Intercellular Adhesion Stiffness Moderates Cell Decoupling as a Function of Substrate Stiffness

The interplay between cell-cell and cell-substrate interactions is complex yet necessary for the formation and healthy functioning of tissues. The same mechanosensing mechanisms used by the cell to sense its extracellular matrix also play a role in intercellular interactions. We used the discrete el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2020-07, Vol.119 (2), p.243-257
Hauptverfasser: Vargas, Diego A., Heck, Tommy, Smeets, Bart, Ramon, Herman, Parameswaran, Harikrishnan, Van Oosterwyck, Hans
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 257
container_issue 2
container_start_page 243
container_title Biophysical journal
container_volume 119
creator Vargas, Diego A.
Heck, Tommy
Smeets, Bart
Ramon, Herman
Parameswaran, Harikrishnan
Van Oosterwyck, Hans
description The interplay between cell-cell and cell-substrate interactions is complex yet necessary for the formation and healthy functioning of tissues. The same mechanosensing mechanisms used by the cell to sense its extracellular matrix also play a role in intercellular interactions. We used the discrete element method to develop a computational model of a deformable cell that includes subcellular components responsible for mechanosensing. We modeled a three-dimensional cell pair on a patterned (two-dimensional) substrate, a simple laboratory setup to study intercellular interactions. We explicitly modeled focal adhesions and adherens junctions. These mechanosensing adhesions matured, becoming stabilized by force. We also modeled contractile stress fibers that bind the discrete adhesions. The mechanosensing fibers strengthened upon stalling. Traction exerted on the substrate was used to generate traction maps (along the cell-substrate interface). These simulated maps are compared to experimental maps obtained via traction force microscopy. The model recreates the dependence on substrate stiffness of the tractions’ spatial distribution, contractile moment of the cell pair, intercellular force, and number of focal adhesions. It also recreates the phenomenon of cell decoupling, in which cells exert forces separately when substrate stiffness increases. More importantly, the model provides viable molecular explanations for decoupling: mechanosensing mechanisms are responsible for competition between different fiber-adhesion configurations present in the cell pair. The point at which an increasing substrate stiffness becomes as high as that of the cell-cell interface is the tipping point at which configurations that favor cell-substrate adhesion dominate over those favoring cell-cell adhesion. This competition is responsible for decoupling.
doi_str_mv 10.1016/j.bpj.2020.05.036
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7376095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000634952030480X</els_id><sourcerecordid>2420148322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-99b4fda8c28fb0ffdf17a2beff48a0f444164160fd65cd46dd17f8f669f07c023</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvhA3BBPnJJGDuOkwgJqVroH6mIQ-FsOfa49SprL3ZSqd8eR1sKXJBGmsO892Y0P0LeMqgZMPlhV4-HXc2BQw1tDY18RjasFbwC6OVzsgEAWTViaE_Iq5x3AIy3wF6Sk4ZLznrZbYi6CjMmg9O0TDrRM3uH2cdAb2bvXMCc6ddoMekZM90WFf2MJi6HyYdbqjPV9HwJZl4d0dGbZczzqv1jf01eOD1lfPPYT8mP8y_ft5fV9beLq-3ZdWVa1s3VMIzCWd0b3rsRnLOOdZqP6JzoNTghBJOlwFnZGiuktaxzvZNycNAZ4M0p-XTMPSzjHq3BUA6Z1CH5vU4PKmqv_p0Ef6du473qmk7C0JaA948BKf5cMM9q7_P6Fx0wLllxwYGJvuHrLnaUmhRzTuie1jBQKxi1UwWMWsEoaFUBUzzv_r7vyfGbRBF8PAqwfOneY1LZeAwGrU9oZmWj_0_8L7sboP8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420148322</pqid></control><display><type>article</type><title>Intercellular Adhesion Stiffness Moderates Cell Decoupling as a Function of Substrate Stiffness</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>PubMed Central</source><creator>Vargas, Diego A. ; Heck, Tommy ; Smeets, Bart ; Ramon, Herman ; Parameswaran, Harikrishnan ; Van Oosterwyck, Hans</creator><creatorcontrib>Vargas, Diego A. ; Heck, Tommy ; Smeets, Bart ; Ramon, Herman ; Parameswaran, Harikrishnan ; Van Oosterwyck, Hans</creatorcontrib><description>The interplay between cell-cell and cell-substrate interactions is complex yet necessary for the formation and healthy functioning of tissues. The same mechanosensing mechanisms used by the cell to sense its extracellular matrix also play a role in intercellular interactions. We used the discrete element method to develop a computational model of a deformable cell that includes subcellular components responsible for mechanosensing. We modeled a three-dimensional cell pair on a patterned (two-dimensional) substrate, a simple laboratory setup to study intercellular interactions. We explicitly modeled focal adhesions and adherens junctions. These mechanosensing adhesions matured, becoming stabilized by force. We also modeled contractile stress fibers that bind the discrete adhesions. The mechanosensing fibers strengthened upon stalling. Traction exerted on the substrate was used to generate traction maps (along the cell-substrate interface). These simulated maps are compared to experimental maps obtained via traction force microscopy. The model recreates the dependence on substrate stiffness of the tractions’ spatial distribution, contractile moment of the cell pair, intercellular force, and number of focal adhesions. It also recreates the phenomenon of cell decoupling, in which cells exert forces separately when substrate stiffness increases. More importantly, the model provides viable molecular explanations for decoupling: mechanosensing mechanisms are responsible for competition between different fiber-adhesion configurations present in the cell pair. The point at which an increasing substrate stiffness becomes as high as that of the cell-cell interface is the tipping point at which configurations that favor cell-substrate adhesion dominate over those favoring cell-cell adhesion. This competition is responsible for decoupling.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2020.05.036</identifier><identifier>PMID: 32621867</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cell Adhesion ; Extracellular Matrix ; Focal Adhesions ; Mechanical Phenomena ; Mechanotransduction, Cellular ; Stress Fibers</subject><ispartof>Biophysical journal, 2020-07, Vol.119 (2), p.243-257</ispartof><rights>2020 Biophysical Society</rights><rights>Copyright © 2020 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 Biophysical Society. 2020 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-99b4fda8c28fb0ffdf17a2beff48a0f444164160fd65cd46dd17f8f669f07c023</citedby><cites>FETCH-LOGICAL-c517t-99b4fda8c28fb0ffdf17a2beff48a0f444164160fd65cd46dd17f8f669f07c023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376095/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2020.05.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3541,27915,27916,45986,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32621867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vargas, Diego A.</creatorcontrib><creatorcontrib>Heck, Tommy</creatorcontrib><creatorcontrib>Smeets, Bart</creatorcontrib><creatorcontrib>Ramon, Herman</creatorcontrib><creatorcontrib>Parameswaran, Harikrishnan</creatorcontrib><creatorcontrib>Van Oosterwyck, Hans</creatorcontrib><title>Intercellular Adhesion Stiffness Moderates Cell Decoupling as a Function of Substrate Stiffness</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The interplay between cell-cell and cell-substrate interactions is complex yet necessary for the formation and healthy functioning of tissues. The same mechanosensing mechanisms used by the cell to sense its extracellular matrix also play a role in intercellular interactions. We used the discrete element method to develop a computational model of a deformable cell that includes subcellular components responsible for mechanosensing. We modeled a three-dimensional cell pair on a patterned (two-dimensional) substrate, a simple laboratory setup to study intercellular interactions. We explicitly modeled focal adhesions and adherens junctions. These mechanosensing adhesions matured, becoming stabilized by force. We also modeled contractile stress fibers that bind the discrete adhesions. The mechanosensing fibers strengthened upon stalling. Traction exerted on the substrate was used to generate traction maps (along the cell-substrate interface). These simulated maps are compared to experimental maps obtained via traction force microscopy. The model recreates the dependence on substrate stiffness of the tractions’ spatial distribution, contractile moment of the cell pair, intercellular force, and number of focal adhesions. It also recreates the phenomenon of cell decoupling, in which cells exert forces separately when substrate stiffness increases. More importantly, the model provides viable molecular explanations for decoupling: mechanosensing mechanisms are responsible for competition between different fiber-adhesion configurations present in the cell pair. The point at which an increasing substrate stiffness becomes as high as that of the cell-cell interface is the tipping point at which configurations that favor cell-substrate adhesion dominate over those favoring cell-cell adhesion. This competition is responsible for decoupling.</description><subject>Cell Adhesion</subject><subject>Extracellular Matrix</subject><subject>Focal Adhesions</subject><subject>Mechanical Phenomena</subject><subject>Mechanotransduction, Cellular</subject><subject>Stress Fibers</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EokvhA3BBPnJJGDuOkwgJqVroH6mIQ-FsOfa49SprL3ZSqd8eR1sKXJBGmsO892Y0P0LeMqgZMPlhV4-HXc2BQw1tDY18RjasFbwC6OVzsgEAWTViaE_Iq5x3AIy3wF6Sk4ZLznrZbYi6CjMmg9O0TDrRM3uH2cdAb2bvXMCc6ddoMekZM90WFf2MJi6HyYdbqjPV9HwJZl4d0dGbZczzqv1jf01eOD1lfPPYT8mP8y_ft5fV9beLq-3ZdWVa1s3VMIzCWd0b3rsRnLOOdZqP6JzoNTghBJOlwFnZGiuktaxzvZNycNAZ4M0p-XTMPSzjHq3BUA6Z1CH5vU4PKmqv_p0Ef6du473qmk7C0JaA948BKf5cMM9q7_P6Fx0wLllxwYGJvuHrLnaUmhRzTuie1jBQKxi1UwWMWsEoaFUBUzzv_r7vyfGbRBF8PAqwfOneY1LZeAwGrU9oZmWj_0_8L7sboP8</recordid><startdate>20200721</startdate><enddate>20200721</enddate><creator>Vargas, Diego A.</creator><creator>Heck, Tommy</creator><creator>Smeets, Bart</creator><creator>Ramon, Herman</creator><creator>Parameswaran, Harikrishnan</creator><creator>Van Oosterwyck, Hans</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200721</creationdate><title>Intercellular Adhesion Stiffness Moderates Cell Decoupling as a Function of Substrate Stiffness</title><author>Vargas, Diego A. ; Heck, Tommy ; Smeets, Bart ; Ramon, Herman ; Parameswaran, Harikrishnan ; Van Oosterwyck, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-99b4fda8c28fb0ffdf17a2beff48a0f444164160fd65cd46dd17f8f669f07c023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cell Adhesion</topic><topic>Extracellular Matrix</topic><topic>Focal Adhesions</topic><topic>Mechanical Phenomena</topic><topic>Mechanotransduction, Cellular</topic><topic>Stress Fibers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vargas, Diego A.</creatorcontrib><creatorcontrib>Heck, Tommy</creatorcontrib><creatorcontrib>Smeets, Bart</creatorcontrib><creatorcontrib>Ramon, Herman</creatorcontrib><creatorcontrib>Parameswaran, Harikrishnan</creatorcontrib><creatorcontrib>Van Oosterwyck, Hans</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vargas, Diego A.</au><au>Heck, Tommy</au><au>Smeets, Bart</au><au>Ramon, Herman</au><au>Parameswaran, Harikrishnan</au><au>Van Oosterwyck, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intercellular Adhesion Stiffness Moderates Cell Decoupling as a Function of Substrate Stiffness</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2020-07-21</date><risdate>2020</risdate><volume>119</volume><issue>2</issue><spage>243</spage><epage>257</epage><pages>243-257</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The interplay between cell-cell and cell-substrate interactions is complex yet necessary for the formation and healthy functioning of tissues. The same mechanosensing mechanisms used by the cell to sense its extracellular matrix also play a role in intercellular interactions. We used the discrete element method to develop a computational model of a deformable cell that includes subcellular components responsible for mechanosensing. We modeled a three-dimensional cell pair on a patterned (two-dimensional) substrate, a simple laboratory setup to study intercellular interactions. We explicitly modeled focal adhesions and adherens junctions. These mechanosensing adhesions matured, becoming stabilized by force. We also modeled contractile stress fibers that bind the discrete adhesions. The mechanosensing fibers strengthened upon stalling. Traction exerted on the substrate was used to generate traction maps (along the cell-substrate interface). These simulated maps are compared to experimental maps obtained via traction force microscopy. The model recreates the dependence on substrate stiffness of the tractions’ spatial distribution, contractile moment of the cell pair, intercellular force, and number of focal adhesions. It also recreates the phenomenon of cell decoupling, in which cells exert forces separately when substrate stiffness increases. More importantly, the model provides viable molecular explanations for decoupling: mechanosensing mechanisms are responsible for competition between different fiber-adhesion configurations present in the cell pair. The point at which an increasing substrate stiffness becomes as high as that of the cell-cell interface is the tipping point at which configurations that favor cell-substrate adhesion dominate over those favoring cell-cell adhesion. This competition is responsible for decoupling.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32621867</pmid><doi>10.1016/j.bpj.2020.05.036</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2020-07, Vol.119 (2), p.243-257
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7376095
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); PubMed Central
subjects Cell Adhesion
Extracellular Matrix
Focal Adhesions
Mechanical Phenomena
Mechanotransduction, Cellular
Stress Fibers
title Intercellular Adhesion Stiffness Moderates Cell Decoupling as a Function of Substrate Stiffness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intercellular%20Adhesion%20Stiffness%20Moderates%20Cell%20Decoupling%20as%20a%20Function%20of%20Substrate%20Stiffness&rft.jtitle=Biophysical%20journal&rft.au=Vargas,%20Diego%20A.&rft.date=2020-07-21&rft.volume=119&rft.issue=2&rft.spage=243&rft.epage=257&rft.pages=243-257&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2020.05.036&rft_dat=%3Cproquest_pubme%3E2420148322%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420148322&rft_id=info:pmid/32621867&rft_els_id=S000634952030480X&rfr_iscdi=true