A Sulfoglycolytic Entner-Doudoroff Pathway in Rhizobium leguminosarum bv. trifolii SRDI565

Rhizobia are nitrogen-fixing bacteria that engage in symbiotic relationships with plant hosts but can also persist as free-living bacteria in the soil and rhizosphere. Here, we show that free-living SRDI565 can grow on the sulfosugar sulfoquinovose (SQ) or the related glycoside SQ-glycerol using a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and environmental microbiology 2020-07, Vol.86 (15)
Hauptverfasser: Li, Jinling, Epa, Ruwan, Scott, Nichollas E, Skoneczny, Dominik, Sharma, Mahima, Snow, Alexander J D, Lingford, James P, Goddard-Borger, Ethan D, Davies, Gideon J, McConville, Malcolm J, Williams, Spencer J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page
container_title Applied and environmental microbiology
container_volume 86
creator Li, Jinling
Epa, Ruwan
Scott, Nichollas E
Skoneczny, Dominik
Sharma, Mahima
Snow, Alexander J D
Lingford, James P
Goddard-Borger, Ethan D
Davies, Gideon J
McConville, Malcolm J
Williams, Spencer J
description Rhizobia are nitrogen-fixing bacteria that engage in symbiotic relationships with plant hosts but can also persist as free-living bacteria in the soil and rhizosphere. Here, we show that free-living SRDI565 can grow on the sulfosugar sulfoquinovose (SQ) or the related glycoside SQ-glycerol using a sulfoglycolytic Entner-Doudoroff (sulfo-ED) pathway, resulting in production of sulfolactate (SL) as the major metabolic end product. Comparative proteomics supports the involvement of a sulfo-ED operon encoding an ABC transporter, sulfo-ED enzymes, and an SL exporter. Consistent with an oligotrophic lifestyle, proteomics data revealed little change in expression of the sulfo-ED proteins during growth on SQ versus mannitol, a result confirmed through biochemical assay of sulfoquinovosidase activity in cell lysates. Metabolomics analysis showed that growth on SQ involves gluconeogenesis to satisfy metabolic requirements for glucose-6-phosphate and fructose-6-phosphate. Metabolomics analysis also revealed the unexpected production of small amounts of sulfofructose and 2,3-dihydroxypropanesulfonate, which are proposed to arise from promiscuous activities of the glycolytic enzyme phosphoglucose isomerase and a nonspecific aldehyde reductase, respectively. The discovery of a rhizobium isolate with the ability to degrade SQ builds our knowledge of how these important symbiotic bacteria persist within soil. Sulfonate sulfur is a major form of organic sulfur in soils but requires biomineralization before it can be utilized by plants. Very little is known about the biochemical processes used to mobilize sulfonate sulfur. We show that a rhizobial isolate from soil, SRDI565, possesses the ability to degrade the abundant phototroph-derived carbohydrate sulfonate SQ through a sulfoglycolytic Entner-Doudoroff pathway. Proteomics and metabolomics demonstrated the utilization of this pathway during growth on SQ and provided evidence for gluconeogenesis. Unexpectedly, off-cycle sulfoglycolytic species were also detected, pointing to the complexity of metabolic processes within cells under conditions of sulfoglycolysis. Thus, rhizobial metabolism of the abundant sulfosugar SQ may contribute to persistence of the bacteria in the soil and to mobilization of sulfur in the pedosphere.
doi_str_mv 10.1128/aem.00750-20
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7376563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430407989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-c763ebaed84d202f3d2b332fc1c816ae049c60fdcf3fd201a85f4bd3d842b52f3</originalsourceid><addsrcrecordid>eNpd0UFP2zAUB3ALgdbS7bbzFIkLB1Je7MRxLkhV2w0kJibYLlwsx7FbIycGOwF1n36GsgrwxbLeT09-74_Q1wymWYbZqVDtFKAsIMWwh8YZVCwtCKH7aAxQVSnGOYzQYQh3AJADZZ_QiOA8HlqN0e0suRmsdiu7kc5ueiOTZdd3yqcLNzTOO62TX6JfP4lNYrrkem3-utoMbWLVamhN54Lw8VU_TpPeG-2sMcnN9eKioMVndKCFDerL6z1Bf74vf8_P08urHxfz2WUq85L1qSwpUbVQDcsbDFiTBteEYC0zyTIqFOSVpKAbqYmOIBOs0HndkOhxXUQ_QWfbvvdD3apGqq73wvJ7b1rhN9wJw99XOrPmK_fIS1LSgpLY4Pi1gXcPgwo9b02QylrRKTcEHhdICZS0ZJEefaB3bvBdHC8qEtdbVqyK6mSrpHcheKV3n8mAP4fGZ8uf_CU0jiHyb28H2OH_KZF_nDiTZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430407989</pqid></control><display><type>article</type><title>A Sulfoglycolytic Entner-Doudoroff Pathway in Rhizobium leguminosarum bv. trifolii SRDI565</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Li, Jinling ; Epa, Ruwan ; Scott, Nichollas E ; Skoneczny, Dominik ; Sharma, Mahima ; Snow, Alexander J D ; Lingford, James P ; Goddard-Borger, Ethan D ; Davies, Gideon J ; McConville, Malcolm J ; Williams, Spencer J</creator><contributor>Master, Emma R.</contributor><creatorcontrib>Li, Jinling ; Epa, Ruwan ; Scott, Nichollas E ; Skoneczny, Dominik ; Sharma, Mahima ; Snow, Alexander J D ; Lingford, James P ; Goddard-Borger, Ethan D ; Davies, Gideon J ; McConville, Malcolm J ; Williams, Spencer J ; Master, Emma R.</creatorcontrib><description>Rhizobia are nitrogen-fixing bacteria that engage in symbiotic relationships with plant hosts but can also persist as free-living bacteria in the soil and rhizosphere. Here, we show that free-living SRDI565 can grow on the sulfosugar sulfoquinovose (SQ) or the related glycoside SQ-glycerol using a sulfoglycolytic Entner-Doudoroff (sulfo-ED) pathway, resulting in production of sulfolactate (SL) as the major metabolic end product. Comparative proteomics supports the involvement of a sulfo-ED operon encoding an ABC transporter, sulfo-ED enzymes, and an SL exporter. Consistent with an oligotrophic lifestyle, proteomics data revealed little change in expression of the sulfo-ED proteins during growth on SQ versus mannitol, a result confirmed through biochemical assay of sulfoquinovosidase activity in cell lysates. Metabolomics analysis showed that growth on SQ involves gluconeogenesis to satisfy metabolic requirements for glucose-6-phosphate and fructose-6-phosphate. Metabolomics analysis also revealed the unexpected production of small amounts of sulfofructose and 2,3-dihydroxypropanesulfonate, which are proposed to arise from promiscuous activities of the glycolytic enzyme phosphoglucose isomerase and a nonspecific aldehyde reductase, respectively. The discovery of a rhizobium isolate with the ability to degrade SQ builds our knowledge of how these important symbiotic bacteria persist within soil. Sulfonate sulfur is a major form of organic sulfur in soils but requires biomineralization before it can be utilized by plants. Very little is known about the biochemical processes used to mobilize sulfonate sulfur. We show that a rhizobial isolate from soil, SRDI565, possesses the ability to degrade the abundant phototroph-derived carbohydrate sulfonate SQ through a sulfoglycolytic Entner-Doudoroff pathway. Proteomics and metabolomics demonstrated the utilization of this pathway during growth on SQ and provided evidence for gluconeogenesis. Unexpectedly, off-cycle sulfoglycolytic species were also detected, pointing to the complexity of metabolic processes within cells under conditions of sulfoglycolysis. Thus, rhizobial metabolism of the abundant sulfosugar SQ may contribute to persistence of the bacteria in the soil and to mobilization of sulfur in the pedosphere.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.00750-20</identifier><identifier>PMID: 32444469</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>ABC transporter ; Aldehyde reductase ; Aldehydes ; Bacteria ; Bacterial Proteins - metabolism ; Entner-Doudoroff pathway ; Environmental Microbiology ; Fructose-6-phosphate ; Gluconeogenesis ; Glycerol ; Glycerol - metabolism ; Glycolysis ; Host plants ; Lysates ; Mannitol ; Metabolism ; Metabolomics ; Methylglucosides - metabolism ; Nitrogen fixation ; Nitrogen-fixing bacteria ; Nitrogenation ; Phosphoglucose isomerase ; Proteome - metabolism ; Proteomics ; Reductases ; Rhizobium leguminosarum ; Rhizobium leguminosarum - metabolism ; Rhizosphere ; Soil bacteria ; Soil microorganisms ; Soils</subject><ispartof>Applied and environmental microbiology, 2020-07, Vol.86 (15)</ispartof><rights>Copyright © 2020 American Society for Microbiology.</rights><rights>Copyright American Society for Microbiology Jul 2020</rights><rights>Copyright © 2020 American Society for Microbiology. 2020 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-c763ebaed84d202f3d2b332fc1c816ae049c60fdcf3fd201a85f4bd3d842b52f3</citedby><cites>FETCH-LOGICAL-c478t-c763ebaed84d202f3d2b332fc1c816ae049c60fdcf3fd201a85f4bd3d842b52f3</cites><orcidid>0000-0001-6341-4364 ; 0000-0002-7343-776X ; 0000-0002-8181-9733 ; 0000-0003-2556-8316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376563/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376563/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3188,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32444469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Master, Emma R.</contributor><creatorcontrib>Li, Jinling</creatorcontrib><creatorcontrib>Epa, Ruwan</creatorcontrib><creatorcontrib>Scott, Nichollas E</creatorcontrib><creatorcontrib>Skoneczny, Dominik</creatorcontrib><creatorcontrib>Sharma, Mahima</creatorcontrib><creatorcontrib>Snow, Alexander J D</creatorcontrib><creatorcontrib>Lingford, James P</creatorcontrib><creatorcontrib>Goddard-Borger, Ethan D</creatorcontrib><creatorcontrib>Davies, Gideon J</creatorcontrib><creatorcontrib>McConville, Malcolm J</creatorcontrib><creatorcontrib>Williams, Spencer J</creatorcontrib><title>A Sulfoglycolytic Entner-Doudoroff Pathway in Rhizobium leguminosarum bv. trifolii SRDI565</title><title>Applied and environmental microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Rhizobia are nitrogen-fixing bacteria that engage in symbiotic relationships with plant hosts but can also persist as free-living bacteria in the soil and rhizosphere. Here, we show that free-living SRDI565 can grow on the sulfosugar sulfoquinovose (SQ) or the related glycoside SQ-glycerol using a sulfoglycolytic Entner-Doudoroff (sulfo-ED) pathway, resulting in production of sulfolactate (SL) as the major metabolic end product. Comparative proteomics supports the involvement of a sulfo-ED operon encoding an ABC transporter, sulfo-ED enzymes, and an SL exporter. Consistent with an oligotrophic lifestyle, proteomics data revealed little change in expression of the sulfo-ED proteins during growth on SQ versus mannitol, a result confirmed through biochemical assay of sulfoquinovosidase activity in cell lysates. Metabolomics analysis showed that growth on SQ involves gluconeogenesis to satisfy metabolic requirements for glucose-6-phosphate and fructose-6-phosphate. Metabolomics analysis also revealed the unexpected production of small amounts of sulfofructose and 2,3-dihydroxypropanesulfonate, which are proposed to arise from promiscuous activities of the glycolytic enzyme phosphoglucose isomerase and a nonspecific aldehyde reductase, respectively. The discovery of a rhizobium isolate with the ability to degrade SQ builds our knowledge of how these important symbiotic bacteria persist within soil. Sulfonate sulfur is a major form of organic sulfur in soils but requires biomineralization before it can be utilized by plants. Very little is known about the biochemical processes used to mobilize sulfonate sulfur. We show that a rhizobial isolate from soil, SRDI565, possesses the ability to degrade the abundant phototroph-derived carbohydrate sulfonate SQ through a sulfoglycolytic Entner-Doudoroff pathway. Proteomics and metabolomics demonstrated the utilization of this pathway during growth on SQ and provided evidence for gluconeogenesis. Unexpectedly, off-cycle sulfoglycolytic species were also detected, pointing to the complexity of metabolic processes within cells under conditions of sulfoglycolysis. Thus, rhizobial metabolism of the abundant sulfosugar SQ may contribute to persistence of the bacteria in the soil and to mobilization of sulfur in the pedosphere.</description><subject>ABC transporter</subject><subject>Aldehyde reductase</subject><subject>Aldehydes</subject><subject>Bacteria</subject><subject>Bacterial Proteins - metabolism</subject><subject>Entner-Doudoroff pathway</subject><subject>Environmental Microbiology</subject><subject>Fructose-6-phosphate</subject><subject>Gluconeogenesis</subject><subject>Glycerol</subject><subject>Glycerol - metabolism</subject><subject>Glycolysis</subject><subject>Host plants</subject><subject>Lysates</subject><subject>Mannitol</subject><subject>Metabolism</subject><subject>Metabolomics</subject><subject>Methylglucosides - metabolism</subject><subject>Nitrogen fixation</subject><subject>Nitrogen-fixing bacteria</subject><subject>Nitrogenation</subject><subject>Phosphoglucose isomerase</subject><subject>Proteome - metabolism</subject><subject>Proteomics</subject><subject>Reductases</subject><subject>Rhizobium leguminosarum</subject><subject>Rhizobium leguminosarum - metabolism</subject><subject>Rhizosphere</subject><subject>Soil bacteria</subject><subject>Soil microorganisms</subject><subject>Soils</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0UFP2zAUB3ALgdbS7bbzFIkLB1Je7MRxLkhV2w0kJibYLlwsx7FbIycGOwF1n36GsgrwxbLeT09-74_Q1wymWYbZqVDtFKAsIMWwh8YZVCwtCKH7aAxQVSnGOYzQYQh3AJADZZ_QiOA8HlqN0e0suRmsdiu7kc5ueiOTZdd3yqcLNzTOO62TX6JfP4lNYrrkem3-utoMbWLVamhN54Lw8VU_TpPeG-2sMcnN9eKioMVndKCFDerL6z1Bf74vf8_P08urHxfz2WUq85L1qSwpUbVQDcsbDFiTBteEYC0zyTIqFOSVpKAbqYmOIBOs0HndkOhxXUQ_QWfbvvdD3apGqq73wvJ7b1rhN9wJw99XOrPmK_fIS1LSgpLY4Pi1gXcPgwo9b02QylrRKTcEHhdICZS0ZJEefaB3bvBdHC8qEtdbVqyK6mSrpHcheKV3n8mAP4fGZ8uf_CU0jiHyb28H2OH_KZF_nDiTZA</recordid><startdate>20200720</startdate><enddate>20200720</enddate><creator>Li, Jinling</creator><creator>Epa, Ruwan</creator><creator>Scott, Nichollas E</creator><creator>Skoneczny, Dominik</creator><creator>Sharma, Mahima</creator><creator>Snow, Alexander J D</creator><creator>Lingford, James P</creator><creator>Goddard-Borger, Ethan D</creator><creator>Davies, Gideon J</creator><creator>McConville, Malcolm J</creator><creator>Williams, Spencer J</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6341-4364</orcidid><orcidid>https://orcid.org/0000-0002-7343-776X</orcidid><orcidid>https://orcid.org/0000-0002-8181-9733</orcidid><orcidid>https://orcid.org/0000-0003-2556-8316</orcidid></search><sort><creationdate>20200720</creationdate><title>A Sulfoglycolytic Entner-Doudoroff Pathway in Rhizobium leguminosarum bv. trifolii SRDI565</title><author>Li, Jinling ; Epa, Ruwan ; Scott, Nichollas E ; Skoneczny, Dominik ; Sharma, Mahima ; Snow, Alexander J D ; Lingford, James P ; Goddard-Borger, Ethan D ; Davies, Gideon J ; McConville, Malcolm J ; Williams, Spencer J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-c763ebaed84d202f3d2b332fc1c816ae049c60fdcf3fd201a85f4bd3d842b52f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ABC transporter</topic><topic>Aldehyde reductase</topic><topic>Aldehydes</topic><topic>Bacteria</topic><topic>Bacterial Proteins - metabolism</topic><topic>Entner-Doudoroff pathway</topic><topic>Environmental Microbiology</topic><topic>Fructose-6-phosphate</topic><topic>Gluconeogenesis</topic><topic>Glycerol</topic><topic>Glycerol - metabolism</topic><topic>Glycolysis</topic><topic>Host plants</topic><topic>Lysates</topic><topic>Mannitol</topic><topic>Metabolism</topic><topic>Metabolomics</topic><topic>Methylglucosides - metabolism</topic><topic>Nitrogen fixation</topic><topic>Nitrogen-fixing bacteria</topic><topic>Nitrogenation</topic><topic>Phosphoglucose isomerase</topic><topic>Proteome - metabolism</topic><topic>Proteomics</topic><topic>Reductases</topic><topic>Rhizobium leguminosarum</topic><topic>Rhizobium leguminosarum - metabolism</topic><topic>Rhizosphere</topic><topic>Soil bacteria</topic><topic>Soil microorganisms</topic><topic>Soils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jinling</creatorcontrib><creatorcontrib>Epa, Ruwan</creatorcontrib><creatorcontrib>Scott, Nichollas E</creatorcontrib><creatorcontrib>Skoneczny, Dominik</creatorcontrib><creatorcontrib>Sharma, Mahima</creatorcontrib><creatorcontrib>Snow, Alexander J D</creatorcontrib><creatorcontrib>Lingford, James P</creatorcontrib><creatorcontrib>Goddard-Borger, Ethan D</creatorcontrib><creatorcontrib>Davies, Gideon J</creatorcontrib><creatorcontrib>McConville, Malcolm J</creatorcontrib><creatorcontrib>Williams, Spencer J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jinling</au><au>Epa, Ruwan</au><au>Scott, Nichollas E</au><au>Skoneczny, Dominik</au><au>Sharma, Mahima</au><au>Snow, Alexander J D</au><au>Lingford, James P</au><au>Goddard-Borger, Ethan D</au><au>Davies, Gideon J</au><au>McConville, Malcolm J</au><au>Williams, Spencer J</au><au>Master, Emma R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Sulfoglycolytic Entner-Doudoroff Pathway in Rhizobium leguminosarum bv. trifolii SRDI565</atitle><jtitle>Applied and environmental microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2020-07-20</date><risdate>2020</risdate><volume>86</volume><issue>15</issue><issn>0099-2240</issn><eissn>1098-5336</eissn><abstract>Rhizobia are nitrogen-fixing bacteria that engage in symbiotic relationships with plant hosts but can also persist as free-living bacteria in the soil and rhizosphere. Here, we show that free-living SRDI565 can grow on the sulfosugar sulfoquinovose (SQ) or the related glycoside SQ-glycerol using a sulfoglycolytic Entner-Doudoroff (sulfo-ED) pathway, resulting in production of sulfolactate (SL) as the major metabolic end product. Comparative proteomics supports the involvement of a sulfo-ED operon encoding an ABC transporter, sulfo-ED enzymes, and an SL exporter. Consistent with an oligotrophic lifestyle, proteomics data revealed little change in expression of the sulfo-ED proteins during growth on SQ versus mannitol, a result confirmed through biochemical assay of sulfoquinovosidase activity in cell lysates. Metabolomics analysis showed that growth on SQ involves gluconeogenesis to satisfy metabolic requirements for glucose-6-phosphate and fructose-6-phosphate. Metabolomics analysis also revealed the unexpected production of small amounts of sulfofructose and 2,3-dihydroxypropanesulfonate, which are proposed to arise from promiscuous activities of the glycolytic enzyme phosphoglucose isomerase and a nonspecific aldehyde reductase, respectively. The discovery of a rhizobium isolate with the ability to degrade SQ builds our knowledge of how these important symbiotic bacteria persist within soil. Sulfonate sulfur is a major form of organic sulfur in soils but requires biomineralization before it can be utilized by plants. Very little is known about the biochemical processes used to mobilize sulfonate sulfur. We show that a rhizobial isolate from soil, SRDI565, possesses the ability to degrade the abundant phototroph-derived carbohydrate sulfonate SQ through a sulfoglycolytic Entner-Doudoroff pathway. Proteomics and metabolomics demonstrated the utilization of this pathway during growth on SQ and provided evidence for gluconeogenesis. Unexpectedly, off-cycle sulfoglycolytic species were also detected, pointing to the complexity of metabolic processes within cells under conditions of sulfoglycolysis. Thus, rhizobial metabolism of the abundant sulfosugar SQ may contribute to persistence of the bacteria in the soil and to mobilization of sulfur in the pedosphere.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>32444469</pmid><doi>10.1128/aem.00750-20</doi><orcidid>https://orcid.org/0000-0001-6341-4364</orcidid><orcidid>https://orcid.org/0000-0002-7343-776X</orcidid><orcidid>https://orcid.org/0000-0002-8181-9733</orcidid><orcidid>https://orcid.org/0000-0003-2556-8316</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and environmental microbiology, 2020-07, Vol.86 (15)
issn 0099-2240
1098-5336
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7376563
source American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects ABC transporter
Aldehyde reductase
Aldehydes
Bacteria
Bacterial Proteins - metabolism
Entner-Doudoroff pathway
Environmental Microbiology
Fructose-6-phosphate
Gluconeogenesis
Glycerol
Glycerol - metabolism
Glycolysis
Host plants
Lysates
Mannitol
Metabolism
Metabolomics
Methylglucosides - metabolism
Nitrogen fixation
Nitrogen-fixing bacteria
Nitrogenation
Phosphoglucose isomerase
Proteome - metabolism
Proteomics
Reductases
Rhizobium leguminosarum
Rhizobium leguminosarum - metabolism
Rhizosphere
Soil bacteria
Soil microorganisms
Soils
title A Sulfoglycolytic Entner-Doudoroff Pathway in Rhizobium leguminosarum bv. trifolii SRDI565
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Sulfoglycolytic%20Entner-Doudoroff%20Pathway%20in%20Rhizobium%20leguminosarum%20bv.%20trifolii%20SRDI565&rft.jtitle=Applied%20and%20environmental%20microbiology&rft.au=Li,%20Jinling&rft.date=2020-07-20&rft.volume=86&rft.issue=15&rft.issn=0099-2240&rft.eissn=1098-5336&rft_id=info:doi/10.1128/aem.00750-20&rft_dat=%3Cproquest_pubme%3E2430407989%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430407989&rft_id=info:pmid/32444469&rfr_iscdi=true