Identification of spin effects in the anomalous Righi–Leduc effect in ferromagnetic metals
The emerging of spin caloritronics leads to a series of new spin-thermal related effects, such as spin Seebeck effect (SSE), spin Nernst effect (SNE) and their corresponding inverse effects. Anomalous Righi–Leduc effect (ARLE) describes that a transverse temperature gradient can be induced by a long...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-07, Vol.10 (1), p.11732-11732, Article 11732 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11732 |
---|---|
container_issue | 1 |
container_start_page | 11732 |
container_title | Scientific reports |
container_volume | 10 |
creator | Zhou, Da-Kun Xu, Qing-Lian Yu, Xiao-Qin Zhu, Zhen-Gang Su, Gang |
description | The emerging of spin caloritronics leads to a series of new spin-thermal related effects, such as spin Seebeck effect (SSE), spin Nernst effect (SNE) and their corresponding inverse effects. Anomalous Righi–Leduc effect (ARLE) describes that a transverse temperature gradient can be induced by a longitudinal heat flow in ferromagnets. The driving force and the response of the ARLE are all involved with heat. It is curious if spin effects mediate the heat transport and provide extra influence. In this work, we investigate the ARLE and the interplay between the heat current, charge current, and spin current via linear response theory. We identified that spin effects do have clear roles in heat transport, which can be confirmed by phase shifts of voltage output varying with the direction of magnetization. Our formulas fit the experimental data very well. Moreover, we discuss more configuration of magnetization which is expected to be tested in the future. It should be emphasized that the present formalism including spin effects is out of the theory based on magnon transport, which may be conspicuous in the devices within the spin diffusion length. |
doi_str_mv | 10.1038/s41598-020-68669-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7366670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424341969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-bc658b0af96129b5bb9611f83456d0c7e7d95e62a6611f7840ec2f0c0f9061c43</originalsourceid><addsrcrecordid>eNp9kc1q3DAUhUVIaUKaF-jKkE02TvVn2doEQkjSwEAhtLuCkOWrGQ22NJXsDNnlHfKGfZJqfmiaLKrNvUjfPdyjg9Bngi8IZs2XxEklmxJTXIpGCFmuD9AxxbwqKaP08J_-CJ2mtMT5VFRyIj-iI0ZF3ZCaHqOf9x340Vln9OiCL4It0sr5AqwFM6Yit-MCCu3DoPswpeLBzRfu9_PLDLrJ7LENZSHGzMw9jM4UA4y6T5_QB5sLnO7rCfpxe_P9-ms5-3Z3f301Kw3HdCxbI6qmxdpKQahsq7bNDbEN45XosKmh7mQFgmqxua4bjsFQiw22EgtiODtBlzvd1dQO0JnsKOperaIbdHxSQTv19sW7hZqHR1UzIUSNs8D5XiCGXxOkUQ0uGeh77SGbVpRTLiXjTZ3Rs3foMkzRZ3tbiuUPFjJTdEeZGFKKYP8uQ7Da5Kd2-amcn9rmp9Z5iO2GUob9HOKr9H-m_gCOBJ5t</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424341969</pqid></control><display><type>article</type><title>Identification of spin effects in the anomalous Righi–Leduc effect in ferromagnetic metals</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhou, Da-Kun ; Xu, Qing-Lian ; Yu, Xiao-Qin ; Zhu, Zhen-Gang ; Su, Gang</creator><creatorcontrib>Zhou, Da-Kun ; Xu, Qing-Lian ; Yu, Xiao-Qin ; Zhu, Zhen-Gang ; Su, Gang</creatorcontrib><description>The emerging of spin caloritronics leads to a series of new spin-thermal related effects, such as spin Seebeck effect (SSE), spin Nernst effect (SNE) and their corresponding inverse effects. Anomalous Righi–Leduc effect (ARLE) describes that a transverse temperature gradient can be induced by a longitudinal heat flow in ferromagnets. The driving force and the response of the ARLE are all involved with heat. It is curious if spin effects mediate the heat transport and provide extra influence. In this work, we investigate the ARLE and the interplay between the heat current, charge current, and spin current via linear response theory. We identified that spin effects do have clear roles in heat transport, which can be confirmed by phase shifts of voltage output varying with the direction of magnetization. Our formulas fit the experimental data very well. Moreover, we discuss more configuration of magnetization which is expected to be tested in the future. It should be emphasized that the present formalism including spin effects is out of the theory based on magnon transport, which may be conspicuous in the devices within the spin diffusion length.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-68669-w</identifier><identifier>PMID: 32678172</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766 ; 639/766/119/1001 ; Electric fields ; Electromagnetism ; Heat ; Heat flow ; Heat transport ; Humanities and Social Sciences ; Magnetic fields ; Metals ; multidisciplinary ; Physics ; Science ; Science (multidisciplinary) ; Temperature gradients</subject><ispartof>Scientific reports, 2020-07, Vol.10 (1), p.11732-11732, Article 11732</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c402t-bc658b0af96129b5bb9611f83456d0c7e7d95e62a6611f7840ec2f0c0f9061c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366670/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366670/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids></links><search><creatorcontrib>Zhou, Da-Kun</creatorcontrib><creatorcontrib>Xu, Qing-Lian</creatorcontrib><creatorcontrib>Yu, Xiao-Qin</creatorcontrib><creatorcontrib>Zhu, Zhen-Gang</creatorcontrib><creatorcontrib>Su, Gang</creatorcontrib><title>Identification of spin effects in the anomalous Righi–Leduc effect in ferromagnetic metals</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>The emerging of spin caloritronics leads to a series of new spin-thermal related effects, such as spin Seebeck effect (SSE), spin Nernst effect (SNE) and their corresponding inverse effects. Anomalous Righi–Leduc effect (ARLE) describes that a transverse temperature gradient can be induced by a longitudinal heat flow in ferromagnets. The driving force and the response of the ARLE are all involved with heat. It is curious if spin effects mediate the heat transport and provide extra influence. In this work, we investigate the ARLE and the interplay between the heat current, charge current, and spin current via linear response theory. We identified that spin effects do have clear roles in heat transport, which can be confirmed by phase shifts of voltage output varying with the direction of magnetization. Our formulas fit the experimental data very well. Moreover, we discuss more configuration of magnetization which is expected to be tested in the future. It should be emphasized that the present formalism including spin effects is out of the theory based on magnon transport, which may be conspicuous in the devices within the spin diffusion length.</description><subject>639/766</subject><subject>639/766/119/1001</subject><subject>Electric fields</subject><subject>Electromagnetism</subject><subject>Heat</subject><subject>Heat flow</subject><subject>Heat transport</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic fields</subject><subject>Metals</subject><subject>multidisciplinary</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Temperature gradients</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1q3DAUhUVIaUKaF-jKkE02TvVn2doEQkjSwEAhtLuCkOWrGQ22NJXsDNnlHfKGfZJqfmiaLKrNvUjfPdyjg9Bngi8IZs2XxEklmxJTXIpGCFmuD9AxxbwqKaP08J_-CJ2mtMT5VFRyIj-iI0ZF3ZCaHqOf9x340Vln9OiCL4It0sr5AqwFM6Yit-MCCu3DoPswpeLBzRfu9_PLDLrJ7LENZSHGzMw9jM4UA4y6T5_QB5sLnO7rCfpxe_P9-ms5-3Z3f301Kw3HdCxbI6qmxdpKQahsq7bNDbEN45XosKmh7mQFgmqxua4bjsFQiw22EgtiODtBlzvd1dQO0JnsKOperaIbdHxSQTv19sW7hZqHR1UzIUSNs8D5XiCGXxOkUQ0uGeh77SGbVpRTLiXjTZ3Rs3foMkzRZ3tbiuUPFjJTdEeZGFKKYP8uQ7Da5Kd2-amcn9rmp9Z5iO2GUob9HOKr9H-m_gCOBJ5t</recordid><startdate>20200716</startdate><enddate>20200716</enddate><creator>Zhou, Da-Kun</creator><creator>Xu, Qing-Lian</creator><creator>Yu, Xiao-Qin</creator><creator>Zhu, Zhen-Gang</creator><creator>Su, Gang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200716</creationdate><title>Identification of spin effects in the anomalous Righi–Leduc effect in ferromagnetic metals</title><author>Zhou, Da-Kun ; Xu, Qing-Lian ; Yu, Xiao-Qin ; Zhu, Zhen-Gang ; Su, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-bc658b0af96129b5bb9611f83456d0c7e7d95e62a6611f7840ec2f0c0f9061c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766</topic><topic>639/766/119/1001</topic><topic>Electric fields</topic><topic>Electromagnetism</topic><topic>Heat</topic><topic>Heat flow</topic><topic>Heat transport</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic fields</topic><topic>Metals</topic><topic>multidisciplinary</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Temperature gradients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Da-Kun</creatorcontrib><creatorcontrib>Xu, Qing-Lian</creatorcontrib><creatorcontrib>Yu, Xiao-Qin</creatorcontrib><creatorcontrib>Zhu, Zhen-Gang</creatorcontrib><creatorcontrib>Su, Gang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Da-Kun</au><au>Xu, Qing-Lian</au><au>Yu, Xiao-Qin</au><au>Zhu, Zhen-Gang</au><au>Su, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of spin effects in the anomalous Righi–Leduc effect in ferromagnetic metals</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-07-16</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>11732</spage><epage>11732</epage><pages>11732-11732</pages><artnum>11732</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The emerging of spin caloritronics leads to a series of new spin-thermal related effects, such as spin Seebeck effect (SSE), spin Nernst effect (SNE) and their corresponding inverse effects. Anomalous Righi–Leduc effect (ARLE) describes that a transverse temperature gradient can be induced by a longitudinal heat flow in ferromagnets. The driving force and the response of the ARLE are all involved with heat. It is curious if spin effects mediate the heat transport and provide extra influence. In this work, we investigate the ARLE and the interplay between the heat current, charge current, and spin current via linear response theory. We identified that spin effects do have clear roles in heat transport, which can be confirmed by phase shifts of voltage output varying with the direction of magnetization. Our formulas fit the experimental data very well. Moreover, we discuss more configuration of magnetization which is expected to be tested in the future. It should be emphasized that the present formalism including spin effects is out of the theory based on magnon transport, which may be conspicuous in the devices within the spin diffusion length.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32678172</pmid><doi>10.1038/s41598-020-68669-w</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-07, Vol.10 (1), p.11732-11732, Article 11732 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7366670 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 639/766 639/766/119/1001 Electric fields Electromagnetism Heat Heat flow Heat transport Humanities and Social Sciences Magnetic fields Metals multidisciplinary Physics Science Science (multidisciplinary) Temperature gradients |
title | Identification of spin effects in the anomalous Righi–Leduc effect in ferromagnetic metals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20spin%20effects%20in%20the%20anomalous%20Righi%E2%80%93Leduc%20effect%20in%20ferromagnetic%20metals&rft.jtitle=Scientific%20reports&rft.au=Zhou,%20Da-Kun&rft.date=2020-07-16&rft.volume=10&rft.issue=1&rft.spage=11732&rft.epage=11732&rft.pages=11732-11732&rft.artnum=11732&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-68669-w&rft_dat=%3Cproquest_pubme%3E2424341969%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424341969&rft_id=info:pmid/32678172&rfr_iscdi=true |