Early detection of type 2 diabetes mellitus using machine learning-based prediction models
Most screening tests for T2DM in use today were developed using multivariate regression methods that are often further simplified to allow transformation into a scoring formula. The increasing volume of electronically collected data opened the opportunity to develop more complex, accurate prediction...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-07, Vol.10 (1), p.11981, Article 11981 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 11981 |
container_title | Scientific reports |
container_volume | 10 |
creator | Kopitar, Leon Kocbek, Primoz Cilar, Leona Sheikh, Aziz Stiglic, Gregor |
description | Most screening tests for T2DM in use today were developed using multivariate regression methods that are often further simplified to allow transformation into a scoring formula. The increasing volume of electronically collected data opened the opportunity to develop more complex, accurate prediction models that can be continuously updated using machine learning approaches. This study compares machine learning-based prediction models (i.e. Glmnet, RF, XGBoost, LightGBM) to commonly used regression models for prediction of undiagnosed T2DM. The performance in prediction of fasting plasma glucose level was measured using 100 bootstrap iterations in different subsets of data simulating new incoming data in 6-month batches. With 6 months of data available, simple regression model performed with the lowest average RMSE of 0.838, followed by RF (0.842), LightGBM (0.846), Glmnet (0.859) and XGBoost (0.881). When more data were added, Glmnet improved with the highest rate (+ 3.4%). The highest level of variable selection stability over time was observed with LightGBM models. Our results show no clinically relevant improvement when more sophisticated prediction models were used. Since higher stability of selected variables over time contributes to simpler interpretation of the models, interpretability and model calibration should also be considered in development of clinical prediction models. |
doi_str_mv | 10.1038/s41598-020-68771-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7371679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425423151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-8939d9b3621dd76be7bf7e42b151cd59aa6f957bec7c92d5772a29ea6238a2a83</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouqz7BzxIwHO1mbRNcxFkWT9A8KIXLyFtpruRfqxJK6y_3mh1XS_mkjDzzjNveAk5YfE5i3l-4ROWyjyKIY6yXAgWve-RCcRJGgEH2N95H5GZ9y9xOCnIhMlDcsQhyzMBbEKeF9rVG2qwx7K3XUu7ivabNVKgxuoilD1tsK5tP3g6eNsuaaPLlW2R1qhdGwpRoT0aunZo7MhoOoO1PyYHla49zr7vKXm6XjzOb6P7h5u7-dV9VIYP9FEuuTSy4BkwY0RWoCgqgQkULGWlSaXWWSVTUWApSgkmFQI0SNQZ8FyDzvmUXI7c9VA0aEpse6drtXa20W6jOm3V305rV2rZvSnBBcuEDICzb4DrXgf0vXrpBtcGzwoSSBPgwUpQwagqXee9w2q7gcXqMxI1RqJCJOorEvUehk53vW1HfgIIAj4KfGi1S3S_u__BfgDFeJl4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425423151</pqid></control><display><type>article</type><title>Early detection of type 2 diabetes mellitus using machine learning-based prediction models</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kopitar, Leon ; Kocbek, Primoz ; Cilar, Leona ; Sheikh, Aziz ; Stiglic, Gregor</creator><creatorcontrib>Kopitar, Leon ; Kocbek, Primoz ; Cilar, Leona ; Sheikh, Aziz ; Stiglic, Gregor</creatorcontrib><description>Most screening tests for T2DM in use today were developed using multivariate regression methods that are often further simplified to allow transformation into a scoring formula. The increasing volume of electronically collected data opened the opportunity to develop more complex, accurate prediction models that can be continuously updated using machine learning approaches. This study compares machine learning-based prediction models (i.e. Glmnet, RF, XGBoost, LightGBM) to commonly used regression models for prediction of undiagnosed T2DM. The performance in prediction of fasting plasma glucose level was measured using 100 bootstrap iterations in different subsets of data simulating new incoming data in 6-month batches. With 6 months of data available, simple regression model performed with the lowest average RMSE of 0.838, followed by RF (0.842), LightGBM (0.846), Glmnet (0.859) and XGBoost (0.881). When more data were added, Glmnet improved with the highest rate (+ 3.4%). The highest level of variable selection stability over time was observed with LightGBM models. Our results show no clinically relevant improvement when more sophisticated prediction models were used. Since higher stability of selected variables over time contributes to simpler interpretation of the models, interpretability and model calibration should also be considered in development of clinical prediction models.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-68771-z</identifier><identifier>PMID: 32686721</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/499 ; 692/700/459/1748 ; Area Under Curve ; Blood Glucose - metabolism ; Calibration ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - blood ; Diabetes Mellitus, Type 2 - diagnosis ; Early Diagnosis ; Fasting - blood ; Female ; Humanities and Social Sciences ; Humans ; Learning algorithms ; Machine Learning ; Male ; Middle Aged ; Models, Biological ; multidisciplinary ; Prediction models ; Regression analysis ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-07, Vol.10 (1), p.11981, Article 11981</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-8939d9b3621dd76be7bf7e42b151cd59aa6f957bec7c92d5772a29ea6238a2a83</citedby><cites>FETCH-LOGICAL-c598t-8939d9b3621dd76be7bf7e42b151cd59aa6f957bec7c92d5772a29ea6238a2a83</cites><orcidid>0000-0002-9064-5085 ; 0000-0002-6647-9988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371679/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371679/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27925,27926,41121,42190,51577,53792,53794</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32686721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kopitar, Leon</creatorcontrib><creatorcontrib>Kocbek, Primoz</creatorcontrib><creatorcontrib>Cilar, Leona</creatorcontrib><creatorcontrib>Sheikh, Aziz</creatorcontrib><creatorcontrib>Stiglic, Gregor</creatorcontrib><title>Early detection of type 2 diabetes mellitus using machine learning-based prediction models</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Most screening tests for T2DM in use today were developed using multivariate regression methods that are often further simplified to allow transformation into a scoring formula. The increasing volume of electronically collected data opened the opportunity to develop more complex, accurate prediction models that can be continuously updated using machine learning approaches. This study compares machine learning-based prediction models (i.e. Glmnet, RF, XGBoost, LightGBM) to commonly used regression models for prediction of undiagnosed T2DM. The performance in prediction of fasting plasma glucose level was measured using 100 bootstrap iterations in different subsets of data simulating new incoming data in 6-month batches. With 6 months of data available, simple regression model performed with the lowest average RMSE of 0.838, followed by RF (0.842), LightGBM (0.846), Glmnet (0.859) and XGBoost (0.881). When more data were added, Glmnet improved with the highest rate (+ 3.4%). The highest level of variable selection stability over time was observed with LightGBM models. Our results show no clinically relevant improvement when more sophisticated prediction models were used. Since higher stability of selected variables over time contributes to simpler interpretation of the models, interpretability and model calibration should also be considered in development of clinical prediction models.</description><subject>692/499</subject><subject>692/700/459/1748</subject><subject>Area Under Curve</subject><subject>Blood Glucose - metabolism</subject><subject>Calibration</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - blood</subject><subject>Diabetes Mellitus, Type 2 - diagnosis</subject><subject>Early Diagnosis</subject><subject>Fasting - blood</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Prediction models</subject><subject>Regression analysis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LxDAQhoMouqz7BzxIwHO1mbRNcxFkWT9A8KIXLyFtpruRfqxJK6y_3mh1XS_mkjDzzjNveAk5YfE5i3l-4ROWyjyKIY6yXAgWve-RCcRJGgEH2N95H5GZ9y9xOCnIhMlDcsQhyzMBbEKeF9rVG2qwx7K3XUu7ivabNVKgxuoilD1tsK5tP3g6eNsuaaPLlW2R1qhdGwpRoT0aunZo7MhoOoO1PyYHla49zr7vKXm6XjzOb6P7h5u7-dV9VIYP9FEuuTSy4BkwY0RWoCgqgQkULGWlSaXWWSVTUWApSgkmFQI0SNQZ8FyDzvmUXI7c9VA0aEpse6drtXa20W6jOm3V305rV2rZvSnBBcuEDICzb4DrXgf0vXrpBtcGzwoSSBPgwUpQwagqXee9w2q7gcXqMxI1RqJCJOorEvUehk53vW1HfgIIAj4KfGi1S3S_u__BfgDFeJl4</recordid><startdate>20200720</startdate><enddate>20200720</enddate><creator>Kopitar, Leon</creator><creator>Kocbek, Primoz</creator><creator>Cilar, Leona</creator><creator>Sheikh, Aziz</creator><creator>Stiglic, Gregor</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9064-5085</orcidid><orcidid>https://orcid.org/0000-0002-6647-9988</orcidid></search><sort><creationdate>20200720</creationdate><title>Early detection of type 2 diabetes mellitus using machine learning-based prediction models</title><author>Kopitar, Leon ; Kocbek, Primoz ; Cilar, Leona ; Sheikh, Aziz ; Stiglic, Gregor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-8939d9b3621dd76be7bf7e42b151cd59aa6f957bec7c92d5772a29ea6238a2a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>692/499</topic><topic>692/700/459/1748</topic><topic>Area Under Curve</topic><topic>Blood Glucose - metabolism</topic><topic>Calibration</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - blood</topic><topic>Diabetes Mellitus, Type 2 - diagnosis</topic><topic>Early Diagnosis</topic><topic>Fasting - blood</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Prediction models</topic><topic>Regression analysis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopitar, Leon</creatorcontrib><creatorcontrib>Kocbek, Primoz</creatorcontrib><creatorcontrib>Cilar, Leona</creatorcontrib><creatorcontrib>Sheikh, Aziz</creatorcontrib><creatorcontrib>Stiglic, Gregor</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopitar, Leon</au><au>Kocbek, Primoz</au><au>Cilar, Leona</au><au>Sheikh, Aziz</au><au>Stiglic, Gregor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early detection of type 2 diabetes mellitus using machine learning-based prediction models</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-07-20</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>11981</spage><pages>11981-</pages><artnum>11981</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Most screening tests for T2DM in use today were developed using multivariate regression methods that are often further simplified to allow transformation into a scoring formula. The increasing volume of electronically collected data opened the opportunity to develop more complex, accurate prediction models that can be continuously updated using machine learning approaches. This study compares machine learning-based prediction models (i.e. Glmnet, RF, XGBoost, LightGBM) to commonly used regression models for prediction of undiagnosed T2DM. The performance in prediction of fasting plasma glucose level was measured using 100 bootstrap iterations in different subsets of data simulating new incoming data in 6-month batches. With 6 months of data available, simple regression model performed with the lowest average RMSE of 0.838, followed by RF (0.842), LightGBM (0.846), Glmnet (0.859) and XGBoost (0.881). When more data were added, Glmnet improved with the highest rate (+ 3.4%). The highest level of variable selection stability over time was observed with LightGBM models. Our results show no clinically relevant improvement when more sophisticated prediction models were used. Since higher stability of selected variables over time contributes to simpler interpretation of the models, interpretability and model calibration should also be considered in development of clinical prediction models.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32686721</pmid><doi>10.1038/s41598-020-68771-z</doi><orcidid>https://orcid.org/0000-0002-9064-5085</orcidid><orcidid>https://orcid.org/0000-0002-6647-9988</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-07, Vol.10 (1), p.11981, Article 11981 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7371679 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 692/499 692/700/459/1748 Area Under Curve Blood Glucose - metabolism Calibration Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - blood Diabetes Mellitus, Type 2 - diagnosis Early Diagnosis Fasting - blood Female Humanities and Social Sciences Humans Learning algorithms Machine Learning Male Middle Aged Models, Biological multidisciplinary Prediction models Regression analysis Science Science (multidisciplinary) |
title | Early detection of type 2 diabetes mellitus using machine learning-based prediction models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20detection%20of%20type%202%20diabetes%20mellitus%20using%20machine%20learning-based%20prediction%20models&rft.jtitle=Scientific%20reports&rft.au=Kopitar,%20Leon&rft.date=2020-07-20&rft.volume=10&rft.issue=1&rft.spage=11981&rft.pages=11981-&rft.artnum=11981&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-68771-z&rft_dat=%3Cproquest_pubme%3E2425423151%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425423151&rft_id=info:pmid/32686721&rfr_iscdi=true |