Early detection of type 2 diabetes mellitus using machine learning-based prediction models

Most screening tests for T2DM in use today were developed using multivariate regression methods that are often further simplified to allow transformation into a scoring formula. The increasing volume of electronically collected data opened the opportunity to develop more complex, accurate prediction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-07, Vol.10 (1), p.11981, Article 11981
Hauptverfasser: Kopitar, Leon, Kocbek, Primoz, Cilar, Leona, Sheikh, Aziz, Stiglic, Gregor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 11981
container_title Scientific reports
container_volume 10
creator Kopitar, Leon
Kocbek, Primoz
Cilar, Leona
Sheikh, Aziz
Stiglic, Gregor
description Most screening tests for T2DM in use today were developed using multivariate regression methods that are often further simplified to allow transformation into a scoring formula. The increasing volume of electronically collected data opened the opportunity to develop more complex, accurate prediction models that can be continuously updated using machine learning approaches. This study compares machine learning-based prediction models (i.e. Glmnet, RF, XGBoost, LightGBM) to commonly used regression models for prediction of undiagnosed T2DM. The performance in prediction of fasting plasma glucose level was measured using 100 bootstrap iterations in different subsets of data simulating new incoming data in 6-month batches. With 6 months of data available, simple regression model performed with the lowest average RMSE of 0.838, followed by RF (0.842), LightGBM (0.846), Glmnet (0.859) and XGBoost (0.881). When more data were added, Glmnet improved with the highest rate (+ 3.4%). The highest level of variable selection stability over time was observed with LightGBM models. Our results show no clinically relevant improvement when more sophisticated prediction models were used. Since higher stability of selected variables over time contributes to simpler interpretation of the models, interpretability and model calibration should also be considered in development of clinical prediction models.
doi_str_mv 10.1038/s41598-020-68771-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7371679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425423151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-8939d9b3621dd76be7bf7e42b151cd59aa6f957bec7c92d5772a29ea6238a2a83</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouqz7BzxIwHO1mbRNcxFkWT9A8KIXLyFtpruRfqxJK6y_3mh1XS_mkjDzzjNveAk5YfE5i3l-4ROWyjyKIY6yXAgWve-RCcRJGgEH2N95H5GZ9y9xOCnIhMlDcsQhyzMBbEKeF9rVG2qwx7K3XUu7ivabNVKgxuoilD1tsK5tP3g6eNsuaaPLlW2R1qhdGwpRoT0aunZo7MhoOoO1PyYHla49zr7vKXm6XjzOb6P7h5u7-dV9VIYP9FEuuTSy4BkwY0RWoCgqgQkULGWlSaXWWSVTUWApSgkmFQI0SNQZ8FyDzvmUXI7c9VA0aEpse6drtXa20W6jOm3V305rV2rZvSnBBcuEDICzb4DrXgf0vXrpBtcGzwoSSBPgwUpQwagqXee9w2q7gcXqMxI1RqJCJOorEvUehk53vW1HfgIIAj4KfGi1S3S_u__BfgDFeJl4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425423151</pqid></control><display><type>article</type><title>Early detection of type 2 diabetes mellitus using machine learning-based prediction models</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kopitar, Leon ; Kocbek, Primoz ; Cilar, Leona ; Sheikh, Aziz ; Stiglic, Gregor</creator><creatorcontrib>Kopitar, Leon ; Kocbek, Primoz ; Cilar, Leona ; Sheikh, Aziz ; Stiglic, Gregor</creatorcontrib><description>Most screening tests for T2DM in use today were developed using multivariate regression methods that are often further simplified to allow transformation into a scoring formula. The increasing volume of electronically collected data opened the opportunity to develop more complex, accurate prediction models that can be continuously updated using machine learning approaches. This study compares machine learning-based prediction models (i.e. Glmnet, RF, XGBoost, LightGBM) to commonly used regression models for prediction of undiagnosed T2DM. The performance in prediction of fasting plasma glucose level was measured using 100 bootstrap iterations in different subsets of data simulating new incoming data in 6-month batches. With 6 months of data available, simple regression model performed with the lowest average RMSE of 0.838, followed by RF (0.842), LightGBM (0.846), Glmnet (0.859) and XGBoost (0.881). When more data were added, Glmnet improved with the highest rate (+ 3.4%). The highest level of variable selection stability over time was observed with LightGBM models. Our results show no clinically relevant improvement when more sophisticated prediction models were used. Since higher stability of selected variables over time contributes to simpler interpretation of the models, interpretability and model calibration should also be considered in development of clinical prediction models.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-68771-z</identifier><identifier>PMID: 32686721</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/499 ; 692/700/459/1748 ; Area Under Curve ; Blood Glucose - metabolism ; Calibration ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - blood ; Diabetes Mellitus, Type 2 - diagnosis ; Early Diagnosis ; Fasting - blood ; Female ; Humanities and Social Sciences ; Humans ; Learning algorithms ; Machine Learning ; Male ; Middle Aged ; Models, Biological ; multidisciplinary ; Prediction models ; Regression analysis ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-07, Vol.10 (1), p.11981, Article 11981</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-8939d9b3621dd76be7bf7e42b151cd59aa6f957bec7c92d5772a29ea6238a2a83</citedby><cites>FETCH-LOGICAL-c598t-8939d9b3621dd76be7bf7e42b151cd59aa6f957bec7c92d5772a29ea6238a2a83</cites><orcidid>0000-0002-9064-5085 ; 0000-0002-6647-9988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371679/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371679/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27925,27926,41121,42190,51577,53792,53794</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32686721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kopitar, Leon</creatorcontrib><creatorcontrib>Kocbek, Primoz</creatorcontrib><creatorcontrib>Cilar, Leona</creatorcontrib><creatorcontrib>Sheikh, Aziz</creatorcontrib><creatorcontrib>Stiglic, Gregor</creatorcontrib><title>Early detection of type 2 diabetes mellitus using machine learning-based prediction models</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Most screening tests for T2DM in use today were developed using multivariate regression methods that are often further simplified to allow transformation into a scoring formula. The increasing volume of electronically collected data opened the opportunity to develop more complex, accurate prediction models that can be continuously updated using machine learning approaches. This study compares machine learning-based prediction models (i.e. Glmnet, RF, XGBoost, LightGBM) to commonly used regression models for prediction of undiagnosed T2DM. The performance in prediction of fasting plasma glucose level was measured using 100 bootstrap iterations in different subsets of data simulating new incoming data in 6-month batches. With 6 months of data available, simple regression model performed with the lowest average RMSE of 0.838, followed by RF (0.842), LightGBM (0.846), Glmnet (0.859) and XGBoost (0.881). When more data were added, Glmnet improved with the highest rate (+ 3.4%). The highest level of variable selection stability over time was observed with LightGBM models. Our results show no clinically relevant improvement when more sophisticated prediction models were used. Since higher stability of selected variables over time contributes to simpler interpretation of the models, interpretability and model calibration should also be considered in development of clinical prediction models.</description><subject>692/499</subject><subject>692/700/459/1748</subject><subject>Area Under Curve</subject><subject>Blood Glucose - metabolism</subject><subject>Calibration</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - blood</subject><subject>Diabetes Mellitus, Type 2 - diagnosis</subject><subject>Early Diagnosis</subject><subject>Fasting - blood</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Prediction models</subject><subject>Regression analysis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LxDAQhoMouqz7BzxIwHO1mbRNcxFkWT9A8KIXLyFtpruRfqxJK6y_3mh1XS_mkjDzzjNveAk5YfE5i3l-4ROWyjyKIY6yXAgWve-RCcRJGgEH2N95H5GZ9y9xOCnIhMlDcsQhyzMBbEKeF9rVG2qwx7K3XUu7ivabNVKgxuoilD1tsK5tP3g6eNsuaaPLlW2R1qhdGwpRoT0aunZo7MhoOoO1PyYHla49zr7vKXm6XjzOb6P7h5u7-dV9VIYP9FEuuTSy4BkwY0RWoCgqgQkULGWlSaXWWSVTUWApSgkmFQI0SNQZ8FyDzvmUXI7c9VA0aEpse6drtXa20W6jOm3V305rV2rZvSnBBcuEDICzb4DrXgf0vXrpBtcGzwoSSBPgwUpQwagqXee9w2q7gcXqMxI1RqJCJOorEvUehk53vW1HfgIIAj4KfGi1S3S_u__BfgDFeJl4</recordid><startdate>20200720</startdate><enddate>20200720</enddate><creator>Kopitar, Leon</creator><creator>Kocbek, Primoz</creator><creator>Cilar, Leona</creator><creator>Sheikh, Aziz</creator><creator>Stiglic, Gregor</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9064-5085</orcidid><orcidid>https://orcid.org/0000-0002-6647-9988</orcidid></search><sort><creationdate>20200720</creationdate><title>Early detection of type 2 diabetes mellitus using machine learning-based prediction models</title><author>Kopitar, Leon ; Kocbek, Primoz ; Cilar, Leona ; Sheikh, Aziz ; Stiglic, Gregor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-8939d9b3621dd76be7bf7e42b151cd59aa6f957bec7c92d5772a29ea6238a2a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>692/499</topic><topic>692/700/459/1748</topic><topic>Area Under Curve</topic><topic>Blood Glucose - metabolism</topic><topic>Calibration</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - blood</topic><topic>Diabetes Mellitus, Type 2 - diagnosis</topic><topic>Early Diagnosis</topic><topic>Fasting - blood</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Prediction models</topic><topic>Regression analysis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopitar, Leon</creatorcontrib><creatorcontrib>Kocbek, Primoz</creatorcontrib><creatorcontrib>Cilar, Leona</creatorcontrib><creatorcontrib>Sheikh, Aziz</creatorcontrib><creatorcontrib>Stiglic, Gregor</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopitar, Leon</au><au>Kocbek, Primoz</au><au>Cilar, Leona</au><au>Sheikh, Aziz</au><au>Stiglic, Gregor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early detection of type 2 diabetes mellitus using machine learning-based prediction models</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-07-20</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>11981</spage><pages>11981-</pages><artnum>11981</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Most screening tests for T2DM in use today were developed using multivariate regression methods that are often further simplified to allow transformation into a scoring formula. The increasing volume of electronically collected data opened the opportunity to develop more complex, accurate prediction models that can be continuously updated using machine learning approaches. This study compares machine learning-based prediction models (i.e. Glmnet, RF, XGBoost, LightGBM) to commonly used regression models for prediction of undiagnosed T2DM. The performance in prediction of fasting plasma glucose level was measured using 100 bootstrap iterations in different subsets of data simulating new incoming data in 6-month batches. With 6 months of data available, simple regression model performed with the lowest average RMSE of 0.838, followed by RF (0.842), LightGBM (0.846), Glmnet (0.859) and XGBoost (0.881). When more data were added, Glmnet improved with the highest rate (+ 3.4%). The highest level of variable selection stability over time was observed with LightGBM models. Our results show no clinically relevant improvement when more sophisticated prediction models were used. Since higher stability of selected variables over time contributes to simpler interpretation of the models, interpretability and model calibration should also be considered in development of clinical prediction models.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32686721</pmid><doi>10.1038/s41598-020-68771-z</doi><orcidid>https://orcid.org/0000-0002-9064-5085</orcidid><orcidid>https://orcid.org/0000-0002-6647-9988</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-07, Vol.10 (1), p.11981, Article 11981
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7371679
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 692/499
692/700/459/1748
Area Under Curve
Blood Glucose - metabolism
Calibration
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - blood
Diabetes Mellitus, Type 2 - diagnosis
Early Diagnosis
Fasting - blood
Female
Humanities and Social Sciences
Humans
Learning algorithms
Machine Learning
Male
Middle Aged
Models, Biological
multidisciplinary
Prediction models
Regression analysis
Science
Science (multidisciplinary)
title Early detection of type 2 diabetes mellitus using machine learning-based prediction models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20detection%20of%20type%202%20diabetes%20mellitus%20using%20machine%20learning-based%20prediction%20models&rft.jtitle=Scientific%20reports&rft.au=Kopitar,%20Leon&rft.date=2020-07-20&rft.volume=10&rft.issue=1&rft.spage=11981&rft.pages=11981-&rft.artnum=11981&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-68771-z&rft_dat=%3Cproquest_pubme%3E2425423151%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425423151&rft_id=info:pmid/32686721&rfr_iscdi=true