Several ways one goal—methanogenesis from unconventional substrates
Methane is the second most important greenhouse gas on earth. It is produced by methanogenic archaea, which play an important role in the global carbon cycle. Three main methanogenesis pathways are known: in the hydrogenotrophic pathway H 2 and carbon dioxide are used for methane production, whereas...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2020-08, Vol.104 (16), p.6839-6854 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6854 |
---|---|
container_issue | 16 |
container_start_page | 6839 |
container_title | Applied microbiology and biotechnology |
container_volume | 104 |
creator | Kurth, Julia M. Op den Camp, Huub J. M. Welte, Cornelia U. |
description | Methane is the second most important greenhouse gas on earth. It is produced by methanogenic archaea, which play an important role in the global carbon cycle. Three main methanogenesis pathways are known: in the hydrogenotrophic pathway H
2
and carbon dioxide are used for methane production, whereas in the methylotrophic pathway small methylated carbon compounds like methanol and methylated amines are used. In the aceticlastic pathway, acetate is disproportionated to methane and carbon dioxide. However, next to these conventional substrates, further methanogenic substrates and pathways have been discovered. Several phylogenetically distinct methanogenic lineages (
Methanosphaera
,
Methanimicrococcus
,
Methanomassiliicoccus
,
Methanonatronarchaeum
) have evolved hydrogen-dependent methylotrophic methanogenesis without the ability to perform either hydrogenotrophic or methylotrophic methanogenesis. Genome analysis of the deep branching
Methanonatronarchaeum
revealed an interesting membrane-bound hydrogenase complex affiliated with the hardly described class 4 g of multisubunit hydrogenases possibly providing reducing equivalents for anabolism. Furthermore, methylated sulfur compounds such as methanethiol, dimethyl sulfide, and methylmercaptopropionate were described to be converted into adapted methylotrophic methanogenesis pathways of
Methanosarcinales
strains. Moreover, recently it has been shown that the methanogen
Methermicoccus shengliensis
can use methoxylated aromatic compounds in methanogenesis. Also, tertiary amines like choline (
N
,
N
,
N
-trimethylethanolamine) or betaine (
N
,
N
,
N
-trimethylglycine) have been described as substrates for methane production in
Methanococcoides
and
Methanolobus
strains. This review article will provide in-depth information on genome-guided metabolic reconstructions, physiology, and biochemistry of these unusual methanogenesis pathways.
Key points
•
Newly discovered methanogenic substrates and pathways are reviewed for the first time.
• The review provides an in-depth analysis of unusual methanogenesis pathways.
• The hydrogenase complex of the deep branching Methanonatronarchaeum is analyzed. |
doi_str_mv | 10.1007/s00253-020-10724-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7374477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A630201105</galeid><sourcerecordid>A630201105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c678t-ee4806a968271ee69129037514c1c2344a21ec8225f8b7a38630c520d28378be3</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhi0EokvhBTigSFzgkDIeO7FzQaqqFipVQqJwtrzeSZoqsYudLPTGQ_QJeRK8bGlZhJAPljzf_3vm1zD2nMMBB1BvEgBWogSEkoNCWaoHbMGlwBJqLh-yBXBVlapq9B57ktIlAEdd14_ZnsBKolS4YMfntKZoh-KrvU5F8FR0wQ4_vt-MNF1YHzrylPpUtDGMxexd8GvyUx98lqR5maZoJ0pP2aPWDome3d777PPJ8aej9-XZh3enR4dnpauVnkoiqaG2Ta1RcaK64diAUBWXjjsUUlrk5DRi1eqlskLXAlyFsEItlF6S2Gdvt75X83Kklcut5N7NVexHG69NsL3Zrfj-wnRhbZRQUiqVDV7dGsTwZaY0mbFPjobBegpzMii5BGga4Bl9-Rd6GeaY595QWClUshb3VGcHMr1vQ_7XbUzNYe4egXOoMnXwDyqfFY19zpTaPr_vCF7vCDIz0beps3NK5vT84y6LW9bFkFKk9i4PDmazKGa7KCYLzK9FMZsgXvyZ5J3k92ZkQGyBlEu-o3g__n9sfwKJ4Ma1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425727463</pqid></control><display><type>article</type><title>Several ways one goal—methanogenesis from unconventional substrates</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kurth, Julia M. ; Op den Camp, Huub J. M. ; Welte, Cornelia U.</creator><creatorcontrib>Kurth, Julia M. ; Op den Camp, Huub J. M. ; Welte, Cornelia U.</creatorcontrib><description>Methane is the second most important greenhouse gas on earth. It is produced by methanogenic archaea, which play an important role in the global carbon cycle. Three main methanogenesis pathways are known: in the hydrogenotrophic pathway H
2
and carbon dioxide are used for methane production, whereas in the methylotrophic pathway small methylated carbon compounds like methanol and methylated amines are used. In the aceticlastic pathway, acetate is disproportionated to methane and carbon dioxide. However, next to these conventional substrates, further methanogenic substrates and pathways have been discovered. Several phylogenetically distinct methanogenic lineages (
Methanosphaera
,
Methanimicrococcus
,
Methanomassiliicoccus
,
Methanonatronarchaeum
) have evolved hydrogen-dependent methylotrophic methanogenesis without the ability to perform either hydrogenotrophic or methylotrophic methanogenesis. Genome analysis of the deep branching
Methanonatronarchaeum
revealed an interesting membrane-bound hydrogenase complex affiliated with the hardly described class 4 g of multisubunit hydrogenases possibly providing reducing equivalents for anabolism. Furthermore, methylated sulfur compounds such as methanethiol, dimethyl sulfide, and methylmercaptopropionate were described to be converted into adapted methylotrophic methanogenesis pathways of
Methanosarcinales
strains. Moreover, recently it has been shown that the methanogen
Methermicoccus shengliensis
can use methoxylated aromatic compounds in methanogenesis. Also, tertiary amines like choline (
N
,
N
,
N
-trimethylethanolamine) or betaine (
N
,
N
,
N
-trimethylglycine) have been described as substrates for methane production in
Methanococcoides
and
Methanolobus
strains. This review article will provide in-depth information on genome-guided metabolic reconstructions, physiology, and biochemistry of these unusual methanogenesis pathways.
Key points
•
Newly discovered methanogenic substrates and pathways are reviewed for the first time.
• The review provides an in-depth analysis of unusual methanogenesis pathways.
• The hydrogenase complex of the deep branching Methanonatronarchaeum is analyzed.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-020-10724-7</identifier><identifier>PMID: 32542472</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetates - metabolism ; Acetic acid ; Air pollution ; Amines ; Analysis ; Archaea ; Aromatic compounds ; Betaine ; Biomedical and Life Sciences ; Biosynthetic Pathways ; Biotechnology ; Carbon ; Carbon compounds ; Carbon cycle ; Carbon cycle (Biogeochemistry) ; Carbon dioxide ; Carbon Dioxide - metabolism ; Choline ; Dimethyl sulfide ; Euryarchaeota - classification ; Euryarchaeota - genetics ; Euryarchaeota - metabolism ; Gases ; Genome, Archaeal ; Genomes ; Genomics ; Greenhouse effect ; Greenhouse gases ; Hydrogen - metabolism ; Hydrogenase ; Hydrogenase - genetics ; Hydrogenase - metabolism ; Life Sciences ; Methane ; Methane - metabolism ; Methanethiol ; Methanogenesis ; Methanogenic archaea ; Methanol ; Microbial Genetics and Genomics ; Microbiology ; Mini-Review ; Phylogeny ; Substrate Specificity ; Substrates ; Sulfur ; Sulfur compounds</subject><ispartof>Applied microbiology and biotechnology, 2020-08, Vol.104 (16), p.6839-6854</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c678t-ee4806a968271ee69129037514c1c2344a21ec8225f8b7a38630c520d28378be3</citedby><cites>FETCH-LOGICAL-c678t-ee4806a968271ee69129037514c1c2344a21ec8225f8b7a38630c520d28378be3</cites><orcidid>0000-0003-1990-9030 ; 0000-0002-1221-1230 ; 0000-0002-1568-8878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-020-10724-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-020-10724-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32542472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurth, Julia M.</creatorcontrib><creatorcontrib>Op den Camp, Huub J. M.</creatorcontrib><creatorcontrib>Welte, Cornelia U.</creatorcontrib><title>Several ways one goal—methanogenesis from unconventional substrates</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Methane is the second most important greenhouse gas on earth. It is produced by methanogenic archaea, which play an important role in the global carbon cycle. Three main methanogenesis pathways are known: in the hydrogenotrophic pathway H
2
and carbon dioxide are used for methane production, whereas in the methylotrophic pathway small methylated carbon compounds like methanol and methylated amines are used. In the aceticlastic pathway, acetate is disproportionated to methane and carbon dioxide. However, next to these conventional substrates, further methanogenic substrates and pathways have been discovered. Several phylogenetically distinct methanogenic lineages (
Methanosphaera
,
Methanimicrococcus
,
Methanomassiliicoccus
,
Methanonatronarchaeum
) have evolved hydrogen-dependent methylotrophic methanogenesis without the ability to perform either hydrogenotrophic or methylotrophic methanogenesis. Genome analysis of the deep branching
Methanonatronarchaeum
revealed an interesting membrane-bound hydrogenase complex affiliated with the hardly described class 4 g of multisubunit hydrogenases possibly providing reducing equivalents for anabolism. Furthermore, methylated sulfur compounds such as methanethiol, dimethyl sulfide, and methylmercaptopropionate were described to be converted into adapted methylotrophic methanogenesis pathways of
Methanosarcinales
strains. Moreover, recently it has been shown that the methanogen
Methermicoccus shengliensis
can use methoxylated aromatic compounds in methanogenesis. Also, tertiary amines like choline (
N
,
N
,
N
-trimethylethanolamine) or betaine (
N
,
N
,
N
-trimethylglycine) have been described as substrates for methane production in
Methanococcoides
and
Methanolobus
strains. This review article will provide in-depth information on genome-guided metabolic reconstructions, physiology, and biochemistry of these unusual methanogenesis pathways.
Key points
•
Newly discovered methanogenic substrates and pathways are reviewed for the first time.
• The review provides an in-depth analysis of unusual methanogenesis pathways.
• The hydrogenase complex of the deep branching Methanonatronarchaeum is analyzed.</description><subject>Acetates - metabolism</subject><subject>Acetic acid</subject><subject>Air pollution</subject><subject>Amines</subject><subject>Analysis</subject><subject>Archaea</subject><subject>Aromatic compounds</subject><subject>Betaine</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthetic Pathways</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Carbon compounds</subject><subject>Carbon cycle</subject><subject>Carbon cycle (Biogeochemistry)</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Choline</subject><subject>Dimethyl sulfide</subject><subject>Euryarchaeota - classification</subject><subject>Euryarchaeota - genetics</subject><subject>Euryarchaeota - metabolism</subject><subject>Gases</subject><subject>Genome, Archaeal</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Hydrogen - metabolism</subject><subject>Hydrogenase</subject><subject>Hydrogenase - genetics</subject><subject>Hydrogenase - metabolism</subject><subject>Life Sciences</subject><subject>Methane</subject><subject>Methane - metabolism</subject><subject>Methanethiol</subject><subject>Methanogenesis</subject><subject>Methanogenic archaea</subject><subject>Methanol</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mini-Review</subject><subject>Phylogeny</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Sulfur</subject><subject>Sulfur compounds</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9ksFu1DAQhi0EokvhBTigSFzgkDIeO7FzQaqqFipVQqJwtrzeSZoqsYudLPTGQ_QJeRK8bGlZhJAPljzf_3vm1zD2nMMBB1BvEgBWogSEkoNCWaoHbMGlwBJqLh-yBXBVlapq9B57ktIlAEdd14_ZnsBKolS4YMfntKZoh-KrvU5F8FR0wQ4_vt-MNF1YHzrylPpUtDGMxexd8GvyUx98lqR5maZoJ0pP2aPWDome3d777PPJ8aej9-XZh3enR4dnpauVnkoiqaG2Ta1RcaK64diAUBWXjjsUUlrk5DRi1eqlskLXAlyFsEItlF6S2Gdvt75X83Kklcut5N7NVexHG69NsL3Zrfj-wnRhbZRQUiqVDV7dGsTwZaY0mbFPjobBegpzMii5BGga4Bl9-Rd6GeaY595QWClUshb3VGcHMr1vQ_7XbUzNYe4egXOoMnXwDyqfFY19zpTaPr_vCF7vCDIz0beps3NK5vT84y6LW9bFkFKk9i4PDmazKGa7KCYLzK9FMZsgXvyZ5J3k92ZkQGyBlEu-o3g__n9sfwKJ4Ma1</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Kurth, Julia M.</creator><creator>Op den Camp, Huub J. M.</creator><creator>Welte, Cornelia U.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1990-9030</orcidid><orcidid>https://orcid.org/0000-0002-1221-1230</orcidid><orcidid>https://orcid.org/0000-0002-1568-8878</orcidid></search><sort><creationdate>20200801</creationdate><title>Several ways one goal—methanogenesis from unconventional substrates</title><author>Kurth, Julia M. ; Op den Camp, Huub J. M. ; Welte, Cornelia U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c678t-ee4806a968271ee69129037514c1c2344a21ec8225f8b7a38630c520d28378be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetates - metabolism</topic><topic>Acetic acid</topic><topic>Air pollution</topic><topic>Amines</topic><topic>Analysis</topic><topic>Archaea</topic><topic>Aromatic compounds</topic><topic>Betaine</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthetic Pathways</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Carbon compounds</topic><topic>Carbon cycle</topic><topic>Carbon cycle (Biogeochemistry)</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Choline</topic><topic>Dimethyl sulfide</topic><topic>Euryarchaeota - classification</topic><topic>Euryarchaeota - genetics</topic><topic>Euryarchaeota - metabolism</topic><topic>Gases</topic><topic>Genome, Archaeal</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Hydrogen - metabolism</topic><topic>Hydrogenase</topic><topic>Hydrogenase - genetics</topic><topic>Hydrogenase - metabolism</topic><topic>Life Sciences</topic><topic>Methane</topic><topic>Methane - metabolism</topic><topic>Methanethiol</topic><topic>Methanogenesis</topic><topic>Methanogenic archaea</topic><topic>Methanol</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mini-Review</topic><topic>Phylogeny</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Sulfur</topic><topic>Sulfur compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurth, Julia M.</creatorcontrib><creatorcontrib>Op den Camp, Huub J. M.</creatorcontrib><creatorcontrib>Welte, Cornelia U.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurth, Julia M.</au><au>Op den Camp, Huub J. M.</au><au>Welte, Cornelia U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Several ways one goal—methanogenesis from unconventional substrates</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>104</volume><issue>16</issue><spage>6839</spage><epage>6854</epage><pages>6839-6854</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Methane is the second most important greenhouse gas on earth. It is produced by methanogenic archaea, which play an important role in the global carbon cycle. Three main methanogenesis pathways are known: in the hydrogenotrophic pathway H
2
and carbon dioxide are used for methane production, whereas in the methylotrophic pathway small methylated carbon compounds like methanol and methylated amines are used. In the aceticlastic pathway, acetate is disproportionated to methane and carbon dioxide. However, next to these conventional substrates, further methanogenic substrates and pathways have been discovered. Several phylogenetically distinct methanogenic lineages (
Methanosphaera
,
Methanimicrococcus
,
Methanomassiliicoccus
,
Methanonatronarchaeum
) have evolved hydrogen-dependent methylotrophic methanogenesis without the ability to perform either hydrogenotrophic or methylotrophic methanogenesis. Genome analysis of the deep branching
Methanonatronarchaeum
revealed an interesting membrane-bound hydrogenase complex affiliated with the hardly described class 4 g of multisubunit hydrogenases possibly providing reducing equivalents for anabolism. Furthermore, methylated sulfur compounds such as methanethiol, dimethyl sulfide, and methylmercaptopropionate were described to be converted into adapted methylotrophic methanogenesis pathways of
Methanosarcinales
strains. Moreover, recently it has been shown that the methanogen
Methermicoccus shengliensis
can use methoxylated aromatic compounds in methanogenesis. Also, tertiary amines like choline (
N
,
N
,
N
-trimethylethanolamine) or betaine (
N
,
N
,
N
-trimethylglycine) have been described as substrates for methane production in
Methanococcoides
and
Methanolobus
strains. This review article will provide in-depth information on genome-guided metabolic reconstructions, physiology, and biochemistry of these unusual methanogenesis pathways.
Key points
•
Newly discovered methanogenic substrates and pathways are reviewed for the first time.
• The review provides an in-depth analysis of unusual methanogenesis pathways.
• The hydrogenase complex of the deep branching Methanonatronarchaeum is analyzed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32542472</pmid><doi>10.1007/s00253-020-10724-7</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1990-9030</orcidid><orcidid>https://orcid.org/0000-0002-1221-1230</orcidid><orcidid>https://orcid.org/0000-0002-1568-8878</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2020-08, Vol.104 (16), p.6839-6854 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7374477 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Acetates - metabolism Acetic acid Air pollution Amines Analysis Archaea Aromatic compounds Betaine Biomedical and Life Sciences Biosynthetic Pathways Biotechnology Carbon Carbon compounds Carbon cycle Carbon cycle (Biogeochemistry) Carbon dioxide Carbon Dioxide - metabolism Choline Dimethyl sulfide Euryarchaeota - classification Euryarchaeota - genetics Euryarchaeota - metabolism Gases Genome, Archaeal Genomes Genomics Greenhouse effect Greenhouse gases Hydrogen - metabolism Hydrogenase Hydrogenase - genetics Hydrogenase - metabolism Life Sciences Methane Methane - metabolism Methanethiol Methanogenesis Methanogenic archaea Methanol Microbial Genetics and Genomics Microbiology Mini-Review Phylogeny Substrate Specificity Substrates Sulfur Sulfur compounds |
title | Several ways one goal—methanogenesis from unconventional substrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A55%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Several%20ways%20one%20goal%E2%80%94methanogenesis%20from%20unconventional%20substrates&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Kurth,%20Julia%20M.&rft.date=2020-08-01&rft.volume=104&rft.issue=16&rft.spage=6839&rft.epage=6854&rft.pages=6839-6854&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-020-10724-7&rft_dat=%3Cgale_pubme%3EA630201105%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425727463&rft_id=info:pmid/32542472&rft_galeid=A630201105&rfr_iscdi=true |