Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress

Tea plant often suffers from low temperature induced damage during its growth. How to improve the cold resistance of tea plant is an urgent problem to be solved. Nitric oxide (NO), γ-aminobutyric acid (GABA) and proline have been proved that can improve the cold resistance of tea plants, and signal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-07, Vol.10 (1), p.12240-12240, Article 12240
Hauptverfasser: Wang, Yuhua, Xiong, Fei, Nong, Shouhua, Liao, Jieren, Xing, Anqi, Shen, Qiang, Ma, Yuanchun, Fang, Wanping, Zhu, Xujun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12240
container_issue 1
container_start_page 12240
container_title Scientific reports
container_volume 10
creator Wang, Yuhua
Xiong, Fei
Nong, Shouhua
Liao, Jieren
Xing, Anqi
Shen, Qiang
Ma, Yuanchun
Fang, Wanping
Zhu, Xujun
description Tea plant often suffers from low temperature induced damage during its growth. How to improve the cold resistance of tea plant is an urgent problem to be solved. Nitric oxide (NO), γ-aminobutyric acid (GABA) and proline have been proved that can improve the cold resistance of tea plants, and signal transfer and biosynthesis link between them may enhance their function. NO is an important gas signal material in plant growth, but our understanding of the effects of NO on the GABA shunt, proline and NO biosynthesis are limited. In this study, the tea roots were treated with a NO donor (SNAP), NO scavenger (PTIO), and NO synthase inhibitor (L-NNA). SNAP could improve activities of arginine decarboxylase, ornithine decarboxylase, glutamate decarboxylase, GABA transaminase and Δ1-pyrroline-5-carboxylate synthetase and the expression level of related genes during the treatments. The contents of putrescine and spermidine under SNAP treatment were 45.3% and 37.3% higher compared to control at 24 h, and the spermine content under PTIO treatment were 57.6% lower compare to control at 12 h. Accumulation of proline of SNAP and L-NNA treatments was 52.2% and 43.2% higher than control at 48 h, indicating other pathway of NO biosynthesis in tea roots. In addition, the NO accelerated the consumption of GABA during cold storage. These facts indicate that NO enhanced the cold tolerance of tea, which might regulate the metabolism of the GABA shunt and of proline, associated with NO biosynthesis.
doi_str_mv 10.1038/s41598-020-69253-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7376168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426536581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-d4cb81fd73411f571a36d489825b05ac0d93ac17a9fa65f8574a6f8067e99cde3</originalsourceid><addsrcrecordid>eNp9kU1LHTEUhofSUsX6B7oKdGPBsfmeZFO4vVgVhG50HXLzoZGZ5DZnpvT--0av9GthNicn53lfcni77j3BZwQz9Qk4EVr1mOJeaipYv3vVHVLMRU8Zpa__uh90xwAPuB1BNSf6bXfAqNSaKnXYlfMYg5sBlYhymmtyqPxMPqCS0Xwf0MXqy-oUbcu4s1PKAU6RzR5taxlbh1KDgkUnazuFcUwWQXvNkOAjqqU01yX7UJEro0cw1wDwrnsT7Qjh-Lkedbdfz2_Wl_31t4ur9eq6d1ypuffcbRSJfmCckCgGYpn0XGlFxQYL67DXzDoyWB2tFFGJgVsZFZZD0Nr5wI66z3vf7bKZgnchz9WOZlvTZOvOFJvMv5Oc7s1d-WEGNkgiVTM4eTao5fsSYDZTAte2tDmUBQzlVAomhSIN_fAf-lCWmtt6TxQmTA2PFN1TrhaAGuLvzxBsHiM1-0hNi9Q8RWp2TcT2Imhwvgv1j_ULql-Vc6ND</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426013871</pqid></control><display><type>article</type><title>Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Yuhua ; Xiong, Fei ; Nong, Shouhua ; Liao, Jieren ; Xing, Anqi ; Shen, Qiang ; Ma, Yuanchun ; Fang, Wanping ; Zhu, Xujun</creator><creatorcontrib>Wang, Yuhua ; Xiong, Fei ; Nong, Shouhua ; Liao, Jieren ; Xing, Anqi ; Shen, Qiang ; Ma, Yuanchun ; Fang, Wanping ; Zhu, Xujun</creatorcontrib><description>Tea plant often suffers from low temperature induced damage during its growth. How to improve the cold resistance of tea plant is an urgent problem to be solved. Nitric oxide (NO), γ-aminobutyric acid (GABA) and proline have been proved that can improve the cold resistance of tea plants, and signal transfer and biosynthesis link between them may enhance their function. NO is an important gas signal material in plant growth, but our understanding of the effects of NO on the GABA shunt, proline and NO biosynthesis are limited. In this study, the tea roots were treated with a NO donor (SNAP), NO scavenger (PTIO), and NO synthase inhibitor (L-NNA). SNAP could improve activities of arginine decarboxylase, ornithine decarboxylase, glutamate decarboxylase, GABA transaminase and Δ1-pyrroline-5-carboxylate synthetase and the expression level of related genes during the treatments. The contents of putrescine and spermidine under SNAP treatment were 45.3% and 37.3% higher compared to control at 24 h, and the spermine content under PTIO treatment were 57.6% lower compare to control at 12 h. Accumulation of proline of SNAP and L-NNA treatments was 52.2% and 43.2% higher than control at 48 h, indicating other pathway of NO biosynthesis in tea roots. In addition, the NO accelerated the consumption of GABA during cold storage. These facts indicate that NO enhanced the cold tolerance of tea, which might regulate the metabolism of the GABA shunt and of proline, associated with NO biosynthesis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-69253-y</identifier><identifier>PMID: 32699288</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>4-Aminobutyrate transaminase ; 631/449/1659 ; 631/449/1736 ; 631/449/2661 ; Arginine ; Arginine decarboxylase ; Biosynthesis ; Cold ; Cold resistance ; Cold storage ; Cold tolerance ; Glutamate decarboxylase ; Humanities and Social Sciences ; Low temperature ; multidisciplinary ; Nitric oxide ; Nitric-oxide synthase ; Ornithine decarboxylase ; Polyamines ; Proline ; Putrescine ; Roots ; Science ; Science (multidisciplinary) ; Spermidine ; Spermine ; Tea ; Transaminase ; γ-Aminobutyric acid</subject><ispartof>Scientific reports, 2020-07, Vol.10 (1), p.12240-12240, Article 12240</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-d4cb81fd73411f571a36d489825b05ac0d93ac17a9fa65f8574a6f8067e99cde3</citedby><cites>FETCH-LOGICAL-c488t-d4cb81fd73411f571a36d489825b05ac0d93ac17a9fa65f8574a6f8067e99cde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376168/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376168/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids></links><search><creatorcontrib>Wang, Yuhua</creatorcontrib><creatorcontrib>Xiong, Fei</creatorcontrib><creatorcontrib>Nong, Shouhua</creatorcontrib><creatorcontrib>Liao, Jieren</creatorcontrib><creatorcontrib>Xing, Anqi</creatorcontrib><creatorcontrib>Shen, Qiang</creatorcontrib><creatorcontrib>Ma, Yuanchun</creatorcontrib><creatorcontrib>Fang, Wanping</creatorcontrib><creatorcontrib>Zhu, Xujun</creatorcontrib><title>Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Tea plant often suffers from low temperature induced damage during its growth. How to improve the cold resistance of tea plant is an urgent problem to be solved. Nitric oxide (NO), γ-aminobutyric acid (GABA) and proline have been proved that can improve the cold resistance of tea plants, and signal transfer and biosynthesis link between them may enhance their function. NO is an important gas signal material in plant growth, but our understanding of the effects of NO on the GABA shunt, proline and NO biosynthesis are limited. In this study, the tea roots were treated with a NO donor (SNAP), NO scavenger (PTIO), and NO synthase inhibitor (L-NNA). SNAP could improve activities of arginine decarboxylase, ornithine decarboxylase, glutamate decarboxylase, GABA transaminase and Δ1-pyrroline-5-carboxylate synthetase and the expression level of related genes during the treatments. The contents of putrescine and spermidine under SNAP treatment were 45.3% and 37.3% higher compared to control at 24 h, and the spermine content under PTIO treatment were 57.6% lower compare to control at 12 h. Accumulation of proline of SNAP and L-NNA treatments was 52.2% and 43.2% higher than control at 48 h, indicating other pathway of NO biosynthesis in tea roots. In addition, the NO accelerated the consumption of GABA during cold storage. These facts indicate that NO enhanced the cold tolerance of tea, which might regulate the metabolism of the GABA shunt and of proline, associated with NO biosynthesis.</description><subject>4-Aminobutyrate transaminase</subject><subject>631/449/1659</subject><subject>631/449/1736</subject><subject>631/449/2661</subject><subject>Arginine</subject><subject>Arginine decarboxylase</subject><subject>Biosynthesis</subject><subject>Cold</subject><subject>Cold resistance</subject><subject>Cold storage</subject><subject>Cold tolerance</subject><subject>Glutamate decarboxylase</subject><subject>Humanities and Social Sciences</subject><subject>Low temperature</subject><subject>multidisciplinary</subject><subject>Nitric oxide</subject><subject>Nitric-oxide synthase</subject><subject>Ornithine decarboxylase</subject><subject>Polyamines</subject><subject>Proline</subject><subject>Putrescine</subject><subject>Roots</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spermidine</subject><subject>Spermine</subject><subject>Tea</subject><subject>Transaminase</subject><subject>γ-Aminobutyric acid</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LHTEUhofSUsX6B7oKdGPBsfmeZFO4vVgVhG50HXLzoZGZ5DZnpvT--0av9GthNicn53lfcni77j3BZwQz9Qk4EVr1mOJeaipYv3vVHVLMRU8Zpa__uh90xwAPuB1BNSf6bXfAqNSaKnXYlfMYg5sBlYhymmtyqPxMPqCS0Xwf0MXqy-oUbcu4s1PKAU6RzR5taxlbh1KDgkUnazuFcUwWQXvNkOAjqqU01yX7UJEro0cw1wDwrnsT7Qjh-Lkedbdfz2_Wl_31t4ur9eq6d1ypuffcbRSJfmCckCgGYpn0XGlFxQYL67DXzDoyWB2tFFGJgVsZFZZD0Nr5wI66z3vf7bKZgnchz9WOZlvTZOvOFJvMv5Oc7s1d-WEGNkgiVTM4eTao5fsSYDZTAte2tDmUBQzlVAomhSIN_fAf-lCWmtt6TxQmTA2PFN1TrhaAGuLvzxBsHiM1-0hNi9Q8RWp2TcT2Imhwvgv1j_ULql-Vc6ND</recordid><startdate>20200722</startdate><enddate>20200722</enddate><creator>Wang, Yuhua</creator><creator>Xiong, Fei</creator><creator>Nong, Shouhua</creator><creator>Liao, Jieren</creator><creator>Xing, Anqi</creator><creator>Shen, Qiang</creator><creator>Ma, Yuanchun</creator><creator>Fang, Wanping</creator><creator>Zhu, Xujun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200722</creationdate><title>Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress</title><author>Wang, Yuhua ; Xiong, Fei ; Nong, Shouhua ; Liao, Jieren ; Xing, Anqi ; Shen, Qiang ; Ma, Yuanchun ; Fang, Wanping ; Zhu, Xujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-d4cb81fd73411f571a36d489825b05ac0d93ac17a9fa65f8574a6f8067e99cde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>4-Aminobutyrate transaminase</topic><topic>631/449/1659</topic><topic>631/449/1736</topic><topic>631/449/2661</topic><topic>Arginine</topic><topic>Arginine decarboxylase</topic><topic>Biosynthesis</topic><topic>Cold</topic><topic>Cold resistance</topic><topic>Cold storage</topic><topic>Cold tolerance</topic><topic>Glutamate decarboxylase</topic><topic>Humanities and Social Sciences</topic><topic>Low temperature</topic><topic>multidisciplinary</topic><topic>Nitric oxide</topic><topic>Nitric-oxide synthase</topic><topic>Ornithine decarboxylase</topic><topic>Polyamines</topic><topic>Proline</topic><topic>Putrescine</topic><topic>Roots</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spermidine</topic><topic>Spermine</topic><topic>Tea</topic><topic>Transaminase</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuhua</creatorcontrib><creatorcontrib>Xiong, Fei</creatorcontrib><creatorcontrib>Nong, Shouhua</creatorcontrib><creatorcontrib>Liao, Jieren</creatorcontrib><creatorcontrib>Xing, Anqi</creatorcontrib><creatorcontrib>Shen, Qiang</creatorcontrib><creatorcontrib>Ma, Yuanchun</creatorcontrib><creatorcontrib>Fang, Wanping</creatorcontrib><creatorcontrib>Zhu, Xujun</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuhua</au><au>Xiong, Fei</au><au>Nong, Shouhua</au><au>Liao, Jieren</au><au>Xing, Anqi</au><au>Shen, Qiang</au><au>Ma, Yuanchun</au><au>Fang, Wanping</au><au>Zhu, Xujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-07-22</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>12240</spage><epage>12240</epage><pages>12240-12240</pages><artnum>12240</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Tea plant often suffers from low temperature induced damage during its growth. How to improve the cold resistance of tea plant is an urgent problem to be solved. Nitric oxide (NO), γ-aminobutyric acid (GABA) and proline have been proved that can improve the cold resistance of tea plants, and signal transfer and biosynthesis link between them may enhance their function. NO is an important gas signal material in plant growth, but our understanding of the effects of NO on the GABA shunt, proline and NO biosynthesis are limited. In this study, the tea roots were treated with a NO donor (SNAP), NO scavenger (PTIO), and NO synthase inhibitor (L-NNA). SNAP could improve activities of arginine decarboxylase, ornithine decarboxylase, glutamate decarboxylase, GABA transaminase and Δ1-pyrroline-5-carboxylate synthetase and the expression level of related genes during the treatments. The contents of putrescine and spermidine under SNAP treatment were 45.3% and 37.3% higher compared to control at 24 h, and the spermine content under PTIO treatment were 57.6% lower compare to control at 12 h. Accumulation of proline of SNAP and L-NNA treatments was 52.2% and 43.2% higher than control at 48 h, indicating other pathway of NO biosynthesis in tea roots. In addition, the NO accelerated the consumption of GABA during cold storage. These facts indicate that NO enhanced the cold tolerance of tea, which might regulate the metabolism of the GABA shunt and of proline, associated with NO biosynthesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32699288</pmid><doi>10.1038/s41598-020-69253-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-07, Vol.10 (1), p.12240-12240, Article 12240
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7376168
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 4-Aminobutyrate transaminase
631/449/1659
631/449/1736
631/449/2661
Arginine
Arginine decarboxylase
Biosynthesis
Cold
Cold resistance
Cold storage
Cold tolerance
Glutamate decarboxylase
Humanities and Social Sciences
Low temperature
multidisciplinary
Nitric oxide
Nitric-oxide synthase
Ornithine decarboxylase
Polyamines
Proline
Putrescine
Roots
Science
Science (multidisciplinary)
Spermidine
Spermine
Tea
Transaminase
γ-Aminobutyric acid
title Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A43%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20nitric%20oxide%20on%20the%20GABA,%20polyamines,%20and%20proline%20in%20tea%20(Camellia%20sinensis)%20roots%20under%20cold%20stress&rft.jtitle=Scientific%20reports&rft.au=Wang,%20Yuhua&rft.date=2020-07-22&rft.volume=10&rft.issue=1&rft.spage=12240&rft.epage=12240&rft.pages=12240-12240&rft.artnum=12240&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-69253-y&rft_dat=%3Cproquest_pubme%3E2426536581%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426013871&rft_id=info:pmid/32699288&rfr_iscdi=true