Identification of spin effects in the anomalous Righi–Leduc effect in ferromagnetic metals

The emerging of spin caloritronics leads to a series of new spin-thermal related effects, such as spin Seebeck effect (SSE), spin Nernst effect (SNE) and their corresponding inverse effects. Anomalous Righi–Leduc effect (ARLE) describes that a transverse temperature gradient can be induced by a long...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-07, Vol.10 (1), p.11732-11732, Article 11732
Hauptverfasser: Zhou, Da-Kun, Xu, Qing-Lian, Yu, Xiao-Qin, Zhu, Zhen-Gang, Su, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11732
container_issue 1
container_start_page 11732
container_title Scientific reports
container_volume 10
creator Zhou, Da-Kun
Xu, Qing-Lian
Yu, Xiao-Qin
Zhu, Zhen-Gang
Su, Gang
description The emerging of spin caloritronics leads to a series of new spin-thermal related effects, such as spin Seebeck effect (SSE), spin Nernst effect (SNE) and their corresponding inverse effects. Anomalous Righi–Leduc effect (ARLE) describes that a transverse temperature gradient can be induced by a longitudinal heat flow in ferromagnets. The driving force and the response of the ARLE are all involved with heat. It is curious if spin effects mediate the heat transport and provide extra influence. In this work, we investigate the ARLE and the interplay between the heat current, charge current, and spin current via linear response theory. We identified that spin effects do have clear roles in heat transport, which can be confirmed by phase shifts of voltage output varying with the direction of magnetization. Our formulas fit the experimental data very well. Moreover, we discuss more configuration of magnetization which is expected to be tested in the future. It should be emphasized that the present formalism including spin effects is out of the theory based on magnon transport, which may be conspicuous in the devices within the spin diffusion length.
doi_str_mv 10.1038/s41598-020-68669-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7366670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424341969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-bc658b0af96129b5bb9611f83456d0c7e7d95e62a6611f7840ec2f0c0f9061c43</originalsourceid><addsrcrecordid>eNp9kc1q3DAUhUVIaUKaF-jKkE02TvVn2doEQkjSwEAhtLuCkOWrGQ22NJXsDNnlHfKGfZJqfmiaLKrNvUjfPdyjg9Bngi8IZs2XxEklmxJTXIpGCFmuD9AxxbwqKaP08J_-CJ2mtMT5VFRyIj-iI0ZF3ZCaHqOf9x340Vln9OiCL4It0sr5AqwFM6Yit-MCCu3DoPswpeLBzRfu9_PLDLrJ7LENZSHGzMw9jM4UA4y6T5_QB5sLnO7rCfpxe_P9-ms5-3Z3f301Kw3HdCxbI6qmxdpKQahsq7bNDbEN45XosKmh7mQFgmqxua4bjsFQiw22EgtiODtBlzvd1dQO0JnsKOperaIbdHxSQTv19sW7hZqHR1UzIUSNs8D5XiCGXxOkUQ0uGeh77SGbVpRTLiXjTZ3Rs3foMkzRZ3tbiuUPFjJTdEeZGFKKYP8uQ7Da5Kd2-amcn9rmp9Z5iO2GUob9HOKr9H-m_gCOBJ5t</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424341969</pqid></control><display><type>article</type><title>Identification of spin effects in the anomalous Righi–Leduc effect in ferromagnetic metals</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhou, Da-Kun ; Xu, Qing-Lian ; Yu, Xiao-Qin ; Zhu, Zhen-Gang ; Su, Gang</creator><creatorcontrib>Zhou, Da-Kun ; Xu, Qing-Lian ; Yu, Xiao-Qin ; Zhu, Zhen-Gang ; Su, Gang</creatorcontrib><description>The emerging of spin caloritronics leads to a series of new spin-thermal related effects, such as spin Seebeck effect (SSE), spin Nernst effect (SNE) and their corresponding inverse effects. Anomalous Righi–Leduc effect (ARLE) describes that a transverse temperature gradient can be induced by a longitudinal heat flow in ferromagnets. The driving force and the response of the ARLE are all involved with heat. It is curious if spin effects mediate the heat transport and provide extra influence. In this work, we investigate the ARLE and the interplay between the heat current, charge current, and spin current via linear response theory. We identified that spin effects do have clear roles in heat transport, which can be confirmed by phase shifts of voltage output varying with the direction of magnetization. Our formulas fit the experimental data very well. Moreover, we discuss more configuration of magnetization which is expected to be tested in the future. It should be emphasized that the present formalism including spin effects is out of the theory based on magnon transport, which may be conspicuous in the devices within the spin diffusion length.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-68669-w</identifier><identifier>PMID: 32678172</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766 ; 639/766/119/1001 ; Electric fields ; Electromagnetism ; Heat ; Heat flow ; Heat transport ; Humanities and Social Sciences ; Magnetic fields ; Metals ; multidisciplinary ; Physics ; Science ; Science (multidisciplinary) ; Temperature gradients</subject><ispartof>Scientific reports, 2020-07, Vol.10 (1), p.11732-11732, Article 11732</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c402t-bc658b0af96129b5bb9611f83456d0c7e7d95e62a6611f7840ec2f0c0f9061c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366670/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366670/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids></links><search><creatorcontrib>Zhou, Da-Kun</creatorcontrib><creatorcontrib>Xu, Qing-Lian</creatorcontrib><creatorcontrib>Yu, Xiao-Qin</creatorcontrib><creatorcontrib>Zhu, Zhen-Gang</creatorcontrib><creatorcontrib>Su, Gang</creatorcontrib><title>Identification of spin effects in the anomalous Righi–Leduc effect in ferromagnetic metals</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>The emerging of spin caloritronics leads to a series of new spin-thermal related effects, such as spin Seebeck effect (SSE), spin Nernst effect (SNE) and their corresponding inverse effects. Anomalous Righi–Leduc effect (ARLE) describes that a transverse temperature gradient can be induced by a longitudinal heat flow in ferromagnets. The driving force and the response of the ARLE are all involved with heat. It is curious if spin effects mediate the heat transport and provide extra influence. In this work, we investigate the ARLE and the interplay between the heat current, charge current, and spin current via linear response theory. We identified that spin effects do have clear roles in heat transport, which can be confirmed by phase shifts of voltage output varying with the direction of magnetization. Our formulas fit the experimental data very well. Moreover, we discuss more configuration of magnetization which is expected to be tested in the future. It should be emphasized that the present formalism including spin effects is out of the theory based on magnon transport, which may be conspicuous in the devices within the spin diffusion length.</description><subject>639/766</subject><subject>639/766/119/1001</subject><subject>Electric fields</subject><subject>Electromagnetism</subject><subject>Heat</subject><subject>Heat flow</subject><subject>Heat transport</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic fields</subject><subject>Metals</subject><subject>multidisciplinary</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Temperature gradients</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1q3DAUhUVIaUKaF-jKkE02TvVn2doEQkjSwEAhtLuCkOWrGQ22NJXsDNnlHfKGfZJqfmiaLKrNvUjfPdyjg9Bngi8IZs2XxEklmxJTXIpGCFmuD9AxxbwqKaP08J_-CJ2mtMT5VFRyIj-iI0ZF3ZCaHqOf9x340Vln9OiCL4It0sr5AqwFM6Yit-MCCu3DoPswpeLBzRfu9_PLDLrJ7LENZSHGzMw9jM4UA4y6T5_QB5sLnO7rCfpxe_P9-ms5-3Z3f301Kw3HdCxbI6qmxdpKQahsq7bNDbEN45XosKmh7mQFgmqxua4bjsFQiw22EgtiODtBlzvd1dQO0JnsKOperaIbdHxSQTv19sW7hZqHR1UzIUSNs8D5XiCGXxOkUQ0uGeh77SGbVpRTLiXjTZ3Rs3foMkzRZ3tbiuUPFjJTdEeZGFKKYP8uQ7Da5Kd2-amcn9rmp9Z5iO2GUob9HOKr9H-m_gCOBJ5t</recordid><startdate>20200716</startdate><enddate>20200716</enddate><creator>Zhou, Da-Kun</creator><creator>Xu, Qing-Lian</creator><creator>Yu, Xiao-Qin</creator><creator>Zhu, Zhen-Gang</creator><creator>Su, Gang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200716</creationdate><title>Identification of spin effects in the anomalous Righi–Leduc effect in ferromagnetic metals</title><author>Zhou, Da-Kun ; Xu, Qing-Lian ; Yu, Xiao-Qin ; Zhu, Zhen-Gang ; Su, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-bc658b0af96129b5bb9611f83456d0c7e7d95e62a6611f7840ec2f0c0f9061c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766</topic><topic>639/766/119/1001</topic><topic>Electric fields</topic><topic>Electromagnetism</topic><topic>Heat</topic><topic>Heat flow</topic><topic>Heat transport</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic fields</topic><topic>Metals</topic><topic>multidisciplinary</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Temperature gradients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Da-Kun</creatorcontrib><creatorcontrib>Xu, Qing-Lian</creatorcontrib><creatorcontrib>Yu, Xiao-Qin</creatorcontrib><creatorcontrib>Zhu, Zhen-Gang</creatorcontrib><creatorcontrib>Su, Gang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Da-Kun</au><au>Xu, Qing-Lian</au><au>Yu, Xiao-Qin</au><au>Zhu, Zhen-Gang</au><au>Su, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of spin effects in the anomalous Righi–Leduc effect in ferromagnetic metals</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-07-16</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>11732</spage><epage>11732</epage><pages>11732-11732</pages><artnum>11732</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The emerging of spin caloritronics leads to a series of new spin-thermal related effects, such as spin Seebeck effect (SSE), spin Nernst effect (SNE) and their corresponding inverse effects. Anomalous Righi–Leduc effect (ARLE) describes that a transverse temperature gradient can be induced by a longitudinal heat flow in ferromagnets. The driving force and the response of the ARLE are all involved with heat. It is curious if spin effects mediate the heat transport and provide extra influence. In this work, we investigate the ARLE and the interplay between the heat current, charge current, and spin current via linear response theory. We identified that spin effects do have clear roles in heat transport, which can be confirmed by phase shifts of voltage output varying with the direction of magnetization. Our formulas fit the experimental data very well. Moreover, we discuss more configuration of magnetization which is expected to be tested in the future. It should be emphasized that the present formalism including spin effects is out of the theory based on magnon transport, which may be conspicuous in the devices within the spin diffusion length.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32678172</pmid><doi>10.1038/s41598-020-68669-w</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-07, Vol.10 (1), p.11732-11732, Article 11732
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7366670
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry
subjects 639/766
639/766/119/1001
Electric fields
Electromagnetism
Heat
Heat flow
Heat transport
Humanities and Social Sciences
Magnetic fields
Metals
multidisciplinary
Physics
Science
Science (multidisciplinary)
Temperature gradients
title Identification of spin effects in the anomalous Righi–Leduc effect in ferromagnetic metals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20spin%20effects%20in%20the%20anomalous%20Righi%E2%80%93Leduc%20effect%20in%20ferromagnetic%20metals&rft.jtitle=Scientific%20reports&rft.au=Zhou,%20Da-Kun&rft.date=2020-07-16&rft.volume=10&rft.issue=1&rft.spage=11732&rft.epage=11732&rft.pages=11732-11732&rft.artnum=11732&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-68669-w&rft_dat=%3Cproquest_pubme%3E2424341969%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424341969&rft_id=info:pmid/32678172&rfr_iscdi=true