Grouped circular data in biology: advice for effectively implementing statistical procedures
The most common statistical procedure with a sample of circular data is to test the null hypothesis that points are spread uniformly around the circle without a preferred direction. An array of tests for this has been developed. However, these tests were designed for continuously distributed data, w...
Gespeichert in:
Veröffentlicht in: | Behavioral ecology and sociobiology 2020-08, Vol.74 (8), p.1-8, Article 100 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | Behavioral ecology and sociobiology |
container_volume | 74 |
creator | Landler, Lukas Ruxton, Graeme D. Malkemper, E. Pascal |
description | The most common statistical procedure with a sample of circular data is to test the null hypothesis that points are spread uniformly around the circle without a preferred direction. An array of tests for this has been developed. However, these tests were designed for continuously distributed data, whereas often (e.g. due to limited precision of measurement techniques) collected data is aggregated into a set of discrete values (e.g. rounded to the nearest degree). This disparity can cause an uncontrolled increase in type I error rate, an effect that is particularly problematic for tests that are based on the distribution of arc lengths between adjacent points (such as the Rao spacing test). Here, we demonstrate that an easy-to-apply modification can correct this problem, and we recommend this modification when using any test, other than the Rayleigh test, of circular uniformity on aggregated data. We provide R functions for this modification for several commonly used tests. In addition, we tested the power of a recently proposed test, the Gini test. However, we concluded that it lacks sufficient increase in power to replace any of the tests already in common use. In conclusion, using any of the standard circular tests (except the Rayleigh test) without modifications on rounded/aggregated data, especially with larger sample sizes, will increase the proportion of false-positive results—but we demonstrate that a simple and general modification avoids this problem. |
doi_str_mv | 10.1007/s00265-020-02881-6 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7373216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48727792</jstor_id><sourcerecordid>48727792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-d34f5f805887404a80d0ef68bccf5ff85d5c68f5f385d9edc0b43a7c777e79da3</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMotlb_gKAsePGyOvnapBdBilah4EXPIZvN1i3bTU12hf57U7fWj4OHkCHzzDszeRE6xXCFAcR1ACAZT4FAPFLiNNtDQ8woSUFkZB8NgTJIOWN0gI5CWABAhqU8RANKBJEUwxAlU--6lS0SU3nT1donhW51UjVJXrnazdfH6KDUdbAn23uEXu7vnicP6exp-ji5naWGZ6RNC8pKXkrgUgoGTEsowJaZzI2J76XkBTeZjCGN4dgWBnJGtTBCCCvGhaYjdNPrrrp8GfO2ab2u1cpXS-3XyulK_c401auau3clqKAEZ1Hgcivg3VtnQ6uWVTC2rnVjXRcUYWQcxxMUR_TiD7pwnW_iehuKMxoxESnSU8a7ELwtd8NgUBsDVG-AigaoTwPUZorzn2vsSr5-PAK0B0JMNXPrv3v_K3vWVy1C6_xOlUlBhBgT-gFrYZmJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425435877</pqid></control><display><type>article</type><title>Grouped circular data in biology: advice for effectively implementing statistical procedures</title><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Landler, Lukas ; Ruxton, Graeme D. ; Malkemper, E. Pascal</creator><creatorcontrib>Landler, Lukas ; Ruxton, Graeme D. ; Malkemper, E. Pascal</creatorcontrib><description>The most common statistical procedure with a sample of circular data is to test the null hypothesis that points are spread uniformly around the circle without a preferred direction. An array of tests for this has been developed. However, these tests were designed for continuously distributed data, whereas often (e.g. due to limited precision of measurement techniques) collected data is aggregated into a set of discrete values (e.g. rounded to the nearest degree). This disparity can cause an uncontrolled increase in type I error rate, an effect that is particularly problematic for tests that are based on the distribution of arc lengths between adjacent points (such as the Rao spacing test). Here, we demonstrate that an easy-to-apply modification can correct this problem, and we recommend this modification when using any test, other than the Rayleigh test, of circular uniformity on aggregated data. We provide R functions for this modification for several commonly used tests. In addition, we tested the power of a recently proposed test, the Gini test. However, we concluded that it lacks sufficient increase in power to replace any of the tests already in common use. In conclusion, using any of the standard circular tests (except the Rayleigh test) without modifications on rounded/aggregated data, especially with larger sample sizes, will increase the proportion of false-positive results—but we demonstrate that a simple and general modification avoids this problem.</description><identifier>ISSN: 0340-5443</identifier><identifier>EISSN: 1432-0762</identifier><identifier>DOI: 10.1007/s00265-020-02881-6</identifier><identifier>PMID: 32728310</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Animal Ecology ; Behavioral Sciences ; Biological effects ; Biomedical and Life Sciences ; Circadian rhythms ; Circularity ; Data collection ; Life Sciences ; Measurement techniques ; METHODS PAPERS ; Statistics ; Zoology</subject><ispartof>Behavioral ecology and sociobiology, 2020-08, Vol.74 (8), p.1-8, Article 100</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020.</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-d34f5f805887404a80d0ef68bccf5ff85d5c68f5f385d9edc0b43a7c777e79da3</citedby><cites>FETCH-LOGICAL-c562t-d34f5f805887404a80d0ef68bccf5ff85d5c68f5f385d9edc0b43a7c777e79da3</cites><orcidid>0000-0003-1099-0119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48727792$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48727792$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27923,27924,41487,42556,51318,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32728310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Landler, Lukas</creatorcontrib><creatorcontrib>Ruxton, Graeme D.</creatorcontrib><creatorcontrib>Malkemper, E. Pascal</creatorcontrib><title>Grouped circular data in biology: advice for effectively implementing statistical procedures</title><title>Behavioral ecology and sociobiology</title><addtitle>Behav Ecol Sociobiol</addtitle><addtitle>Behav Ecol Sociobiol</addtitle><description>The most common statistical procedure with a sample of circular data is to test the null hypothesis that points are spread uniformly around the circle without a preferred direction. An array of tests for this has been developed. However, these tests were designed for continuously distributed data, whereas often (e.g. due to limited precision of measurement techniques) collected data is aggregated into a set of discrete values (e.g. rounded to the nearest degree). This disparity can cause an uncontrolled increase in type I error rate, an effect that is particularly problematic for tests that are based on the distribution of arc lengths between adjacent points (such as the Rao spacing test). Here, we demonstrate that an easy-to-apply modification can correct this problem, and we recommend this modification when using any test, other than the Rayleigh test, of circular uniformity on aggregated data. We provide R functions for this modification for several commonly used tests. In addition, we tested the power of a recently proposed test, the Gini test. However, we concluded that it lacks sufficient increase in power to replace any of the tests already in common use. In conclusion, using any of the standard circular tests (except the Rayleigh test) without modifications on rounded/aggregated data, especially with larger sample sizes, will increase the proportion of false-positive results—but we demonstrate that a simple and general modification avoids this problem.</description><subject>Animal Ecology</subject><subject>Behavioral Sciences</subject><subject>Biological effects</subject><subject>Biomedical and Life Sciences</subject><subject>Circadian rhythms</subject><subject>Circularity</subject><subject>Data collection</subject><subject>Life Sciences</subject><subject>Measurement techniques</subject><subject>METHODS PAPERS</subject><subject>Statistics</subject><subject>Zoology</subject><issn>0340-5443</issn><issn>1432-0762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LAzEQhoMotlb_gKAsePGyOvnapBdBilah4EXPIZvN1i3bTU12hf57U7fWj4OHkCHzzDszeRE6xXCFAcR1ACAZT4FAPFLiNNtDQ8woSUFkZB8NgTJIOWN0gI5CWABAhqU8RANKBJEUwxAlU--6lS0SU3nT1donhW51UjVJXrnazdfH6KDUdbAn23uEXu7vnicP6exp-ji5naWGZ6RNC8pKXkrgUgoGTEsowJaZzI2J76XkBTeZjCGN4dgWBnJGtTBCCCvGhaYjdNPrrrp8GfO2ab2u1cpXS-3XyulK_c401auau3clqKAEZ1Hgcivg3VtnQ6uWVTC2rnVjXRcUYWQcxxMUR_TiD7pwnW_iehuKMxoxESnSU8a7ELwtd8NgUBsDVG-AigaoTwPUZorzn2vsSr5-PAK0B0JMNXPrv3v_K3vWVy1C6_xOlUlBhBgT-gFrYZmJ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Landler, Lukas</creator><creator>Ruxton, Graeme D.</creator><creator>Malkemper, E. Pascal</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>88I</scope><scope>88J</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>HEHIP</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2M</scope><scope>M2P</scope><scope>M2R</scope><scope>M2S</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1099-0119</orcidid></search><sort><creationdate>20200801</creationdate><title>Grouped circular data in biology</title><author>Landler, Lukas ; Ruxton, Graeme D. ; Malkemper, E. Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-d34f5f805887404a80d0ef68bccf5ff85d5c68f5f385d9edc0b43a7c777e79da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal Ecology</topic><topic>Behavioral Sciences</topic><topic>Biological effects</topic><topic>Biomedical and Life Sciences</topic><topic>Circadian rhythms</topic><topic>Circularity</topic><topic>Data collection</topic><topic>Life Sciences</topic><topic>Measurement techniques</topic><topic>METHODS PAPERS</topic><topic>Statistics</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Landler, Lukas</creatorcontrib><creatorcontrib>Ruxton, Graeme D.</creatorcontrib><creatorcontrib>Malkemper, E. Pascal</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Sociology Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Psychology Database</collection><collection>Science Database</collection><collection>Social Science Database</collection><collection>Sociology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Behavioral ecology and sociobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Landler, Lukas</au><au>Ruxton, Graeme D.</au><au>Malkemper, E. Pascal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grouped circular data in biology: advice for effectively implementing statistical procedures</atitle><jtitle>Behavioral ecology and sociobiology</jtitle><stitle>Behav Ecol Sociobiol</stitle><addtitle>Behav Ecol Sociobiol</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>74</volume><issue>8</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><artnum>100</artnum><issn>0340-5443</issn><eissn>1432-0762</eissn><abstract>The most common statistical procedure with a sample of circular data is to test the null hypothesis that points are spread uniformly around the circle without a preferred direction. An array of tests for this has been developed. However, these tests were designed for continuously distributed data, whereas often (e.g. due to limited precision of measurement techniques) collected data is aggregated into a set of discrete values (e.g. rounded to the nearest degree). This disparity can cause an uncontrolled increase in type I error rate, an effect that is particularly problematic for tests that are based on the distribution of arc lengths between adjacent points (such as the Rao spacing test). Here, we demonstrate that an easy-to-apply modification can correct this problem, and we recommend this modification when using any test, other than the Rayleigh test, of circular uniformity on aggregated data. We provide R functions for this modification for several commonly used tests. In addition, we tested the power of a recently proposed test, the Gini test. However, we concluded that it lacks sufficient increase in power to replace any of the tests already in common use. In conclusion, using any of the standard circular tests (except the Rayleigh test) without modifications on rounded/aggregated data, especially with larger sample sizes, will increase the proportion of false-positive results—but we demonstrate that a simple and general modification avoids this problem.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>32728310</pmid><doi>10.1007/s00265-020-02881-6</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1099-0119</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-5443 |
ispartof | Behavioral ecology and sociobiology, 2020-08, Vol.74 (8), p.1-8, Article 100 |
issn | 0340-5443 1432-0762 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7373216 |
source | JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings |
subjects | Animal Ecology Behavioral Sciences Biological effects Biomedical and Life Sciences Circadian rhythms Circularity Data collection Life Sciences Measurement techniques METHODS PAPERS Statistics Zoology |
title | Grouped circular data in biology: advice for effectively implementing statistical procedures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grouped%20circular%20data%20in%20biology:%20advice%20for%20effectively%20implementing%20statistical%20procedures&rft.jtitle=Behavioral%20ecology%20and%20sociobiology&rft.au=Landler,%20Lukas&rft.date=2020-08-01&rft.volume=74&rft.issue=8&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.artnum=100&rft.issn=0340-5443&rft.eissn=1432-0762&rft_id=info:doi/10.1007/s00265-020-02881-6&rft_dat=%3Cjstor_pubme%3E48727792%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425435877&rft_id=info:pmid/32728310&rft_jstor_id=48727792&rfr_iscdi=true |