Several ways one goal—methanogenesis from unconventional substrates

Methane is the second most important greenhouse gas on earth. It is produced by methanogenic archaea, which play an important role in the global carbon cycle. Three main methanogenesis pathways are known: in the hydrogenotrophic pathway H 2 and carbon dioxide are used for methane production, whereas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2020-08, Vol.104 (16), p.6839-6854
Hauptverfasser: Kurth, Julia M., Op den Camp, Huub J. M., Welte, Cornelia U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6854
container_issue 16
container_start_page 6839
container_title Applied microbiology and biotechnology
container_volume 104
creator Kurth, Julia M.
Op den Camp, Huub J. M.
Welte, Cornelia U.
description Methane is the second most important greenhouse gas on earth. It is produced by methanogenic archaea, which play an important role in the global carbon cycle. Three main methanogenesis pathways are known: in the hydrogenotrophic pathway H 2 and carbon dioxide are used for methane production, whereas in the methylotrophic pathway small methylated carbon compounds like methanol and methylated amines are used. In the aceticlastic pathway, acetate is disproportionated to methane and carbon dioxide. However, next to these conventional substrates, further methanogenic substrates and pathways have been discovered. Several phylogenetically distinct methanogenic lineages ( Methanosphaera , Methanimicrococcus , Methanomassiliicoccus , Methanonatronarchaeum ) have evolved hydrogen-dependent methylotrophic methanogenesis without the ability to perform either hydrogenotrophic or methylotrophic methanogenesis. Genome analysis of the deep branching Methanonatronarchaeum revealed an interesting membrane-bound hydrogenase complex affiliated with the hardly described class 4 g of multisubunit hydrogenases possibly providing reducing equivalents for anabolism. Furthermore, methylated sulfur compounds such as methanethiol, dimethyl sulfide, and methylmercaptopropionate were described to be converted into adapted methylotrophic methanogenesis pathways of Methanosarcinales strains. Moreover, recently it has been shown that the methanogen Methermicoccus shengliensis can use methoxylated aromatic compounds in methanogenesis. Also, tertiary amines like choline ( N , N , N -trimethylethanolamine) or betaine ( N , N , N -trimethylglycine) have been described as substrates for methane production in Methanococcoides and Methanolobus strains. This review article will provide in-depth information on genome-guided metabolic reconstructions, physiology, and biochemistry of these unusual methanogenesis pathways. Key points • Newly discovered methanogenic substrates and pathways are reviewed for the first time. • The review provides an in-depth analysis of unusual methanogenesis pathways. • The hydrogenase complex of the deep branching Methanonatronarchaeum is analyzed.
doi_str_mv 10.1007/s00253-020-10724-7
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7374477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A630201105</galeid><sourcerecordid>A630201105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c678t-ee4806a968271ee69129037514c1c2344a21ec8225f8b7a38630c520d28378be3</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhi0EokvhBTigSFzgkDIeO7FzQaqqFipVQqJwtrzeSZoqsYudLPTGQ_QJeRK8bGlZhJAPljzf_3vm1zD2nMMBB1BvEgBWogSEkoNCWaoHbMGlwBJqLh-yBXBVlapq9B57ktIlAEdd14_ZnsBKolS4YMfntKZoh-KrvU5F8FR0wQ4_vt-MNF1YHzrylPpUtDGMxexd8GvyUx98lqR5maZoJ0pP2aPWDome3d777PPJ8aej9-XZh3enR4dnpauVnkoiqaG2Ta1RcaK64diAUBWXjjsUUlrk5DRi1eqlskLXAlyFsEItlF6S2Gdvt75X83Kklcut5N7NVexHG69NsL3Zrfj-wnRhbZRQUiqVDV7dGsTwZaY0mbFPjobBegpzMii5BGga4Bl9-Rd6GeaY595QWClUshb3VGcHMr1vQ_7XbUzNYe4egXOoMnXwDyqfFY19zpTaPr_vCF7vCDIz0beps3NK5vT84y6LW9bFkFKk9i4PDmazKGa7KCYLzK9FMZsgXvyZ5J3k92ZkQGyBlEu-o3g__n9sfwKJ4Ma1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425727463</pqid></control><display><type>article</type><title>Several ways one goal—methanogenesis from unconventional substrates</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kurth, Julia M. ; Op den Camp, Huub J. M. ; Welte, Cornelia U.</creator><creatorcontrib>Kurth, Julia M. ; Op den Camp, Huub J. M. ; Welte, Cornelia U.</creatorcontrib><description>Methane is the second most important greenhouse gas on earth. It is produced by methanogenic archaea, which play an important role in the global carbon cycle. Three main methanogenesis pathways are known: in the hydrogenotrophic pathway H 2 and carbon dioxide are used for methane production, whereas in the methylotrophic pathway small methylated carbon compounds like methanol and methylated amines are used. In the aceticlastic pathway, acetate is disproportionated to methane and carbon dioxide. However, next to these conventional substrates, further methanogenic substrates and pathways have been discovered. Several phylogenetically distinct methanogenic lineages ( Methanosphaera , Methanimicrococcus , Methanomassiliicoccus , Methanonatronarchaeum ) have evolved hydrogen-dependent methylotrophic methanogenesis without the ability to perform either hydrogenotrophic or methylotrophic methanogenesis. Genome analysis of the deep branching Methanonatronarchaeum revealed an interesting membrane-bound hydrogenase complex affiliated with the hardly described class 4 g of multisubunit hydrogenases possibly providing reducing equivalents for anabolism. Furthermore, methylated sulfur compounds such as methanethiol, dimethyl sulfide, and methylmercaptopropionate were described to be converted into adapted methylotrophic methanogenesis pathways of Methanosarcinales strains. Moreover, recently it has been shown that the methanogen Methermicoccus shengliensis can use methoxylated aromatic compounds in methanogenesis. Also, tertiary amines like choline ( N , N , N -trimethylethanolamine) or betaine ( N , N , N -trimethylglycine) have been described as substrates for methane production in Methanococcoides and Methanolobus strains. This review article will provide in-depth information on genome-guided metabolic reconstructions, physiology, and biochemistry of these unusual methanogenesis pathways. Key points • Newly discovered methanogenic substrates and pathways are reviewed for the first time. • The review provides an in-depth analysis of unusual methanogenesis pathways. • The hydrogenase complex of the deep branching Methanonatronarchaeum is analyzed.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-020-10724-7</identifier><identifier>PMID: 32542472</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetates - metabolism ; Acetic acid ; Air pollution ; Amines ; Analysis ; Archaea ; Aromatic compounds ; Betaine ; Biomedical and Life Sciences ; Biosynthetic Pathways ; Biotechnology ; Carbon ; Carbon compounds ; Carbon cycle ; Carbon cycle (Biogeochemistry) ; Carbon dioxide ; Carbon Dioxide - metabolism ; Choline ; Dimethyl sulfide ; Euryarchaeota - classification ; Euryarchaeota - genetics ; Euryarchaeota - metabolism ; Gases ; Genome, Archaeal ; Genomes ; Genomics ; Greenhouse effect ; Greenhouse gases ; Hydrogen - metabolism ; Hydrogenase ; Hydrogenase - genetics ; Hydrogenase - metabolism ; Life Sciences ; Methane ; Methane - metabolism ; Methanethiol ; Methanogenesis ; Methanogenic archaea ; Methanol ; Microbial Genetics and Genomics ; Microbiology ; Mini-Review ; Phylogeny ; Substrate Specificity ; Substrates ; Sulfur ; Sulfur compounds</subject><ispartof>Applied microbiology and biotechnology, 2020-08, Vol.104 (16), p.6839-6854</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c678t-ee4806a968271ee69129037514c1c2344a21ec8225f8b7a38630c520d28378be3</citedby><cites>FETCH-LOGICAL-c678t-ee4806a968271ee69129037514c1c2344a21ec8225f8b7a38630c520d28378be3</cites><orcidid>0000-0003-1990-9030 ; 0000-0002-1221-1230 ; 0000-0002-1568-8878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-020-10724-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-020-10724-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32542472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurth, Julia M.</creatorcontrib><creatorcontrib>Op den Camp, Huub J. M.</creatorcontrib><creatorcontrib>Welte, Cornelia U.</creatorcontrib><title>Several ways one goal—methanogenesis from unconventional substrates</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Methane is the second most important greenhouse gas on earth. It is produced by methanogenic archaea, which play an important role in the global carbon cycle. Three main methanogenesis pathways are known: in the hydrogenotrophic pathway H 2 and carbon dioxide are used for methane production, whereas in the methylotrophic pathway small methylated carbon compounds like methanol and methylated amines are used. In the aceticlastic pathway, acetate is disproportionated to methane and carbon dioxide. However, next to these conventional substrates, further methanogenic substrates and pathways have been discovered. Several phylogenetically distinct methanogenic lineages ( Methanosphaera , Methanimicrococcus , Methanomassiliicoccus , Methanonatronarchaeum ) have evolved hydrogen-dependent methylotrophic methanogenesis without the ability to perform either hydrogenotrophic or methylotrophic methanogenesis. Genome analysis of the deep branching Methanonatronarchaeum revealed an interesting membrane-bound hydrogenase complex affiliated with the hardly described class 4 g of multisubunit hydrogenases possibly providing reducing equivalents for anabolism. Furthermore, methylated sulfur compounds such as methanethiol, dimethyl sulfide, and methylmercaptopropionate were described to be converted into adapted methylotrophic methanogenesis pathways of Methanosarcinales strains. Moreover, recently it has been shown that the methanogen Methermicoccus shengliensis can use methoxylated aromatic compounds in methanogenesis. Also, tertiary amines like choline ( N , N , N -trimethylethanolamine) or betaine ( N , N , N -trimethylglycine) have been described as substrates for methane production in Methanococcoides and Methanolobus strains. This review article will provide in-depth information on genome-guided metabolic reconstructions, physiology, and biochemistry of these unusual methanogenesis pathways. Key points • Newly discovered methanogenic substrates and pathways are reviewed for the first time. • The review provides an in-depth analysis of unusual methanogenesis pathways. • The hydrogenase complex of the deep branching Methanonatronarchaeum is analyzed.</description><subject>Acetates - metabolism</subject><subject>Acetic acid</subject><subject>Air pollution</subject><subject>Amines</subject><subject>Analysis</subject><subject>Archaea</subject><subject>Aromatic compounds</subject><subject>Betaine</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthetic Pathways</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Carbon compounds</subject><subject>Carbon cycle</subject><subject>Carbon cycle (Biogeochemistry)</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Choline</subject><subject>Dimethyl sulfide</subject><subject>Euryarchaeota - classification</subject><subject>Euryarchaeota - genetics</subject><subject>Euryarchaeota - metabolism</subject><subject>Gases</subject><subject>Genome, Archaeal</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Hydrogen - metabolism</subject><subject>Hydrogenase</subject><subject>Hydrogenase - genetics</subject><subject>Hydrogenase - metabolism</subject><subject>Life Sciences</subject><subject>Methane</subject><subject>Methane - metabolism</subject><subject>Methanethiol</subject><subject>Methanogenesis</subject><subject>Methanogenic archaea</subject><subject>Methanol</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mini-Review</subject><subject>Phylogeny</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Sulfur</subject><subject>Sulfur compounds</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9ksFu1DAQhi0EokvhBTigSFzgkDIeO7FzQaqqFipVQqJwtrzeSZoqsYudLPTGQ_QJeRK8bGlZhJAPljzf_3vm1zD2nMMBB1BvEgBWogSEkoNCWaoHbMGlwBJqLh-yBXBVlapq9B57ktIlAEdd14_ZnsBKolS4YMfntKZoh-KrvU5F8FR0wQ4_vt-MNF1YHzrylPpUtDGMxexd8GvyUx98lqR5maZoJ0pP2aPWDome3d777PPJ8aej9-XZh3enR4dnpauVnkoiqaG2Ta1RcaK64diAUBWXjjsUUlrk5DRi1eqlskLXAlyFsEItlF6S2Gdvt75X83Kklcut5N7NVexHG69NsL3Zrfj-wnRhbZRQUiqVDV7dGsTwZaY0mbFPjobBegpzMii5BGga4Bl9-Rd6GeaY595QWClUshb3VGcHMr1vQ_7XbUzNYe4egXOoMnXwDyqfFY19zpTaPr_vCF7vCDIz0beps3NK5vT84y6LW9bFkFKk9i4PDmazKGa7KCYLzK9FMZsgXvyZ5J3k92ZkQGyBlEu-o3g__n9sfwKJ4Ma1</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Kurth, Julia M.</creator><creator>Op den Camp, Huub J. M.</creator><creator>Welte, Cornelia U.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1990-9030</orcidid><orcidid>https://orcid.org/0000-0002-1221-1230</orcidid><orcidid>https://orcid.org/0000-0002-1568-8878</orcidid></search><sort><creationdate>20200801</creationdate><title>Several ways one goal—methanogenesis from unconventional substrates</title><author>Kurth, Julia M. ; Op den Camp, Huub J. M. ; Welte, Cornelia U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c678t-ee4806a968271ee69129037514c1c2344a21ec8225f8b7a38630c520d28378be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetates - metabolism</topic><topic>Acetic acid</topic><topic>Air pollution</topic><topic>Amines</topic><topic>Analysis</topic><topic>Archaea</topic><topic>Aromatic compounds</topic><topic>Betaine</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthetic Pathways</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Carbon compounds</topic><topic>Carbon cycle</topic><topic>Carbon cycle (Biogeochemistry)</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Choline</topic><topic>Dimethyl sulfide</topic><topic>Euryarchaeota - classification</topic><topic>Euryarchaeota - genetics</topic><topic>Euryarchaeota - metabolism</topic><topic>Gases</topic><topic>Genome, Archaeal</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Hydrogen - metabolism</topic><topic>Hydrogenase</topic><topic>Hydrogenase - genetics</topic><topic>Hydrogenase - metabolism</topic><topic>Life Sciences</topic><topic>Methane</topic><topic>Methane - metabolism</topic><topic>Methanethiol</topic><topic>Methanogenesis</topic><topic>Methanogenic archaea</topic><topic>Methanol</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mini-Review</topic><topic>Phylogeny</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Sulfur</topic><topic>Sulfur compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurth, Julia M.</creatorcontrib><creatorcontrib>Op den Camp, Huub J. M.</creatorcontrib><creatorcontrib>Welte, Cornelia U.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurth, Julia M.</au><au>Op den Camp, Huub J. M.</au><au>Welte, Cornelia U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Several ways one goal—methanogenesis from unconventional substrates</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>104</volume><issue>16</issue><spage>6839</spage><epage>6854</epage><pages>6839-6854</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Methane is the second most important greenhouse gas on earth. It is produced by methanogenic archaea, which play an important role in the global carbon cycle. Three main methanogenesis pathways are known: in the hydrogenotrophic pathway H 2 and carbon dioxide are used for methane production, whereas in the methylotrophic pathway small methylated carbon compounds like methanol and methylated amines are used. In the aceticlastic pathway, acetate is disproportionated to methane and carbon dioxide. However, next to these conventional substrates, further methanogenic substrates and pathways have been discovered. Several phylogenetically distinct methanogenic lineages ( Methanosphaera , Methanimicrococcus , Methanomassiliicoccus , Methanonatronarchaeum ) have evolved hydrogen-dependent methylotrophic methanogenesis without the ability to perform either hydrogenotrophic or methylotrophic methanogenesis. Genome analysis of the deep branching Methanonatronarchaeum revealed an interesting membrane-bound hydrogenase complex affiliated with the hardly described class 4 g of multisubunit hydrogenases possibly providing reducing equivalents for anabolism. Furthermore, methylated sulfur compounds such as methanethiol, dimethyl sulfide, and methylmercaptopropionate were described to be converted into adapted methylotrophic methanogenesis pathways of Methanosarcinales strains. Moreover, recently it has been shown that the methanogen Methermicoccus shengliensis can use methoxylated aromatic compounds in methanogenesis. Also, tertiary amines like choline ( N , N , N -trimethylethanolamine) or betaine ( N , N , N -trimethylglycine) have been described as substrates for methane production in Methanococcoides and Methanolobus strains. This review article will provide in-depth information on genome-guided metabolic reconstructions, physiology, and biochemistry of these unusual methanogenesis pathways. Key points • Newly discovered methanogenic substrates and pathways are reviewed for the first time. • The review provides an in-depth analysis of unusual methanogenesis pathways. • The hydrogenase complex of the deep branching Methanonatronarchaeum is analyzed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32542472</pmid><doi>10.1007/s00253-020-10724-7</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1990-9030</orcidid><orcidid>https://orcid.org/0000-0002-1221-1230</orcidid><orcidid>https://orcid.org/0000-0002-1568-8878</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2020-08, Vol.104 (16), p.6839-6854
issn 0175-7598
1432-0614
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7374477
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Acetates - metabolism
Acetic acid
Air pollution
Amines
Analysis
Archaea
Aromatic compounds
Betaine
Biomedical and Life Sciences
Biosynthetic Pathways
Biotechnology
Carbon
Carbon compounds
Carbon cycle
Carbon cycle (Biogeochemistry)
Carbon dioxide
Carbon Dioxide - metabolism
Choline
Dimethyl sulfide
Euryarchaeota - classification
Euryarchaeota - genetics
Euryarchaeota - metabolism
Gases
Genome, Archaeal
Genomes
Genomics
Greenhouse effect
Greenhouse gases
Hydrogen - metabolism
Hydrogenase
Hydrogenase - genetics
Hydrogenase - metabolism
Life Sciences
Methane
Methane - metabolism
Methanethiol
Methanogenesis
Methanogenic archaea
Methanol
Microbial Genetics and Genomics
Microbiology
Mini-Review
Phylogeny
Substrate Specificity
Substrates
Sulfur
Sulfur compounds
title Several ways one goal—methanogenesis from unconventional substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A55%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Several%20ways%20one%20goal%E2%80%94methanogenesis%20from%20unconventional%20substrates&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Kurth,%20Julia%20M.&rft.date=2020-08-01&rft.volume=104&rft.issue=16&rft.spage=6839&rft.epage=6854&rft.pages=6839-6854&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-020-10724-7&rft_dat=%3Cgale_pubme%3EA630201105%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425727463&rft_id=info:pmid/32542472&rft_galeid=A630201105&rfr_iscdi=true