Kinetic feasibility of nitroxyl reduction by physiological reductants and biological implications
Nitroxyl (HNO), the one-electron reduced and protonated congener of nitric oxide (NO), is a chemically unique species with potentially important biological activity. Although HNO-based pharmaceuticals are currently being considered for the treatment of chronic heart failure or stroke/transplant-deri...
Gespeichert in:
Veröffentlicht in: | Free radical biology & medicine 2009-10, Vol.47 (8), p.1130-1139 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1139 |
---|---|
container_issue | 8 |
container_start_page | 1130 |
container_title | Free radical biology & medicine |
container_volume | 47 |
creator | Jackson, Matthew I. Han, Tae H. Serbulea, Laura Dutton, Andrew Ford, Eleonora Miranda, Katrina M. Houk, K.N. Wink, David A. Fukuto, Jon M. |
description | Nitroxyl (HNO), the one-electron reduced and protonated congener of nitric oxide (NO), is a chemically unique species with potentially important biological activity. Although HNO-based pharmaceuticals are currently being considered for the treatment of chronic heart failure or stroke/transplant-derived ischemia, the chemical events leading to therapeutic responses are not established. The interaction of HNO with oxidants results in the well-documented conversion to NO, but HNO is expected to be readily reduced as well. Recent thermodynamic calculations predict that reduction of HNO is biologically accessible. Herein, kinetic analysis suggests that the reactions of HNO with several mechanistically distinct reductants are also biologically feasible. Product analysis verified that the reductants had in fact been oxidized and that in several instances HNO had been converted to hydroxylamine. Moreover, a theoretical analysis suggests that in the reaction of HNO with thiol reductants, the pathway producing sulfinamide is significantly more favorable than that leading to disulfide. Additionally, simultaneous production of HNO and NO yielded a biphasic oxidative capacity. |
doi_str_mv | 10.1016/j.freeradbiomed.2009.06.034 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7370859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0891584909004018</els_id><sourcerecordid>19577638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-19730f02ff2c3451a6a277ab1e5672b72b6d82f972a5556d3d540d35037a6b7a3</originalsourceid><addsrcrecordid>eNqNkFtLxDAQhYMoul7-ghR8bp00TdIiCCLrBQVf9Dmkuegs3WZJqth_b5f1-iYMzMCZcw58hJxQKChQcboofHQuattiWDpblABNAaIAVm2RGa0lyyveiG0yg7qhOa-rZo_sp7QAgIqzepfs0YZLKVg9I_oOezegybzTCVvscBiz4LMehxjexy6Lzr6aAUOftWO2ehkThi48o9Ffku6HlOneZu2PgstVNx1rWzokO153yR197gPydDV_vLzJ7x-uby8v7nPDy2rIaSMZeCi9Lw2rONVCl1LqljouZNlOI2xd-kaWmnMuLLO8Ass4MKlFKzU7IOeb3NVrO2Exrh-i7tQq4lLHUQWN6q_S44t6Dm9KMgk1b6aAs02AiSGl6Py3l4Jak1cL9Ye8WpNXINREfnIf_67_8X6inh7mmwc3QXhDF1Uy6HrjLEZnBmUD_qvoA0UCoHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kinetic feasibility of nitroxyl reduction by physiological reductants and biological implications</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Jackson, Matthew I. ; Han, Tae H. ; Serbulea, Laura ; Dutton, Andrew ; Ford, Eleonora ; Miranda, Katrina M. ; Houk, K.N. ; Wink, David A. ; Fukuto, Jon M.</creator><creatorcontrib>Jackson, Matthew I. ; Han, Tae H. ; Serbulea, Laura ; Dutton, Andrew ; Ford, Eleonora ; Miranda, Katrina M. ; Houk, K.N. ; Wink, David A. ; Fukuto, Jon M.</creatorcontrib><description>Nitroxyl (HNO), the one-electron reduced and protonated congener of nitric oxide (NO), is a chemically unique species with potentially important biological activity. Although HNO-based pharmaceuticals are currently being considered for the treatment of chronic heart failure or stroke/transplant-derived ischemia, the chemical events leading to therapeutic responses are not established. The interaction of HNO with oxidants results in the well-documented conversion to NO, but HNO is expected to be readily reduced as well. Recent thermodynamic calculations predict that reduction of HNO is biologically accessible. Herein, kinetic analysis suggests that the reactions of HNO with several mechanistically distinct reductants are also biologically feasible. Product analysis verified that the reductants had in fact been oxidized and that in several instances HNO had been converted to hydroxylamine. Moreover, a theoretical analysis suggests that in the reaction of HNO with thiol reductants, the pathway producing sulfinamide is significantly more favorable than that leading to disulfide. Additionally, simultaneous production of HNO and NO yielded a biphasic oxidative capacity.</description><identifier>ISSN: 0891-5849</identifier><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2009.06.034</identifier><identifier>PMID: 19577638</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Free radicals ; Hydroxylamine - chemistry ; Hydroxylamine - metabolism ; Kinetics ; Models, Theoretical ; Nitric oxide ; Nitric Oxide - metabolism ; Nitrogen oxides ; Nitrogen Oxides - chemistry ; Nitrogen Oxides - metabolism ; Nitroxyl ; Oxidants - pharmacology ; Oxidation-Reduction ; Reducing Agents - pharmacology ; Reduction ; Sulfhydryl Compounds - pharmacology ; Thiols</subject><ispartof>Free radical biology & medicine, 2009-10, Vol.47 (8), p.1130-1139</ispartof><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-19730f02ff2c3451a6a277ab1e5672b72b6d82f972a5556d3d540d35037a6b7a3</citedby><cites>FETCH-LOGICAL-c524t-19730f02ff2c3451a6a277ab1e5672b72b6d82f972a5556d3d540d35037a6b7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.freeradbiomed.2009.06.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19577638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jackson, Matthew I.</creatorcontrib><creatorcontrib>Han, Tae H.</creatorcontrib><creatorcontrib>Serbulea, Laura</creatorcontrib><creatorcontrib>Dutton, Andrew</creatorcontrib><creatorcontrib>Ford, Eleonora</creatorcontrib><creatorcontrib>Miranda, Katrina M.</creatorcontrib><creatorcontrib>Houk, K.N.</creatorcontrib><creatorcontrib>Wink, David A.</creatorcontrib><creatorcontrib>Fukuto, Jon M.</creatorcontrib><title>Kinetic feasibility of nitroxyl reduction by physiological reductants and biological implications</title><title>Free radical biology & medicine</title><addtitle>Free Radic Biol Med</addtitle><description>Nitroxyl (HNO), the one-electron reduced and protonated congener of nitric oxide (NO), is a chemically unique species with potentially important biological activity. Although HNO-based pharmaceuticals are currently being considered for the treatment of chronic heart failure or stroke/transplant-derived ischemia, the chemical events leading to therapeutic responses are not established. The interaction of HNO with oxidants results in the well-documented conversion to NO, but HNO is expected to be readily reduced as well. Recent thermodynamic calculations predict that reduction of HNO is biologically accessible. Herein, kinetic analysis suggests that the reactions of HNO with several mechanistically distinct reductants are also biologically feasible. Product analysis verified that the reductants had in fact been oxidized and that in several instances HNO had been converted to hydroxylamine. Moreover, a theoretical analysis suggests that in the reaction of HNO with thiol reductants, the pathway producing sulfinamide is significantly more favorable than that leading to disulfide. Additionally, simultaneous production of HNO and NO yielded a biphasic oxidative capacity.</description><subject>Free radicals</subject><subject>Hydroxylamine - chemistry</subject><subject>Hydroxylamine - metabolism</subject><subject>Kinetics</subject><subject>Models, Theoretical</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitrogen oxides</subject><subject>Nitrogen Oxides - chemistry</subject><subject>Nitrogen Oxides - metabolism</subject><subject>Nitroxyl</subject><subject>Oxidants - pharmacology</subject><subject>Oxidation-Reduction</subject><subject>Reducing Agents - pharmacology</subject><subject>Reduction</subject><subject>Sulfhydryl Compounds - pharmacology</subject><subject>Thiols</subject><issn>0891-5849</issn><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkFtLxDAQhYMoul7-ghR8bp00TdIiCCLrBQVf9Dmkuegs3WZJqth_b5f1-iYMzMCZcw58hJxQKChQcboofHQuattiWDpblABNAaIAVm2RGa0lyyveiG0yg7qhOa-rZo_sp7QAgIqzepfs0YZLKVg9I_oOezegybzTCVvscBiz4LMehxjexy6Lzr6aAUOftWO2ehkThi48o9Ffku6HlOneZu2PgstVNx1rWzokO153yR197gPydDV_vLzJ7x-uby8v7nPDy2rIaSMZeCi9Lw2rONVCl1LqljouZNlOI2xd-kaWmnMuLLO8Ass4MKlFKzU7IOeb3NVrO2Exrh-i7tQq4lLHUQWN6q_S44t6Dm9KMgk1b6aAs02AiSGl6Py3l4Jak1cL9Ye8WpNXINREfnIf_67_8X6inh7mmwc3QXhDF1Uy6HrjLEZnBmUD_qvoA0UCoHQ</recordid><startdate>20091015</startdate><enddate>20091015</enddate><creator>Jackson, Matthew I.</creator><creator>Han, Tae H.</creator><creator>Serbulea, Laura</creator><creator>Dutton, Andrew</creator><creator>Ford, Eleonora</creator><creator>Miranda, Katrina M.</creator><creator>Houk, K.N.</creator><creator>Wink, David A.</creator><creator>Fukuto, Jon M.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20091015</creationdate><title>Kinetic feasibility of nitroxyl reduction by physiological reductants and biological implications</title><author>Jackson, Matthew I. ; Han, Tae H. ; Serbulea, Laura ; Dutton, Andrew ; Ford, Eleonora ; Miranda, Katrina M. ; Houk, K.N. ; Wink, David A. ; Fukuto, Jon M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-19730f02ff2c3451a6a277ab1e5672b72b6d82f972a5556d3d540d35037a6b7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Free radicals</topic><topic>Hydroxylamine - chemistry</topic><topic>Hydroxylamine - metabolism</topic><topic>Kinetics</topic><topic>Models, Theoretical</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitrogen oxides</topic><topic>Nitrogen Oxides - chemistry</topic><topic>Nitrogen Oxides - metabolism</topic><topic>Nitroxyl</topic><topic>Oxidants - pharmacology</topic><topic>Oxidation-Reduction</topic><topic>Reducing Agents - pharmacology</topic><topic>Reduction</topic><topic>Sulfhydryl Compounds - pharmacology</topic><topic>Thiols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackson, Matthew I.</creatorcontrib><creatorcontrib>Han, Tae H.</creatorcontrib><creatorcontrib>Serbulea, Laura</creatorcontrib><creatorcontrib>Dutton, Andrew</creatorcontrib><creatorcontrib>Ford, Eleonora</creatorcontrib><creatorcontrib>Miranda, Katrina M.</creatorcontrib><creatorcontrib>Houk, K.N.</creatorcontrib><creatorcontrib>Wink, David A.</creatorcontrib><creatorcontrib>Fukuto, Jon M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Free radical biology & medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackson, Matthew I.</au><au>Han, Tae H.</au><au>Serbulea, Laura</au><au>Dutton, Andrew</au><au>Ford, Eleonora</au><au>Miranda, Katrina M.</au><au>Houk, K.N.</au><au>Wink, David A.</au><au>Fukuto, Jon M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic feasibility of nitroxyl reduction by physiological reductants and biological implications</atitle><jtitle>Free radical biology & medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2009-10-15</date><risdate>2009</risdate><volume>47</volume><issue>8</issue><spage>1130</spage><epage>1139</epage><pages>1130-1139</pages><issn>0891-5849</issn><eissn>1873-4596</eissn><abstract>Nitroxyl (HNO), the one-electron reduced and protonated congener of nitric oxide (NO), is a chemically unique species with potentially important biological activity. Although HNO-based pharmaceuticals are currently being considered for the treatment of chronic heart failure or stroke/transplant-derived ischemia, the chemical events leading to therapeutic responses are not established. The interaction of HNO with oxidants results in the well-documented conversion to NO, but HNO is expected to be readily reduced as well. Recent thermodynamic calculations predict that reduction of HNO is biologically accessible. Herein, kinetic analysis suggests that the reactions of HNO with several mechanistically distinct reductants are also biologically feasible. Product analysis verified that the reductants had in fact been oxidized and that in several instances HNO had been converted to hydroxylamine. Moreover, a theoretical analysis suggests that in the reaction of HNO with thiol reductants, the pathway producing sulfinamide is significantly more favorable than that leading to disulfide. Additionally, simultaneous production of HNO and NO yielded a biphasic oxidative capacity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19577638</pmid><doi>10.1016/j.freeradbiomed.2009.06.034</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0891-5849 |
ispartof | Free radical biology & medicine, 2009-10, Vol.47 (8), p.1130-1139 |
issn | 0891-5849 1873-4596 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7370859 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Free radicals Hydroxylamine - chemistry Hydroxylamine - metabolism Kinetics Models, Theoretical Nitric oxide Nitric Oxide - metabolism Nitrogen oxides Nitrogen Oxides - chemistry Nitrogen Oxides - metabolism Nitroxyl Oxidants - pharmacology Oxidation-Reduction Reducing Agents - pharmacology Reduction Sulfhydryl Compounds - pharmacology Thiols |
title | Kinetic feasibility of nitroxyl reduction by physiological reductants and biological implications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20feasibility%20of%20nitroxyl%20reduction%20by%20physiological%20reductants%20and%20biological%20implications&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Jackson,%20Matthew%20I.&rft.date=2009-10-15&rft.volume=47&rft.issue=8&rft.spage=1130&rft.epage=1139&rft.pages=1130-1139&rft.issn=0891-5849&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2009.06.034&rft_dat=%3Cpubmed_cross%3E19577638%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19577638&rft_els_id=S0891584909004018&rfr_iscdi=true |