Body composition analysis using CT and MRI: intra-individual intermodal comparison of muscle mass and myosteatosis

Computed tomography (CT) and magnetic resonance imaging (MRI) can quantify muscle mass and quality. However, it is still unclear if CT and MRI derived measurements can be used interchangeable. In this prospective study, fifty consecutive participants of a cancer screening program underwent same day...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-07, Vol.10 (1), p.11765-11765, Article 11765
Hauptverfasser: Faron, Anton, Sprinkart, Alois M., Kuetting, Daniel L. R., Feisst, Andreas, Isaak, Alexander, Endler, Christoph, Chang, Johannes, Nowak, Sebastian, Block, Wolfgang, Thomas, Daniel, Attenberger, Ulrike, Luetkens, Julian A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11765
container_issue 1
container_start_page 11765
container_title Scientific reports
container_volume 10
creator Faron, Anton
Sprinkart, Alois M.
Kuetting, Daniel L. R.
Feisst, Andreas
Isaak, Alexander
Endler, Christoph
Chang, Johannes
Nowak, Sebastian
Block, Wolfgang
Thomas, Daniel
Attenberger, Ulrike
Luetkens, Julian A.
description Computed tomography (CT) and magnetic resonance imaging (MRI) can quantify muscle mass and quality. However, it is still unclear if CT and MRI derived measurements can be used interchangeable. In this prospective study, fifty consecutive participants of a cancer screening program underwent same day low-dose chest CT and MRI. Cross-sectional areas (CSA) of the paraspinal skeletal muscles were obtained. CT and MRI muscle fat infiltration (MFI) were assessed by mean radiodensity in Hounsfield units (HU) and proton density fat fraction (MRI PDFF ), respectively. CSA and MFI were highly correlated between CT and MRI (CSA: r = 0.93, P 
doi_str_mv 10.1038/s41598-020-68797-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7367311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424342568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-2d83512595be5b03acc53a616ae31731c8b04035e98671f3bde642c1c0328b243</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1ERau2f4ADisSFS6jtsR2bAxJd8VGpCAmVs-U43sVVEi-epNL-e7xN6dcBXzyaeeadsV9CXjP6nlHQZyiYNLqmnNZKN6ap4QU54lTImgPnLx_Fh-QU8ZqWI7kRzLwih8BVo7miRySfp25X-TRsE8YpprFyo-t3GLGaMY6banVVMl31_efFhyqOU3Z1HLt4E7vZ9ftEyEPqSriXcDliUUjrapjR96EaHOJt-7BLOAU3lSF4Qg7Wrsdwencfk19fPl-tvtWXP75erD5d1l4KOtW80yAZl0a2QbYUnPcSnGLKBWANMK9bKijIYLRq2BraLijBPfMUuG65gGPycdHdzu0QOh_22_d2m-Pg8s4mF-3Tyhh_2026sQ2oos-KwLs7gZz-zAEnO0T0oe_dGNKMlgsujDFM04K-fYZepzmXn1woEFwqXSi-UD4nxBzW98swaveu2sVVW1y1t65aKE1vHj_jvuWfhwWABcBSGjchP8z-j-xfIFuubA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424342568</pqid></control><display><type>article</type><title>Body composition analysis using CT and MRI: intra-individual intermodal comparison of muscle mass and myosteatosis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Faron, Anton ; Sprinkart, Alois M. ; Kuetting, Daniel L. R. ; Feisst, Andreas ; Isaak, Alexander ; Endler, Christoph ; Chang, Johannes ; Nowak, Sebastian ; Block, Wolfgang ; Thomas, Daniel ; Attenberger, Ulrike ; Luetkens, Julian A.</creator><creatorcontrib>Faron, Anton ; Sprinkart, Alois M. ; Kuetting, Daniel L. R. ; Feisst, Andreas ; Isaak, Alexander ; Endler, Christoph ; Chang, Johannes ; Nowak, Sebastian ; Block, Wolfgang ; Thomas, Daniel ; Attenberger, Ulrike ; Luetkens, Julian A.</creatorcontrib><description>Computed tomography (CT) and magnetic resonance imaging (MRI) can quantify muscle mass and quality. However, it is still unclear if CT and MRI derived measurements can be used interchangeable. In this prospective study, fifty consecutive participants of a cancer screening program underwent same day low-dose chest CT and MRI. Cross-sectional areas (CSA) of the paraspinal skeletal muscles were obtained. CT and MRI muscle fat infiltration (MFI) were assessed by mean radiodensity in Hounsfield units (HU) and proton density fat fraction (MRI PDFF ), respectively. CSA and MFI were highly correlated between CT and MRI (CSA: r = 0.93, P &lt; 0.001; MFI: r = − 0.90, P &lt; 0.001). Mean CSA was higher in CT compared to MRI (46.6cm 2 versus 43.0cm 2 ; P = 0.05) without significance. Based on MRI PDFF , a linear regression model was established to directly estimate skeletal muscle fat content from CT. Bland–Altman plots showed a difference between measurements of − 0.5 cm 2 to 7.6 cm 2 and − 4.2% to 2.4% regarding measurements of CSA and MFI, respectively. In conclusion, the provided results indicate interchangeability of CT and MRI derived imaging biomarkers of skeletal muscle quantity and quality. Comparable to MRI PDFF , skeletal muscle fat content can be quantified from CT, which might have an impact of analyses in larger cohort studies, particularly in sarcopenia patients.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-68797-3</identifier><identifier>PMID: 32678260</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/53 ; 692/698/1671/1668 ; Adipose Tissue - diagnostic imaging ; Adipose Tissue - pathology ; Adiposity ; Aged ; Body Composition ; Cancer screening ; Computed tomography ; Female ; Humanities and Social Sciences ; Humans ; Magnetic Resonance Imaging ; Male ; Medical screening ; Middle Aged ; multidisciplinary ; Muscle, Skeletal - anatomy &amp; histology ; Muscle, Skeletal - diagnostic imaging ; Muscle, Skeletal - pathology ; Muscles ; Musculoskeletal system ; Organ Size ; Sarcopenia ; Science ; Science (multidisciplinary) ; Skeletal muscle ; Tomography, X-Ray Computed</subject><ispartof>Scientific reports, 2020-07, Vol.10 (1), p.11765-11765, Article 11765</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-2d83512595be5b03acc53a616ae31731c8b04035e98671f3bde642c1c0328b243</citedby><cites>FETCH-LOGICAL-c540t-2d83512595be5b03acc53a616ae31731c8b04035e98671f3bde642c1c0328b243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367311/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367311/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32678260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Faron, Anton</creatorcontrib><creatorcontrib>Sprinkart, Alois M.</creatorcontrib><creatorcontrib>Kuetting, Daniel L. R.</creatorcontrib><creatorcontrib>Feisst, Andreas</creatorcontrib><creatorcontrib>Isaak, Alexander</creatorcontrib><creatorcontrib>Endler, Christoph</creatorcontrib><creatorcontrib>Chang, Johannes</creatorcontrib><creatorcontrib>Nowak, Sebastian</creatorcontrib><creatorcontrib>Block, Wolfgang</creatorcontrib><creatorcontrib>Thomas, Daniel</creatorcontrib><creatorcontrib>Attenberger, Ulrike</creatorcontrib><creatorcontrib>Luetkens, Julian A.</creatorcontrib><title>Body composition analysis using CT and MRI: intra-individual intermodal comparison of muscle mass and myosteatosis</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Computed tomography (CT) and magnetic resonance imaging (MRI) can quantify muscle mass and quality. However, it is still unclear if CT and MRI derived measurements can be used interchangeable. In this prospective study, fifty consecutive participants of a cancer screening program underwent same day low-dose chest CT and MRI. Cross-sectional areas (CSA) of the paraspinal skeletal muscles were obtained. CT and MRI muscle fat infiltration (MFI) were assessed by mean radiodensity in Hounsfield units (HU) and proton density fat fraction (MRI PDFF ), respectively. CSA and MFI were highly correlated between CT and MRI (CSA: r = 0.93, P &lt; 0.001; MFI: r = − 0.90, P &lt; 0.001). Mean CSA was higher in CT compared to MRI (46.6cm 2 versus 43.0cm 2 ; P = 0.05) without significance. Based on MRI PDFF , a linear regression model was established to directly estimate skeletal muscle fat content from CT. Bland–Altman plots showed a difference between measurements of − 0.5 cm 2 to 7.6 cm 2 and − 4.2% to 2.4% regarding measurements of CSA and MFI, respectively. In conclusion, the provided results indicate interchangeability of CT and MRI derived imaging biomarkers of skeletal muscle quantity and quality. Comparable to MRI PDFF , skeletal muscle fat content can be quantified from CT, which might have an impact of analyses in larger cohort studies, particularly in sarcopenia patients.</description><subject>692/53</subject><subject>692/698/1671/1668</subject><subject>Adipose Tissue - diagnostic imaging</subject><subject>Adipose Tissue - pathology</subject><subject>Adiposity</subject><subject>Aged</subject><subject>Body Composition</subject><subject>Cancer screening</subject><subject>Computed tomography</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical screening</subject><subject>Middle Aged</subject><subject>multidisciplinary</subject><subject>Muscle, Skeletal - anatomy &amp; histology</subject><subject>Muscle, Skeletal - diagnostic imaging</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Organ Size</subject><subject>Sarcopenia</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Skeletal muscle</subject><subject>Tomography, X-Ray Computed</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1v1DAQhi1ERau2f4ADisSFS6jtsR2bAxJd8VGpCAmVs-U43sVVEi-epNL-e7xN6dcBXzyaeeadsV9CXjP6nlHQZyiYNLqmnNZKN6ap4QU54lTImgPnLx_Fh-QU8ZqWI7kRzLwih8BVo7miRySfp25X-TRsE8YpprFyo-t3GLGaMY6banVVMl31_efFhyqOU3Z1HLt4E7vZ9ftEyEPqSriXcDliUUjrapjR96EaHOJt-7BLOAU3lSF4Qg7Wrsdwencfk19fPl-tvtWXP75erD5d1l4KOtW80yAZl0a2QbYUnPcSnGLKBWANMK9bKijIYLRq2BraLijBPfMUuG65gGPycdHdzu0QOh_22_d2m-Pg8s4mF-3Tyhh_2026sQ2oos-KwLs7gZz-zAEnO0T0oe_dGNKMlgsujDFM04K-fYZepzmXn1woEFwqXSi-UD4nxBzW98swaveu2sVVW1y1t65aKE1vHj_jvuWfhwWABcBSGjchP8z-j-xfIFuubA</recordid><startdate>20200716</startdate><enddate>20200716</enddate><creator>Faron, Anton</creator><creator>Sprinkart, Alois M.</creator><creator>Kuetting, Daniel L. R.</creator><creator>Feisst, Andreas</creator><creator>Isaak, Alexander</creator><creator>Endler, Christoph</creator><creator>Chang, Johannes</creator><creator>Nowak, Sebastian</creator><creator>Block, Wolfgang</creator><creator>Thomas, Daniel</creator><creator>Attenberger, Ulrike</creator><creator>Luetkens, Julian A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200716</creationdate><title>Body composition analysis using CT and MRI: intra-individual intermodal comparison of muscle mass and myosteatosis</title><author>Faron, Anton ; Sprinkart, Alois M. ; Kuetting, Daniel L. R. ; Feisst, Andreas ; Isaak, Alexander ; Endler, Christoph ; Chang, Johannes ; Nowak, Sebastian ; Block, Wolfgang ; Thomas, Daniel ; Attenberger, Ulrike ; Luetkens, Julian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-2d83512595be5b03acc53a616ae31731c8b04035e98671f3bde642c1c0328b243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>692/53</topic><topic>692/698/1671/1668</topic><topic>Adipose Tissue - diagnostic imaging</topic><topic>Adipose Tissue - pathology</topic><topic>Adiposity</topic><topic>Aged</topic><topic>Body Composition</topic><topic>Cancer screening</topic><topic>Computed tomography</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical screening</topic><topic>Middle Aged</topic><topic>multidisciplinary</topic><topic>Muscle, Skeletal - anatomy &amp; histology</topic><topic>Muscle, Skeletal - diagnostic imaging</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Organ Size</topic><topic>Sarcopenia</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Skeletal muscle</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faron, Anton</creatorcontrib><creatorcontrib>Sprinkart, Alois M.</creatorcontrib><creatorcontrib>Kuetting, Daniel L. R.</creatorcontrib><creatorcontrib>Feisst, Andreas</creatorcontrib><creatorcontrib>Isaak, Alexander</creatorcontrib><creatorcontrib>Endler, Christoph</creatorcontrib><creatorcontrib>Chang, Johannes</creatorcontrib><creatorcontrib>Nowak, Sebastian</creatorcontrib><creatorcontrib>Block, Wolfgang</creatorcontrib><creatorcontrib>Thomas, Daniel</creatorcontrib><creatorcontrib>Attenberger, Ulrike</creatorcontrib><creatorcontrib>Luetkens, Julian A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faron, Anton</au><au>Sprinkart, Alois M.</au><au>Kuetting, Daniel L. R.</au><au>Feisst, Andreas</au><au>Isaak, Alexander</au><au>Endler, Christoph</au><au>Chang, Johannes</au><au>Nowak, Sebastian</au><au>Block, Wolfgang</au><au>Thomas, Daniel</au><au>Attenberger, Ulrike</au><au>Luetkens, Julian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Body composition analysis using CT and MRI: intra-individual intermodal comparison of muscle mass and myosteatosis</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-07-16</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>11765</spage><epage>11765</epage><pages>11765-11765</pages><artnum>11765</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Computed tomography (CT) and magnetic resonance imaging (MRI) can quantify muscle mass and quality. However, it is still unclear if CT and MRI derived measurements can be used interchangeable. In this prospective study, fifty consecutive participants of a cancer screening program underwent same day low-dose chest CT and MRI. Cross-sectional areas (CSA) of the paraspinal skeletal muscles were obtained. CT and MRI muscle fat infiltration (MFI) were assessed by mean radiodensity in Hounsfield units (HU) and proton density fat fraction (MRI PDFF ), respectively. CSA and MFI were highly correlated between CT and MRI (CSA: r = 0.93, P &lt; 0.001; MFI: r = − 0.90, P &lt; 0.001). Mean CSA was higher in CT compared to MRI (46.6cm 2 versus 43.0cm 2 ; P = 0.05) without significance. Based on MRI PDFF , a linear regression model was established to directly estimate skeletal muscle fat content from CT. Bland–Altman plots showed a difference between measurements of − 0.5 cm 2 to 7.6 cm 2 and − 4.2% to 2.4% regarding measurements of CSA and MFI, respectively. In conclusion, the provided results indicate interchangeability of CT and MRI derived imaging biomarkers of skeletal muscle quantity and quality. Comparable to MRI PDFF , skeletal muscle fat content can be quantified from CT, which might have an impact of analyses in larger cohort studies, particularly in sarcopenia patients.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32678260</pmid><doi>10.1038/s41598-020-68797-3</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-07, Vol.10 (1), p.11765-11765, Article 11765
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7367311
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 692/53
692/698/1671/1668
Adipose Tissue - diagnostic imaging
Adipose Tissue - pathology
Adiposity
Aged
Body Composition
Cancer screening
Computed tomography
Female
Humanities and Social Sciences
Humans
Magnetic Resonance Imaging
Male
Medical screening
Middle Aged
multidisciplinary
Muscle, Skeletal - anatomy & histology
Muscle, Skeletal - diagnostic imaging
Muscle, Skeletal - pathology
Muscles
Musculoskeletal system
Organ Size
Sarcopenia
Science
Science (multidisciplinary)
Skeletal muscle
Tomography, X-Ray Computed
title Body composition analysis using CT and MRI: intra-individual intermodal comparison of muscle mass and myosteatosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A00%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Body%20composition%20analysis%20using%20CT%20and%20MRI:%20intra-individual%20intermodal%20comparison%20of%20muscle%20mass%20and%20myosteatosis&rft.jtitle=Scientific%20reports&rft.au=Faron,%20Anton&rft.date=2020-07-16&rft.volume=10&rft.issue=1&rft.spage=11765&rft.epage=11765&rft.pages=11765-11765&rft.artnum=11765&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-68797-3&rft_dat=%3Cproquest_pubme%3E2424342568%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424342568&rft_id=info:pmid/32678260&rfr_iscdi=true