RIP1 Is a Novel Component of γ-ionizing Radiation-Induced Invasion of Non-Small Cell Lung Cancer Cells

Previously, we demonstrated that γ-ionizing radiation (IR) triggers the invasion/migration of A549 cells via activation of an EGFR-p38/ERK-STAT3/CREB-1-EMT pathway. Here, we have demonstrated the involvement of a novel intracellular signaling mechanism in γ-ionizing radiation (IR)-induced migration/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2020-06, Vol.21 (13), p.4584
Hauptverfasser: Kang, A-Ram, Cho, Jeong Hyun, Lee, Na-Gyeong, Song, Jie-Young, Hwang, Sang-Gu, Lee, Dae-Hee, Um, Hong-Duck, Park, Jong Kuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 4584
container_title International journal of molecular sciences
container_volume 21
creator Kang, A-Ram
Cho, Jeong Hyun
Lee, Na-Gyeong
Song, Jie-Young
Hwang, Sang-Gu
Lee, Dae-Hee
Um, Hong-Duck
Park, Jong Kuk
description Previously, we demonstrated that γ-ionizing radiation (IR) triggers the invasion/migration of A549 cells via activation of an EGFR-p38/ERK-STAT3/CREB-1-EMT pathway. Here, we have demonstrated the involvement of a novel intracellular signaling mechanism in γ-ionizing radiation (IR)-induced migration/invasion. Expression of receptor-interacting protein (RIP) 1 was initially increased upon exposure of A549, a non-small cell lung cancer (NSCLC) cell line, to IR. IR-induced RIP1 is located downstream of EGFR and involved in the expression/activity of matrix metalloproteases (MMP-2 and MMP-9) and vimentin, suggesting a role in epithelial-mesenchymal transition (EMT). Our experiments showed that IR-induced RIP1 sequentially induces Src-STAT3-EMT to promote invasion/migration. Inhibition of RIP1 kinase activity and expression blocked induction of EMT by IR and suppressed the levels and activities of MMP-2, MMP-9 and vimentin. IR-induced RIP1 activation was additionally associated with stimulation of the transcriptional factor NF-κB. Specifically, exposure to IR triggered NF-κB activation and inhibition of NF-κB suppressed IR-induced RIP1 expression, followed by a decrease in invasion/migration as well as EMT. Based on the collective results, we propose that IR concomitantly activates EGFR and NF-κB and subsequently triggers the RIP1-Src/STAT3-EMT pathway, ultimately promoting metastasis.
doi_str_mv 10.3390/ijms21134584
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7369811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419778245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-eff128786c3c9ee5407be700c25b19d1d0f4b47f18dab84f64f54b57dacddb313</originalsourceid><addsrcrecordid>eNpdkUlLxDAcxYMo7jfPUvDiwWrWpr0IMrgUBhWXc0izjBmmydhMB_Rr-T38TGbcGL1kefn9H3k8APYQPCakgidu3EaMEKGspCtgE1GMcwgLvrp03gBbMY4hxASzah1sEFxAhhjZBKO7-hZldcxkdh3mZpINQjsN3vhZFmz2_pa74N2r86PsTmonZ-ma1173yuis9nMZk7Agr5N-38pJMjBpGfZpYiC9Mt2nEHfAmpWTaHa_923weHH-MLjKhzeX9eBsmCuK8Cw31iJc8rJQRFXGMAp5YziECrMGVRppaGlDuUWllk1JbUEtow3jWiqtG4LINjj98p32TWu0SkE6ORHTzrWyexFBOvH3xbsnMQpzwUlRlWhhcPht0IXn3sSZaF1UKYL0JvRRYIoqigqMYUIP_qHj0Hc-xfukOC8xZYk6-qJUF2LsjP39DIJi0aBYbjDh-8sBfuGfysgHEayXqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419778245</pqid></control><display><type>article</type><title>RIP1 Is a Novel Component of γ-ionizing Radiation-Induced Invasion of Non-Small Cell Lung Cancer Cells</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Kang, A-Ram ; Cho, Jeong Hyun ; Lee, Na-Gyeong ; Song, Jie-Young ; Hwang, Sang-Gu ; Lee, Dae-Hee ; Um, Hong-Duck ; Park, Jong Kuk</creator><creatorcontrib>Kang, A-Ram ; Cho, Jeong Hyun ; Lee, Na-Gyeong ; Song, Jie-Young ; Hwang, Sang-Gu ; Lee, Dae-Hee ; Um, Hong-Duck ; Park, Jong Kuk</creatorcontrib><description>Previously, we demonstrated that γ-ionizing radiation (IR) triggers the invasion/migration of A549 cells via activation of an EGFR-p38/ERK-STAT3/CREB-1-EMT pathway. Here, we have demonstrated the involvement of a novel intracellular signaling mechanism in γ-ionizing radiation (IR)-induced migration/invasion. Expression of receptor-interacting protein (RIP) 1 was initially increased upon exposure of A549, a non-small cell lung cancer (NSCLC) cell line, to IR. IR-induced RIP1 is located downstream of EGFR and involved in the expression/activity of matrix metalloproteases (MMP-2 and MMP-9) and vimentin, suggesting a role in epithelial-mesenchymal transition (EMT). Our experiments showed that IR-induced RIP1 sequentially induces Src-STAT3-EMT to promote invasion/migration. Inhibition of RIP1 kinase activity and expression blocked induction of EMT by IR and suppressed the levels and activities of MMP-2, MMP-9 and vimentin. IR-induced RIP1 activation was additionally associated with stimulation of the transcriptional factor NF-κB. Specifically, exposure to IR triggered NF-κB activation and inhibition of NF-κB suppressed IR-induced RIP1 expression, followed by a decrease in invasion/migration as well as EMT. Based on the collective results, we propose that IR concomitantly activates EGFR and NF-κB and subsequently triggers the RIP1-Src/STAT3-EMT pathway, ultimately promoting metastasis.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21134584</identifier><identifier>PMID: 32605153</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animals ; Apoptosis ; Biomarkers ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; Cancer therapies ; Carcinoma, Non-Small-Cell Lung - genetics ; Carcinoma, Non-Small-Cell Lung - metabolism ; Carcinoma, Non-Small-Cell Lung - pathology ; Carcinoma, Non-Small-Cell Lung - radiotherapy ; Cell activation ; Cell Movement ; Cell Proliferation ; Cyclic AMP response element-binding protein ; Epidermal growth factor receptors ; Epithelial-Mesenchymal Transition ; Experiments ; Extracellular signal-regulated kinase ; Gallbladder ; Gelatinase A ; Gelatinase B ; Gene expression ; Gene Expression Regulation, Neoplastic ; Humans ; Intracellular signalling ; Ionizing radiation ; Kinases ; Lung cancer ; Lung Neoplasms - genetics ; Lung Neoplasms - metabolism ; Lung Neoplasms - pathology ; Lung Neoplasms - radiotherapy ; Matrix metalloproteinases ; Mesenchyme ; Metastases ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Neoplasm Invasiveness ; NF-kappa B - genetics ; NF-kappa B - metabolism ; NF-κB protein ; Non-small cell lung carcinoma ; Pancreatic cancer ; Phosphorylation ; Proteins ; Radiation effects ; Radiation therapy ; Radiation, Ionizing ; Receptor-Interacting Protein Serine-Threonine Kinases - genetics ; Receptor-Interacting Protein Serine-Threonine Kinases - metabolism ; Signal transduction ; Src protein ; Stat3 protein ; STAT3 Transcription Factor - genetics ; STAT3 Transcription Factor - metabolism ; Tumor Cells, Cultured ; Vimentin ; Xenograft Model Antitumor Assays</subject><ispartof>International journal of molecular sciences, 2020-06, Vol.21 (13), p.4584</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-eff128786c3c9ee5407be700c25b19d1d0f4b47f18dab84f64f54b57dacddb313</citedby><cites>FETCH-LOGICAL-c412t-eff128786c3c9ee5407be700c25b19d1d0f4b47f18dab84f64f54b57dacddb313</cites><orcidid>0000-0002-5769-3886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369811/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369811/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32605153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, A-Ram</creatorcontrib><creatorcontrib>Cho, Jeong Hyun</creatorcontrib><creatorcontrib>Lee, Na-Gyeong</creatorcontrib><creatorcontrib>Song, Jie-Young</creatorcontrib><creatorcontrib>Hwang, Sang-Gu</creatorcontrib><creatorcontrib>Lee, Dae-Hee</creatorcontrib><creatorcontrib>Um, Hong-Duck</creatorcontrib><creatorcontrib>Park, Jong Kuk</creatorcontrib><title>RIP1 Is a Novel Component of γ-ionizing Radiation-Induced Invasion of Non-Small Cell Lung Cancer Cells</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Previously, we demonstrated that γ-ionizing radiation (IR) triggers the invasion/migration of A549 cells via activation of an EGFR-p38/ERK-STAT3/CREB-1-EMT pathway. Here, we have demonstrated the involvement of a novel intracellular signaling mechanism in γ-ionizing radiation (IR)-induced migration/invasion. Expression of receptor-interacting protein (RIP) 1 was initially increased upon exposure of A549, a non-small cell lung cancer (NSCLC) cell line, to IR. IR-induced RIP1 is located downstream of EGFR and involved in the expression/activity of matrix metalloproteases (MMP-2 and MMP-9) and vimentin, suggesting a role in epithelial-mesenchymal transition (EMT). Our experiments showed that IR-induced RIP1 sequentially induces Src-STAT3-EMT to promote invasion/migration. Inhibition of RIP1 kinase activity and expression blocked induction of EMT by IR and suppressed the levels and activities of MMP-2, MMP-9 and vimentin. IR-induced RIP1 activation was additionally associated with stimulation of the transcriptional factor NF-κB. Specifically, exposure to IR triggered NF-κB activation and inhibition of NF-κB suppressed IR-induced RIP1 expression, followed by a decrease in invasion/migration as well as EMT. Based on the collective results, we propose that IR concomitantly activates EGFR and NF-κB and subsequently triggers the RIP1-Src/STAT3-EMT pathway, ultimately promoting metastasis.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Cancer therapies</subject><subject>Carcinoma, Non-Small-Cell Lung - genetics</subject><subject>Carcinoma, Non-Small-Cell Lung - metabolism</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Carcinoma, Non-Small-Cell Lung - radiotherapy</subject><subject>Cell activation</subject><subject>Cell Movement</subject><subject>Cell Proliferation</subject><subject>Cyclic AMP response element-binding protein</subject><subject>Epidermal growth factor receptors</subject><subject>Epithelial-Mesenchymal Transition</subject><subject>Experiments</subject><subject>Extracellular signal-regulated kinase</subject><subject>Gallbladder</subject><subject>Gelatinase A</subject><subject>Gelatinase B</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Humans</subject><subject>Intracellular signalling</subject><subject>Ionizing radiation</subject><subject>Kinases</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Lung Neoplasms - radiotherapy</subject><subject>Matrix metalloproteinases</subject><subject>Mesenchyme</subject><subject>Metastases</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Neoplasm Invasiveness</subject><subject>NF-kappa B - genetics</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>Non-small cell lung carcinoma</subject><subject>Pancreatic cancer</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Radiation effects</subject><subject>Radiation therapy</subject><subject>Radiation, Ionizing</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinases - genetics</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinases - metabolism</subject><subject>Signal transduction</subject><subject>Src protein</subject><subject>Stat3 protein</subject><subject>STAT3 Transcription Factor - genetics</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>Tumor Cells, Cultured</subject><subject>Vimentin</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkUlLxDAcxYMo7jfPUvDiwWrWpr0IMrgUBhWXc0izjBmmydhMB_Rr-T38TGbcGL1kefn9H3k8APYQPCakgidu3EaMEKGspCtgE1GMcwgLvrp03gBbMY4hxASzah1sEFxAhhjZBKO7-hZldcxkdh3mZpINQjsN3vhZFmz2_pa74N2r86PsTmonZ-ma1173yuis9nMZk7Agr5N-38pJMjBpGfZpYiC9Mt2nEHfAmpWTaHa_923weHH-MLjKhzeX9eBsmCuK8Cw31iJc8rJQRFXGMAp5YziECrMGVRppaGlDuUWllk1JbUEtow3jWiqtG4LINjj98p32TWu0SkE6ORHTzrWyexFBOvH3xbsnMQpzwUlRlWhhcPht0IXn3sSZaF1UKYL0JvRRYIoqigqMYUIP_qHj0Hc-xfukOC8xZYk6-qJUF2LsjP39DIJi0aBYbjDh-8sBfuGfysgHEayXqQ</recordid><startdate>20200628</startdate><enddate>20200628</enddate><creator>Kang, A-Ram</creator><creator>Cho, Jeong Hyun</creator><creator>Lee, Na-Gyeong</creator><creator>Song, Jie-Young</creator><creator>Hwang, Sang-Gu</creator><creator>Lee, Dae-Hee</creator><creator>Um, Hong-Duck</creator><creator>Park, Jong Kuk</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5769-3886</orcidid></search><sort><creationdate>20200628</creationdate><title>RIP1 Is a Novel Component of γ-ionizing Radiation-Induced Invasion of Non-Small Cell Lung Cancer Cells</title><author>Kang, A-Ram ; Cho, Jeong Hyun ; Lee, Na-Gyeong ; Song, Jie-Young ; Hwang, Sang-Gu ; Lee, Dae-Hee ; Um, Hong-Duck ; Park, Jong Kuk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-eff128786c3c9ee5407be700c25b19d1d0f4b47f18dab84f64f54b57dacddb313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Cancer therapies</topic><topic>Carcinoma, Non-Small-Cell Lung - genetics</topic><topic>Carcinoma, Non-Small-Cell Lung - metabolism</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Carcinoma, Non-Small-Cell Lung - radiotherapy</topic><topic>Cell activation</topic><topic>Cell Movement</topic><topic>Cell Proliferation</topic><topic>Cyclic AMP response element-binding protein</topic><topic>Epidermal growth factor receptors</topic><topic>Epithelial-Mesenchymal Transition</topic><topic>Experiments</topic><topic>Extracellular signal-regulated kinase</topic><topic>Gallbladder</topic><topic>Gelatinase A</topic><topic>Gelatinase B</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Humans</topic><topic>Intracellular signalling</topic><topic>Ionizing radiation</topic><topic>Kinases</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Lung Neoplasms - radiotherapy</topic><topic>Matrix metalloproteinases</topic><topic>Mesenchyme</topic><topic>Metastases</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Neoplasm Invasiveness</topic><topic>NF-kappa B - genetics</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>Non-small cell lung carcinoma</topic><topic>Pancreatic cancer</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Radiation effects</topic><topic>Radiation therapy</topic><topic>Radiation, Ionizing</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinases - genetics</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinases - metabolism</topic><topic>Signal transduction</topic><topic>Src protein</topic><topic>Stat3 protein</topic><topic>STAT3 Transcription Factor - genetics</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>Tumor Cells, Cultured</topic><topic>Vimentin</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, A-Ram</creatorcontrib><creatorcontrib>Cho, Jeong Hyun</creatorcontrib><creatorcontrib>Lee, Na-Gyeong</creatorcontrib><creatorcontrib>Song, Jie-Young</creatorcontrib><creatorcontrib>Hwang, Sang-Gu</creatorcontrib><creatorcontrib>Lee, Dae-Hee</creatorcontrib><creatorcontrib>Um, Hong-Duck</creatorcontrib><creatorcontrib>Park, Jong Kuk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, A-Ram</au><au>Cho, Jeong Hyun</au><au>Lee, Na-Gyeong</au><au>Song, Jie-Young</au><au>Hwang, Sang-Gu</au><au>Lee, Dae-Hee</au><au>Um, Hong-Duck</au><au>Park, Jong Kuk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RIP1 Is a Novel Component of γ-ionizing Radiation-Induced Invasion of Non-Small Cell Lung Cancer Cells</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-06-28</date><risdate>2020</risdate><volume>21</volume><issue>13</issue><spage>4584</spage><pages>4584-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Previously, we demonstrated that γ-ionizing radiation (IR) triggers the invasion/migration of A549 cells via activation of an EGFR-p38/ERK-STAT3/CREB-1-EMT pathway. Here, we have demonstrated the involvement of a novel intracellular signaling mechanism in γ-ionizing radiation (IR)-induced migration/invasion. Expression of receptor-interacting protein (RIP) 1 was initially increased upon exposure of A549, a non-small cell lung cancer (NSCLC) cell line, to IR. IR-induced RIP1 is located downstream of EGFR and involved in the expression/activity of matrix metalloproteases (MMP-2 and MMP-9) and vimentin, suggesting a role in epithelial-mesenchymal transition (EMT). Our experiments showed that IR-induced RIP1 sequentially induces Src-STAT3-EMT to promote invasion/migration. Inhibition of RIP1 kinase activity and expression blocked induction of EMT by IR and suppressed the levels and activities of MMP-2, MMP-9 and vimentin. IR-induced RIP1 activation was additionally associated with stimulation of the transcriptional factor NF-κB. Specifically, exposure to IR triggered NF-κB activation and inhibition of NF-κB suppressed IR-induced RIP1 expression, followed by a decrease in invasion/migration as well as EMT. Based on the collective results, we propose that IR concomitantly activates EGFR and NF-κB and subsequently triggers the RIP1-Src/STAT3-EMT pathway, ultimately promoting metastasis.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32605153</pmid><doi>10.3390/ijms21134584</doi><orcidid>https://orcid.org/0000-0002-5769-3886</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2020-06, Vol.21 (13), p.4584
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7369811
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; PubMed Central; EZB Electronic Journals Library
subjects Animals
Apoptosis
Biomarkers
Biomarkers, Tumor - genetics
Biomarkers, Tumor - metabolism
Cancer therapies
Carcinoma, Non-Small-Cell Lung - genetics
Carcinoma, Non-Small-Cell Lung - metabolism
Carcinoma, Non-Small-Cell Lung - pathology
Carcinoma, Non-Small-Cell Lung - radiotherapy
Cell activation
Cell Movement
Cell Proliferation
Cyclic AMP response element-binding protein
Epidermal growth factor receptors
Epithelial-Mesenchymal Transition
Experiments
Extracellular signal-regulated kinase
Gallbladder
Gelatinase A
Gelatinase B
Gene expression
Gene Expression Regulation, Neoplastic
Humans
Intracellular signalling
Ionizing radiation
Kinases
Lung cancer
Lung Neoplasms - genetics
Lung Neoplasms - metabolism
Lung Neoplasms - pathology
Lung Neoplasms - radiotherapy
Matrix metalloproteinases
Mesenchyme
Metastases
Mice
Mice, Inbred BALB C
Mice, Nude
Neoplasm Invasiveness
NF-kappa B - genetics
NF-kappa B - metabolism
NF-κB protein
Non-small cell lung carcinoma
Pancreatic cancer
Phosphorylation
Proteins
Radiation effects
Radiation therapy
Radiation, Ionizing
Receptor-Interacting Protein Serine-Threonine Kinases - genetics
Receptor-Interacting Protein Serine-Threonine Kinases - metabolism
Signal transduction
Src protein
Stat3 protein
STAT3 Transcription Factor - genetics
STAT3 Transcription Factor - metabolism
Tumor Cells, Cultured
Vimentin
Xenograft Model Antitumor Assays
title RIP1 Is a Novel Component of γ-ionizing Radiation-Induced Invasion of Non-Small Cell Lung Cancer Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RIP1%20Is%20a%20Novel%20Component%20of%20%CE%B3-ionizing%20Radiation-Induced%20Invasion%20of%20Non-Small%20Cell%20Lung%20Cancer%20Cells&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Kang,%20A-Ram&rft.date=2020-06-28&rft.volume=21&rft.issue=13&rft.spage=4584&rft.pages=4584-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21134584&rft_dat=%3Cproquest_pubme%3E2419778245%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419778245&rft_id=info:pmid/32605153&rfr_iscdi=true