Kinetic feasibility of nitroxyl reduction by physiological reductants and biological implications

Nitroxyl (HNO), the one-electron reduced and protonated congener of nitric oxide (NO), is a chemically unique species with potentially important biological activity. Although HNO-based pharmaceuticals are currently being considered for the treatment of chronic heart failure or stroke/transplant-deri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Free radical biology & medicine 2009-10, Vol.47 (8), p.1130-1139
Hauptverfasser: Jackson, Matthew I., Han, Tae H., Serbulea, Laura, Dutton, Andrew, Ford, Eleonora, Miranda, Katrina M., Houk, K.N., Wink, David A., Fukuto, Jon M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1139
container_issue 8
container_start_page 1130
container_title Free radical biology & medicine
container_volume 47
creator Jackson, Matthew I.
Han, Tae H.
Serbulea, Laura
Dutton, Andrew
Ford, Eleonora
Miranda, Katrina M.
Houk, K.N.
Wink, David A.
Fukuto, Jon M.
description Nitroxyl (HNO), the one-electron reduced and protonated congener of nitric oxide (NO), is a chemically unique species with potentially important biological activity. Although HNO-based pharmaceuticals are currently being considered for the treatment of chronic heart failure or stroke/transplant-derived ischemia, the chemical events leading to therapeutic responses are not established. The interaction of HNO with oxidants results in the well-documented conversion to NO, but HNO is expected to be readily reduced as well. Recent thermodynamic calculations predict that reduction of HNO is biologically accessible. Herein, kinetic analysis suggests that the reactions of HNO with several mechanistically distinct reductants are also biologically feasible. Product analysis verified that the reductants had in fact been oxidized and that in several instances HNO had been converted to hydroxylamine. Moreover, a theoretical analysis suggests that in the reaction of HNO with thiol reductants, the pathway producing sulfinamide is significantly more favorable than that leading to disulfide. Additionally, simultaneous production of HNO and NO yielded a biphasic oxidative capacity.
doi_str_mv 10.1016/j.freeradbiomed.2009.06.034
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7370859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0891584909004018</els_id><sourcerecordid>19577638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-19730f02ff2c3451a6a277ab1e5672b72b6d82f972a5556d3d540d35037a6b7a3</originalsourceid><addsrcrecordid>eNqNkFtLxDAQhYMoul7-ghR8bp00TdIiCCLrBQVf9Dmkuegs3WZJqth_b5f1-iYMzMCZcw58hJxQKChQcboofHQuattiWDpblABNAaIAVm2RGa0lyyveiG0yg7qhOa-rZo_sp7QAgIqzepfs0YZLKVg9I_oOezegybzTCVvscBiz4LMehxjexy6Lzr6aAUOftWO2ehkThi48o9Ffku6HlOneZu2PgstVNx1rWzokO153yR197gPydDV_vLzJ7x-uby8v7nPDy2rIaSMZeCi9Lw2rONVCl1LqljouZNlOI2xd-kaWmnMuLLO8Ass4MKlFKzU7IOeb3NVrO2Exrh-i7tQq4lLHUQWN6q_S44t6Dm9KMgk1b6aAs02AiSGl6Py3l4Jak1cL9Ye8WpNXINREfnIf_67_8X6inh7mmwc3QXhDF1Uy6HrjLEZnBmUD_qvoA0UCoHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kinetic feasibility of nitroxyl reduction by physiological reductants and biological implications</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Jackson, Matthew I. ; Han, Tae H. ; Serbulea, Laura ; Dutton, Andrew ; Ford, Eleonora ; Miranda, Katrina M. ; Houk, K.N. ; Wink, David A. ; Fukuto, Jon M.</creator><creatorcontrib>Jackson, Matthew I. ; Han, Tae H. ; Serbulea, Laura ; Dutton, Andrew ; Ford, Eleonora ; Miranda, Katrina M. ; Houk, K.N. ; Wink, David A. ; Fukuto, Jon M.</creatorcontrib><description>Nitroxyl (HNO), the one-electron reduced and protonated congener of nitric oxide (NO), is a chemically unique species with potentially important biological activity. Although HNO-based pharmaceuticals are currently being considered for the treatment of chronic heart failure or stroke/transplant-derived ischemia, the chemical events leading to therapeutic responses are not established. The interaction of HNO with oxidants results in the well-documented conversion to NO, but HNO is expected to be readily reduced as well. Recent thermodynamic calculations predict that reduction of HNO is biologically accessible. Herein, kinetic analysis suggests that the reactions of HNO with several mechanistically distinct reductants are also biologically feasible. Product analysis verified that the reductants had in fact been oxidized and that in several instances HNO had been converted to hydroxylamine. Moreover, a theoretical analysis suggests that in the reaction of HNO with thiol reductants, the pathway producing sulfinamide is significantly more favorable than that leading to disulfide. Additionally, simultaneous production of HNO and NO yielded a biphasic oxidative capacity.</description><identifier>ISSN: 0891-5849</identifier><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2009.06.034</identifier><identifier>PMID: 19577638</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Free radicals ; Hydroxylamine - chemistry ; Hydroxylamine - metabolism ; Kinetics ; Models, Theoretical ; Nitric oxide ; Nitric Oxide - metabolism ; Nitrogen oxides ; Nitrogen Oxides - chemistry ; Nitrogen Oxides - metabolism ; Nitroxyl ; Oxidants - pharmacology ; Oxidation-Reduction ; Reducing Agents - pharmacology ; Reduction ; Sulfhydryl Compounds - pharmacology ; Thiols</subject><ispartof>Free radical biology &amp; medicine, 2009-10, Vol.47 (8), p.1130-1139</ispartof><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-19730f02ff2c3451a6a277ab1e5672b72b6d82f972a5556d3d540d35037a6b7a3</citedby><cites>FETCH-LOGICAL-c524t-19730f02ff2c3451a6a277ab1e5672b72b6d82f972a5556d3d540d35037a6b7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.freeradbiomed.2009.06.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19577638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jackson, Matthew I.</creatorcontrib><creatorcontrib>Han, Tae H.</creatorcontrib><creatorcontrib>Serbulea, Laura</creatorcontrib><creatorcontrib>Dutton, Andrew</creatorcontrib><creatorcontrib>Ford, Eleonora</creatorcontrib><creatorcontrib>Miranda, Katrina M.</creatorcontrib><creatorcontrib>Houk, K.N.</creatorcontrib><creatorcontrib>Wink, David A.</creatorcontrib><creatorcontrib>Fukuto, Jon M.</creatorcontrib><title>Kinetic feasibility of nitroxyl reduction by physiological reductants and biological implications</title><title>Free radical biology &amp; medicine</title><addtitle>Free Radic Biol Med</addtitle><description>Nitroxyl (HNO), the one-electron reduced and protonated congener of nitric oxide (NO), is a chemically unique species with potentially important biological activity. Although HNO-based pharmaceuticals are currently being considered for the treatment of chronic heart failure or stroke/transplant-derived ischemia, the chemical events leading to therapeutic responses are not established. The interaction of HNO with oxidants results in the well-documented conversion to NO, but HNO is expected to be readily reduced as well. Recent thermodynamic calculations predict that reduction of HNO is biologically accessible. Herein, kinetic analysis suggests that the reactions of HNO with several mechanistically distinct reductants are also biologically feasible. Product analysis verified that the reductants had in fact been oxidized and that in several instances HNO had been converted to hydroxylamine. Moreover, a theoretical analysis suggests that in the reaction of HNO with thiol reductants, the pathway producing sulfinamide is significantly more favorable than that leading to disulfide. Additionally, simultaneous production of HNO and NO yielded a biphasic oxidative capacity.</description><subject>Free radicals</subject><subject>Hydroxylamine - chemistry</subject><subject>Hydroxylamine - metabolism</subject><subject>Kinetics</subject><subject>Models, Theoretical</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitrogen oxides</subject><subject>Nitrogen Oxides - chemistry</subject><subject>Nitrogen Oxides - metabolism</subject><subject>Nitroxyl</subject><subject>Oxidants - pharmacology</subject><subject>Oxidation-Reduction</subject><subject>Reducing Agents - pharmacology</subject><subject>Reduction</subject><subject>Sulfhydryl Compounds - pharmacology</subject><subject>Thiols</subject><issn>0891-5849</issn><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkFtLxDAQhYMoul7-ghR8bp00TdIiCCLrBQVf9Dmkuegs3WZJqth_b5f1-iYMzMCZcw58hJxQKChQcboofHQuattiWDpblABNAaIAVm2RGa0lyyveiG0yg7qhOa-rZo_sp7QAgIqzepfs0YZLKVg9I_oOezegybzTCVvscBiz4LMehxjexy6Lzr6aAUOftWO2ehkThi48o9Ffku6HlOneZu2PgstVNx1rWzokO153yR197gPydDV_vLzJ7x-uby8v7nPDy2rIaSMZeCi9Lw2rONVCl1LqljouZNlOI2xd-kaWmnMuLLO8Ass4MKlFKzU7IOeb3NVrO2Exrh-i7tQq4lLHUQWN6q_S44t6Dm9KMgk1b6aAs02AiSGl6Py3l4Jak1cL9Ye8WpNXINREfnIf_67_8X6inh7mmwc3QXhDF1Uy6HrjLEZnBmUD_qvoA0UCoHQ</recordid><startdate>20091015</startdate><enddate>20091015</enddate><creator>Jackson, Matthew I.</creator><creator>Han, Tae H.</creator><creator>Serbulea, Laura</creator><creator>Dutton, Andrew</creator><creator>Ford, Eleonora</creator><creator>Miranda, Katrina M.</creator><creator>Houk, K.N.</creator><creator>Wink, David A.</creator><creator>Fukuto, Jon M.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20091015</creationdate><title>Kinetic feasibility of nitroxyl reduction by physiological reductants and biological implications</title><author>Jackson, Matthew I. ; Han, Tae H. ; Serbulea, Laura ; Dutton, Andrew ; Ford, Eleonora ; Miranda, Katrina M. ; Houk, K.N. ; Wink, David A. ; Fukuto, Jon M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-19730f02ff2c3451a6a277ab1e5672b72b6d82f972a5556d3d540d35037a6b7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Free radicals</topic><topic>Hydroxylamine - chemistry</topic><topic>Hydroxylamine - metabolism</topic><topic>Kinetics</topic><topic>Models, Theoretical</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitrogen oxides</topic><topic>Nitrogen Oxides - chemistry</topic><topic>Nitrogen Oxides - metabolism</topic><topic>Nitroxyl</topic><topic>Oxidants - pharmacology</topic><topic>Oxidation-Reduction</topic><topic>Reducing Agents - pharmacology</topic><topic>Reduction</topic><topic>Sulfhydryl Compounds - pharmacology</topic><topic>Thiols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackson, Matthew I.</creatorcontrib><creatorcontrib>Han, Tae H.</creatorcontrib><creatorcontrib>Serbulea, Laura</creatorcontrib><creatorcontrib>Dutton, Andrew</creatorcontrib><creatorcontrib>Ford, Eleonora</creatorcontrib><creatorcontrib>Miranda, Katrina M.</creatorcontrib><creatorcontrib>Houk, K.N.</creatorcontrib><creatorcontrib>Wink, David A.</creatorcontrib><creatorcontrib>Fukuto, Jon M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Free radical biology &amp; medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackson, Matthew I.</au><au>Han, Tae H.</au><au>Serbulea, Laura</au><au>Dutton, Andrew</au><au>Ford, Eleonora</au><au>Miranda, Katrina M.</au><au>Houk, K.N.</au><au>Wink, David A.</au><au>Fukuto, Jon M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic feasibility of nitroxyl reduction by physiological reductants and biological implications</atitle><jtitle>Free radical biology &amp; medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2009-10-15</date><risdate>2009</risdate><volume>47</volume><issue>8</issue><spage>1130</spage><epage>1139</epage><pages>1130-1139</pages><issn>0891-5849</issn><eissn>1873-4596</eissn><abstract>Nitroxyl (HNO), the one-electron reduced and protonated congener of nitric oxide (NO), is a chemically unique species with potentially important biological activity. Although HNO-based pharmaceuticals are currently being considered for the treatment of chronic heart failure or stroke/transplant-derived ischemia, the chemical events leading to therapeutic responses are not established. The interaction of HNO with oxidants results in the well-documented conversion to NO, but HNO is expected to be readily reduced as well. Recent thermodynamic calculations predict that reduction of HNO is biologically accessible. Herein, kinetic analysis suggests that the reactions of HNO with several mechanistically distinct reductants are also biologically feasible. Product analysis verified that the reductants had in fact been oxidized and that in several instances HNO had been converted to hydroxylamine. Moreover, a theoretical analysis suggests that in the reaction of HNO with thiol reductants, the pathway producing sulfinamide is significantly more favorable than that leading to disulfide. Additionally, simultaneous production of HNO and NO yielded a biphasic oxidative capacity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19577638</pmid><doi>10.1016/j.freeradbiomed.2009.06.034</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0891-5849
ispartof Free radical biology & medicine, 2009-10, Vol.47 (8), p.1130-1139
issn 0891-5849
1873-4596
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7370859
source MEDLINE; Elsevier ScienceDirect Journals
subjects Free radicals
Hydroxylamine - chemistry
Hydroxylamine - metabolism
Kinetics
Models, Theoretical
Nitric oxide
Nitric Oxide - metabolism
Nitrogen oxides
Nitrogen Oxides - chemistry
Nitrogen Oxides - metabolism
Nitroxyl
Oxidants - pharmacology
Oxidation-Reduction
Reducing Agents - pharmacology
Reduction
Sulfhydryl Compounds - pharmacology
Thiols
title Kinetic feasibility of nitroxyl reduction by physiological reductants and biological implications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20feasibility%20of%20nitroxyl%20reduction%20by%20physiological%20reductants%20and%20biological%20implications&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Jackson,%20Matthew%20I.&rft.date=2009-10-15&rft.volume=47&rft.issue=8&rft.spage=1130&rft.epage=1139&rft.pages=1130-1139&rft.issn=0891-5849&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2009.06.034&rft_dat=%3Cpubmed_cross%3E19577638%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19577638&rft_els_id=S0891584909004018&rfr_iscdi=true