>1040-6387</issn><issn>1943-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1v1DAQxS1ERUvhzgn5yCWLHduxc0GqKr6kiiKgZ8vrTFpXWTt4nEV74l_Hqy0VrcRpRvPe_GzNI-QVZyvOtX7LmWSdMLplPW9r-4Sc8F6KRvaie1r7Kjd7_Zg8R7xlTLVK82fkWLStlr2WJ-T31wxD8CWkSNNIERym6CY6u1IgR9wP55R9iEAzzDkNSzVvgbo41AHOIbuS8o7iLg45bYBuQ16QfvtyRgcocCCHSMsN0KvV9xXFX3tWiMOCJe9ekKPRTQgv7-opufrw_sf5p-bi8uPn87OLxkshS8OhG7WTawWddqLvTO-NAsflII3i6zUfzdib0UivHCippB6ZMF29CvheKS9OybsDd17WGxg8xJLdZOccNi7vbHLBPlRiuLHXaWu10LpreQW8uQPk9HMBLHYT0MM0uQhpQdsKY0xrVMeqlR2sPifEDOP9M5zZfW72cW515fW_37tf-BtUNTQHA7prsLdpyTUl_D_wD7MRovQ</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Trevisan, Giovani</creator><creator>Linhares, Leticia C. M.</creator><creator>Crim, Bret</creator><creator>Dubey, Poonam</creator><creator>Schwartz, Kent J.</creator><creator>Burrough, Eric R.</creator><creator>Wang, Chong</creator><creator>Main, Rodger G.</creator><creator>Sundberg, Paul</creator><creator>Thurn, Mary</creator><creator>Lages, Paulo T. F.</creator><creator>Corzo, Cesar A.</creator><creator>Torrison, Jerry</creator><creator>Henningson, Jamie</creator><creator>Herrman, Eric</creator><creator>Hanzlicek, Gregg A.</creator><creator>Raghavan, Ram</creator><creator>Marthaler, Douglas</creator><creator>Greseth, Jon</creator><creator>Clement, Travis</creator><creator>Christopher-Hennings, Jane</creator><creator>Muscatello, David</creator><creator>Linhares, Daniel C. L.</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5305-7981</orcidid><orcidid>https://orcid.org/0000-0003-4747-9189</orcidid><orcidid>https://orcid.org/0000-0002-4980-526X</orcidid></search><sort><creationdate>20200501</creationdate><title>Prediction of seasonal patterns of porcine reproductive and respiratory syndrome virus RNA detection in the U.S. swine industry</title><author>Trevisan, Giovani ; Linhares, Leticia C. M. ; Crim, Bret ; Dubey, Poonam ; Schwartz, Kent J. ; Burrough, Eric R. ; Wang, Chong ; Main, Rodger G. ; Sundberg, Paul ; Thurn, Mary ; Lages, Paulo T. F. ; Corzo, Cesar A. ; Torrison, Jerry ; Henningson, Jamie ; Herrman, Eric ; Hanzlicek, Gregg A. ; Raghavan, Ram ; Marthaler, Douglas ; Greseth, Jon ; Clement, Travis ; Christopher-Hennings, Jane ; Muscatello, David ; Linhares, Daniel C. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-1e6f7a4b5e67a39689c85ea14d4851bb1f8f98f84c5ae54547f0386912ec955c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Disease Outbreaks - veterinary</topic><topic>Full Scientific Reports</topic><topic>Polymerase Chain Reaction - veterinary</topic><topic>Porcine Reproductive and Respiratory Syndrome - epidemiology</topic><topic>Porcine Reproductive and Respiratory Syndrome - virology</topic><topic>Porcine respiratory and reproductive syndrome virus - physiology</topic><topic>RNA, Viral - analysis</topic><topic>Seasons</topic><topic>Swine</topic><topic>United States - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trevisan, Giovani</creatorcontrib><creatorcontrib>Linhares, Leticia C. M.</creatorcontrib><creatorcontrib>Crim, Bret</creatorcontrib><creatorcontrib>Dubey, Poonam</creatorcontrib><creatorcontrib>Schwartz, Kent J.</creatorcontrib><creatorcontrib>Burrough, Eric R.</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Main, Rodger G.</creatorcontrib><creatorcontrib>Sundberg, Paul</creatorcontrib><creatorcontrib>Thurn, Mary</creatorcontrib><creatorcontrib>Lages, Paulo T. F.</creatorcontrib><creatorcontrib>Corzo, Cesar A.</creatorcontrib><creatorcontrib>Torrison, Jerry</creatorcontrib><creatorcontrib>Henningson, Jamie</creatorcontrib><creatorcontrib>Herrman, Eric</creatorcontrib><creatorcontrib>Hanzlicek, Gregg A.</creatorcontrib><creatorcontrib>Raghavan, Ram</creatorcontrib><creatorcontrib>Marthaler, Douglas</creatorcontrib><creatorcontrib>Greseth, Jon</creatorcontrib><creatorcontrib>Clement, Travis</creatorcontrib><creatorcontrib>Christopher-Hennings, Jane</creatorcontrib><creatorcontrib>Muscatello, David</creatorcontrib><creatorcontrib>Linhares, Daniel C. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of veterinary diagnostic investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trevisan, Giovani</au><au>Linhares, Leticia C. M.</au><au>Crim, Bret</au><au>Dubey, Poonam</au><au>Schwartz, Kent J.</au><au>Burrough, Eric R.</au><au>Wang, Chong</au><au>Main, Rodger G.</au><au>Sundberg, Paul</au><au>Thurn, Mary</au><au>Lages, Paulo T. F.</au><au>Corzo, Cesar A.</au><au>Torrison, Jerry</au><au>Henningson, Jamie</au><au>Herrman, Eric</au><au>Hanzlicek, Gregg A.</au><au>Raghavan, Ram</au><au>Marthaler, Douglas</au><au>Greseth, Jon</au><au>Clement, Travis</au><au>Christopher-Hennings, Jane</au><au>Muscatello, David</au><au>Linhares, Daniel C. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of seasonal patterns of porcine reproductive and respiratory syndrome virus RNA detection in the U.S. swine industry</atitle><jtitle>Journal of veterinary diagnostic investigation</jtitle><addtitle>J Vet Diagn Invest</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>32</volume><issue>3</issue><spage>394</spage><epage>400</epage><pages>394-400</pages><issn>1040-6387</issn><eissn>1943-4936</eissn><abstract>We developed a model to predict the cyclic pattern of porcine reproductive and respiratory syndrome virus (PRRSV) RNA detection by reverse-transcription real-time PCR (RT-rtPCR) from 4 major swine-centric veterinary diagnostic laboratories (VDLs) in the United States and to use historical data to forecast the upcoming year’s weekly percentage of positive submissions and issue outbreak signals when the pattern of detection was not as expected. Standardized submission data and test results were used. Historical data (2015–2017) composed of the weekly percentage of PCR-positive submissions were used to fit a cyclic robust regression model. The findings were used to forecast the expected weekly percentage of PCR-positive submissions, with a 95% confidence interval (CI), for 2018. During 2018, the proportion of PRRSV-positive submissions crossed 95% CI boundaries at week 2, 14–25, and 48. The relatively higher detection on week 2 and 48 were mostly from submissions containing samples from wean-to-market pigs, and for week 14–25 originated mostly from samples from adult/sow farms. There was a recurring yearly pattern of detection, wherein an increased proportion of PRRSV RNA detection in submissions originating from wean-to-finish farms was followed by increased detection in samples from adult/sow farms. Results from the model described herein confirm the seasonal cyclic pattern of PRRSV detection using test results consolidated from 4 VDLs. Wave crests occurred consistently during winter, and wave troughs occurred consistently during the summer months. Our model was able to correctly identify statistically significant outbreak signals in PRRSV RNA detection at 3 instances during 2018.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>32274974</pmid><doi>10.1177/1040638720912406</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5305-7981</orcidid><orcidid>https://orcid.org/0000-0003-4747-9189</orcidid><orcidid>https://orcid.org/0000-0002-4980-526X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-6387
ispartof Journal of veterinary diagnostic investigation, 2020-05, Vol.32 (3), p.394-400
issn 1040-6387
1943-4936
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7377621
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SAGE Complete A-Z List; PubMed Central; Alma/SFX Local Collection
subjects Animals
Disease Outbreaks - veterinary
Full Scientific Reports
Polymerase Chain Reaction - veterinary
Porcine Reproductive and Respiratory Syndrome - epidemiology
Porcine Reproductive and Respiratory Syndrome - virology
Porcine respiratory and reproductive syndrome virus - physiology
RNA, Viral - analysis
Seasons
Swine
United States - epidemiology
title Prediction of seasonal patterns of porcine reproductive and respiratory syndrome virus RNA detection in the U.S. swine industry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20seasonal%20patterns%20of%20porcine%20reproductive%20and%20respiratory%20syndrome%20virus%20RNA%20detection%20in%20the%20U.S.%20swine%20industry&rft.jtitle=Journal%20of%20veterinary%20diagnostic%20investigation&rft.au=Trevisan,%20Giovani&rft.date=2020-05-01&rft.volume=32&rft.issue=3&rft.spage=394&rft.epage=400&rft.pages=394-400&rft.issn=1040-6387&rft.eissn=1943-4936&rft_id=info:doi/10.1177/1040638720912406&rft_dat=%3Cproquest_pubme%3E2388828560%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388828560&rft_id=info:pmid/32274974&rft_sage_id=10.1177_1040638720912406&rfr_iscdi=true