Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress
Tea plant often suffers from low temperature induced damage during its growth. How to improve the cold resistance of tea plant is an urgent problem to be solved. Nitric oxide (NO), γ-aminobutyric acid (GABA) and proline have been proved that can improve the cold resistance of tea plants, and signal...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-07, Vol.10 (1), p.12240-12240, Article 12240 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12240 |
---|---|
container_issue | 1 |
container_start_page | 12240 |
container_title | Scientific reports |
container_volume | 10 |
creator | Wang, Yuhua Xiong, Fei Nong, Shouhua Liao, Jieren Xing, Anqi Shen, Qiang Ma, Yuanchun Fang, Wanping Zhu, Xujun |
description | Tea plant often suffers from low temperature induced damage during its growth. How to improve the cold resistance of tea plant is an urgent problem to be solved. Nitric oxide (NO), γ-aminobutyric acid (GABA) and proline have been proved that can improve the cold resistance of tea plants, and signal transfer and biosynthesis link between them may enhance their function. NO is an important gas signal material in plant growth, but our understanding of the effects of NO on the GABA shunt, proline and NO biosynthesis are limited. In this study, the tea roots were treated with a NO donor (SNAP), NO scavenger (PTIO), and NO synthase inhibitor (L-NNA). SNAP could improve activities of arginine decarboxylase, ornithine decarboxylase, glutamate decarboxylase, GABA transaminase and Δ1-pyrroline-5-carboxylate synthetase and the expression level of related genes during the treatments. The contents of putrescine and spermidine under SNAP treatment were 45.3% and 37.3% higher compared to control at 24 h, and the spermine content under PTIO treatment were 57.6% lower compare to control at 12 h. Accumulation of proline of SNAP and L-NNA treatments was 52.2% and 43.2% higher than control at 48 h, indicating other pathway of NO biosynthesis in tea roots. In addition, the NO accelerated the consumption of GABA during cold storage. These facts indicate that NO enhanced the cold tolerance of tea, which might regulate the metabolism of the GABA shunt and of proline, associated with NO biosynthesis. |
doi_str_mv | 10.1038/s41598-020-69253-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7376168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426536581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-d4cb81fd73411f571a36d489825b05ac0d93ac17a9fa65f8574a6f8067e99cde3</originalsourceid><addsrcrecordid>eNp9kU1LHTEUhofSUsX6B7oKdGPBsfmeZFO4vVgVhG50HXLzoZGZ5DZnpvT--0av9GthNicn53lfcni77j3BZwQz9Qk4EVr1mOJeaipYv3vVHVLMRU8Zpa__uh90xwAPuB1BNSf6bXfAqNSaKnXYlfMYg5sBlYhymmtyqPxMPqCS0Xwf0MXqy-oUbcu4s1PKAU6RzR5taxlbh1KDgkUnazuFcUwWQXvNkOAjqqU01yX7UJEro0cw1wDwrnsT7Qjh-Lkedbdfz2_Wl_31t4ur9eq6d1ypuffcbRSJfmCckCgGYpn0XGlFxQYL67DXzDoyWB2tFFGJgVsZFZZD0Nr5wI66z3vf7bKZgnchz9WOZlvTZOvOFJvMv5Oc7s1d-WEGNkgiVTM4eTao5fsSYDZTAte2tDmUBQzlVAomhSIN_fAf-lCWmtt6TxQmTA2PFN1TrhaAGuLvzxBsHiM1-0hNi9Q8RWp2TcT2Imhwvgv1j_ULql-Vc6ND</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426013871</pqid></control><display><type>article</type><title>Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Yuhua ; Xiong, Fei ; Nong, Shouhua ; Liao, Jieren ; Xing, Anqi ; Shen, Qiang ; Ma, Yuanchun ; Fang, Wanping ; Zhu, Xujun</creator><creatorcontrib>Wang, Yuhua ; Xiong, Fei ; Nong, Shouhua ; Liao, Jieren ; Xing, Anqi ; Shen, Qiang ; Ma, Yuanchun ; Fang, Wanping ; Zhu, Xujun</creatorcontrib><description>Tea plant often suffers from low temperature induced damage during its growth. How to improve the cold resistance of tea plant is an urgent problem to be solved. Nitric oxide (NO), γ-aminobutyric acid (GABA) and proline have been proved that can improve the cold resistance of tea plants, and signal transfer and biosynthesis link between them may enhance their function. NO is an important gas signal material in plant growth, but our understanding of the effects of NO on the GABA shunt, proline and NO biosynthesis are limited. In this study, the tea roots were treated with a NO donor (SNAP), NO scavenger (PTIO), and NO synthase inhibitor (L-NNA). SNAP could improve activities of arginine decarboxylase, ornithine decarboxylase, glutamate decarboxylase, GABA transaminase and Δ1-pyrroline-5-carboxylate synthetase and the expression level of related genes during the treatments. The contents of putrescine and spermidine under SNAP treatment were 45.3% and 37.3% higher compared to control at 24 h, and the spermine content under PTIO treatment were 57.6% lower compare to control at 12 h. Accumulation of proline of SNAP and L-NNA treatments was 52.2% and 43.2% higher than control at 48 h, indicating other pathway of NO biosynthesis in tea roots. In addition, the NO accelerated the consumption of GABA during cold storage. These facts indicate that NO enhanced the cold tolerance of tea, which might regulate the metabolism of the GABA shunt and of proline, associated with NO biosynthesis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-69253-y</identifier><identifier>PMID: 32699288</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>4-Aminobutyrate transaminase ; 631/449/1659 ; 631/449/1736 ; 631/449/2661 ; Arginine ; Arginine decarboxylase ; Biosynthesis ; Cold ; Cold resistance ; Cold storage ; Cold tolerance ; Glutamate decarboxylase ; Humanities and Social Sciences ; Low temperature ; multidisciplinary ; Nitric oxide ; Nitric-oxide synthase ; Ornithine decarboxylase ; Polyamines ; Proline ; Putrescine ; Roots ; Science ; Science (multidisciplinary) ; Spermidine ; Spermine ; Tea ; Transaminase ; γ-Aminobutyric acid</subject><ispartof>Scientific reports, 2020-07, Vol.10 (1), p.12240-12240, Article 12240</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-d4cb81fd73411f571a36d489825b05ac0d93ac17a9fa65f8574a6f8067e99cde3</citedby><cites>FETCH-LOGICAL-c488t-d4cb81fd73411f571a36d489825b05ac0d93ac17a9fa65f8574a6f8067e99cde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376168/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376168/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids></links><search><creatorcontrib>Wang, Yuhua</creatorcontrib><creatorcontrib>Xiong, Fei</creatorcontrib><creatorcontrib>Nong, Shouhua</creatorcontrib><creatorcontrib>Liao, Jieren</creatorcontrib><creatorcontrib>Xing, Anqi</creatorcontrib><creatorcontrib>Shen, Qiang</creatorcontrib><creatorcontrib>Ma, Yuanchun</creatorcontrib><creatorcontrib>Fang, Wanping</creatorcontrib><creatorcontrib>Zhu, Xujun</creatorcontrib><title>Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Tea plant often suffers from low temperature induced damage during its growth. How to improve the cold resistance of tea plant is an urgent problem to be solved. Nitric oxide (NO), γ-aminobutyric acid (GABA) and proline have been proved that can improve the cold resistance of tea plants, and signal transfer and biosynthesis link between them may enhance their function. NO is an important gas signal material in plant growth, but our understanding of the effects of NO on the GABA shunt, proline and NO biosynthesis are limited. In this study, the tea roots were treated with a NO donor (SNAP), NO scavenger (PTIO), and NO synthase inhibitor (L-NNA). SNAP could improve activities of arginine decarboxylase, ornithine decarboxylase, glutamate decarboxylase, GABA transaminase and Δ1-pyrroline-5-carboxylate synthetase and the expression level of related genes during the treatments. The contents of putrescine and spermidine under SNAP treatment were 45.3% and 37.3% higher compared to control at 24 h, and the spermine content under PTIO treatment were 57.6% lower compare to control at 12 h. Accumulation of proline of SNAP and L-NNA treatments was 52.2% and 43.2% higher than control at 48 h, indicating other pathway of NO biosynthesis in tea roots. In addition, the NO accelerated the consumption of GABA during cold storage. These facts indicate that NO enhanced the cold tolerance of tea, which might regulate the metabolism of the GABA shunt and of proline, associated with NO biosynthesis.</description><subject>4-Aminobutyrate transaminase</subject><subject>631/449/1659</subject><subject>631/449/1736</subject><subject>631/449/2661</subject><subject>Arginine</subject><subject>Arginine decarboxylase</subject><subject>Biosynthesis</subject><subject>Cold</subject><subject>Cold resistance</subject><subject>Cold storage</subject><subject>Cold tolerance</subject><subject>Glutamate decarboxylase</subject><subject>Humanities and Social Sciences</subject><subject>Low temperature</subject><subject>multidisciplinary</subject><subject>Nitric oxide</subject><subject>Nitric-oxide synthase</subject><subject>Ornithine decarboxylase</subject><subject>Polyamines</subject><subject>Proline</subject><subject>Putrescine</subject><subject>Roots</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spermidine</subject><subject>Spermine</subject><subject>Tea</subject><subject>Transaminase</subject><subject>γ-Aminobutyric acid</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LHTEUhofSUsX6B7oKdGPBsfmeZFO4vVgVhG50HXLzoZGZ5DZnpvT--0av9GthNicn53lfcni77j3BZwQz9Qk4EVr1mOJeaipYv3vVHVLMRU8Zpa__uh90xwAPuB1BNSf6bXfAqNSaKnXYlfMYg5sBlYhymmtyqPxMPqCS0Xwf0MXqy-oUbcu4s1PKAU6RzR5taxlbh1KDgkUnazuFcUwWQXvNkOAjqqU01yX7UJEro0cw1wDwrnsT7Qjh-Lkedbdfz2_Wl_31t4ur9eq6d1ypuffcbRSJfmCckCgGYpn0XGlFxQYL67DXzDoyWB2tFFGJgVsZFZZD0Nr5wI66z3vf7bKZgnchz9WOZlvTZOvOFJvMv5Oc7s1d-WEGNkgiVTM4eTao5fsSYDZTAte2tDmUBQzlVAomhSIN_fAf-lCWmtt6TxQmTA2PFN1TrhaAGuLvzxBsHiM1-0hNi9Q8RWp2TcT2Imhwvgv1j_ULql-Vc6ND</recordid><startdate>20200722</startdate><enddate>20200722</enddate><creator>Wang, Yuhua</creator><creator>Xiong, Fei</creator><creator>Nong, Shouhua</creator><creator>Liao, Jieren</creator><creator>Xing, Anqi</creator><creator>Shen, Qiang</creator><creator>Ma, Yuanchun</creator><creator>Fang, Wanping</creator><creator>Zhu, Xujun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200722</creationdate><title>Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress</title><author>Wang, Yuhua ; Xiong, Fei ; Nong, Shouhua ; Liao, Jieren ; Xing, Anqi ; Shen, Qiang ; Ma, Yuanchun ; Fang, Wanping ; Zhu, Xujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-d4cb81fd73411f571a36d489825b05ac0d93ac17a9fa65f8574a6f8067e99cde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>4-Aminobutyrate transaminase</topic><topic>631/449/1659</topic><topic>631/449/1736</topic><topic>631/449/2661</topic><topic>Arginine</topic><topic>Arginine decarboxylase</topic><topic>Biosynthesis</topic><topic>Cold</topic><topic>Cold resistance</topic><topic>Cold storage</topic><topic>Cold tolerance</topic><topic>Glutamate decarboxylase</topic><topic>Humanities and Social Sciences</topic><topic>Low temperature</topic><topic>multidisciplinary</topic><topic>Nitric oxide</topic><topic>Nitric-oxide synthase</topic><topic>Ornithine decarboxylase</topic><topic>Polyamines</topic><topic>Proline</topic><topic>Putrescine</topic><topic>Roots</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spermidine</topic><topic>Spermine</topic><topic>Tea</topic><topic>Transaminase</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuhua</creatorcontrib><creatorcontrib>Xiong, Fei</creatorcontrib><creatorcontrib>Nong, Shouhua</creatorcontrib><creatorcontrib>Liao, Jieren</creatorcontrib><creatorcontrib>Xing, Anqi</creatorcontrib><creatorcontrib>Shen, Qiang</creatorcontrib><creatorcontrib>Ma, Yuanchun</creatorcontrib><creatorcontrib>Fang, Wanping</creatorcontrib><creatorcontrib>Zhu, Xujun</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuhua</au><au>Xiong, Fei</au><au>Nong, Shouhua</au><au>Liao, Jieren</au><au>Xing, Anqi</au><au>Shen, Qiang</au><au>Ma, Yuanchun</au><au>Fang, Wanping</au><au>Zhu, Xujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-07-22</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>12240</spage><epage>12240</epage><pages>12240-12240</pages><artnum>12240</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Tea plant often suffers from low temperature induced damage during its growth. How to improve the cold resistance of tea plant is an urgent problem to be solved. Nitric oxide (NO), γ-aminobutyric acid (GABA) and proline have been proved that can improve the cold resistance of tea plants, and signal transfer and biosynthesis link between them may enhance their function. NO is an important gas signal material in plant growth, but our understanding of the effects of NO on the GABA shunt, proline and NO biosynthesis are limited. In this study, the tea roots were treated with a NO donor (SNAP), NO scavenger (PTIO), and NO synthase inhibitor (L-NNA). SNAP could improve activities of arginine decarboxylase, ornithine decarboxylase, glutamate decarboxylase, GABA transaminase and Δ1-pyrroline-5-carboxylate synthetase and the expression level of related genes during the treatments. The contents of putrescine and spermidine under SNAP treatment were 45.3% and 37.3% higher compared to control at 24 h, and the spermine content under PTIO treatment were 57.6% lower compare to control at 12 h. Accumulation of proline of SNAP and L-NNA treatments was 52.2% and 43.2% higher than control at 48 h, indicating other pathway of NO biosynthesis in tea roots. In addition, the NO accelerated the consumption of GABA during cold storage. These facts indicate that NO enhanced the cold tolerance of tea, which might regulate the metabolism of the GABA shunt and of proline, associated with NO biosynthesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32699288</pmid><doi>10.1038/s41598-020-69253-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-07, Vol.10 (1), p.12240-12240, Article 12240 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7376168 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 4-Aminobutyrate transaminase 631/449/1659 631/449/1736 631/449/2661 Arginine Arginine decarboxylase Biosynthesis Cold Cold resistance Cold storage Cold tolerance Glutamate decarboxylase Humanities and Social Sciences Low temperature multidisciplinary Nitric oxide Nitric-oxide synthase Ornithine decarboxylase Polyamines Proline Putrescine Roots Science Science (multidisciplinary) Spermidine Spermine Tea Transaminase γ-Aminobutyric acid |
title | Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A43%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20nitric%20oxide%20on%20the%20GABA,%20polyamines,%20and%20proline%20in%20tea%20(Camellia%20sinensis)%20roots%20under%20cold%20stress&rft.jtitle=Scientific%20reports&rft.au=Wang,%20Yuhua&rft.date=2020-07-22&rft.volume=10&rft.issue=1&rft.spage=12240&rft.epage=12240&rft.pages=12240-12240&rft.artnum=12240&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-69253-y&rft_dat=%3Cproquest_pubme%3E2426536581%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426013871&rft_id=info:pmid/32699288&rfr_iscdi=true |