Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation

Human brain organoids provide unique platforms for modeling development and diseases by recapitulating the architecture of the embryonic brain. However, current organoid methods are limited by interior hypoxia and cell death due to insufficient surface diffusion, preventing generation of architectur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell stem cell 2020-05, Vol.26 (5), p.766-781.e9
Hauptverfasser: Qian, Xuyu, Su, Yijing, Adam, Christopher D., Deutschmann, Andre U., Pather, Sarshan R., Goldberg, Ethan M., Su, Kenong, Li, Shiying, Lu, Lu, Jacob, Fadi, Nguyen, Phuong T.T., Huh, Sooyoung, Hoke, Ahmet, Swinford-Jackson, Sarah E., Wen, Zhexing, Gu, Xiaosong, Pierce, R. Christopher, Wu, Hao, Briand, Lisa A., Chen, H. Isaac, Wolf, John A., Song, Hongjun, Ming, Guo-li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 781.e9
container_issue 5
container_start_page 766
container_title Cell stem cell
container_volume 26
creator Qian, Xuyu
Su, Yijing
Adam, Christopher D.
Deutschmann, Andre U.
Pather, Sarshan R.
Goldberg, Ethan M.
Su, Kenong
Li, Shiying
Lu, Lu
Jacob, Fadi
Nguyen, Phuong T.T.
Huh, Sooyoung
Hoke, Ahmet
Swinford-Jackson, Sarah E.
Wen, Zhexing
Gu, Xiaosong
Pierce, R. Christopher
Wu, Hao
Briand, Lisa A.
Chen, H. Isaac
Wolf, John A.
Song, Hongjun
Ming, Guo-li
description Human brain organoids provide unique platforms for modeling development and diseases by recapitulating the architecture of the embryonic brain. However, current organoid methods are limited by interior hypoxia and cell death due to insufficient surface diffusion, preventing generation of architecture resembling late developmental stages. Here, we report the sliced neocortical organoid (SNO) system, which bypasses the diffusion limit to prevent cell death over long-term cultures. This method leads to sustained neurogenesis and formation of an expanded cortical plate that establishes distinct upper and deep cortical layers for neurons and astrocytes, resembling the third trimester embryonic human neocortex. Using the SNO system, we further identify a critical role of WNT/β-catenin signaling in regulating human cortical neuron subtype fate specification, which is disrupted by a psychiatric-disorder-associated genetic mutation in patient induced pluripotent stem cell (iPSC)-derived SNOs. These results demonstrate the utility of SNOs for investigating previously inaccessible human-specific, late-stage cortical development and disease-relevant mechanisms. [Display omitted] •SNOs maintain growth and laminar expansion over long-term culture•SNOs exhibit separated upper and deep cortical layers•Layer-specific WNT/β-catenin signaling regulates neuronal fate specification•DISC1 mutation causes deficits in cortical neuron fate specification Cortical organoids can be used to model human brain development and disorders. Ming and colleagues overcome the diffusion limit using a slicing method to prevent interior cell death and sustain organoid growth over long-term culture. The resulting organoids recapitulate late-stage human cortical developmental features, including formation of distinct cortical layers.
doi_str_mv 10.1016/j.stem.2020.02.002
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7366517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1934590920300552</els_id><sourcerecordid>2374319177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-f5bdc3e6a4edc030233fc706293f0f08bce13c020ad2496f0f779bd53c762fc93</originalsourceid><addsrcrecordid>eNp9kU1PJCEQhonRrF_7BzyYPnrptoDuZkg2JmZcP5JRD-6eCUNXj0y6QYEx8d8vk1FXL54g8NZTUA8hRxQqCrQ9XVYx4VgxYFABqwDYFtmjE9GUUgixnfeS12UjQe6S_RiXAI2gIH6QXc5ozdoJ2yN3D4M12BXXq1G7YupDskYPxX1YaOdtF4veh-LWdzhYtygubEzWmfQ_ONOvGIpLH0adrHeHZKfXQ8Sfb-sB-Xv5-8_0upzdX91Mz2elaRhNZd_MO8Ox1TV2BjgwznsjoGWS99DDZG6QcpP_pTtWyzafCSHnXcONaFlvJD8gZxvu02o-Zga6FPSgnoIddXhVXlv19cbZR7XwL0rwtm2oyICTN0DwzyuMSY02GhwG7dCvomJc1JxKKtZRtoma4GMM2H-0oaDWItRSrUWotQgFTGURuej48wM_St4nnwO_NgHMY3qxGFQ0Fl12YQOapDpvv-P_A-8Ym0s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374319177</pqid></control><display><type>article</type><title>Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Qian, Xuyu ; Su, Yijing ; Adam, Christopher D. ; Deutschmann, Andre U. ; Pather, Sarshan R. ; Goldberg, Ethan M. ; Su, Kenong ; Li, Shiying ; Lu, Lu ; Jacob, Fadi ; Nguyen, Phuong T.T. ; Huh, Sooyoung ; Hoke, Ahmet ; Swinford-Jackson, Sarah E. ; Wen, Zhexing ; Gu, Xiaosong ; Pierce, R. Christopher ; Wu, Hao ; Briand, Lisa A. ; Chen, H. Isaac ; Wolf, John A. ; Song, Hongjun ; Ming, Guo-li</creator><creatorcontrib>Qian, Xuyu ; Su, Yijing ; Adam, Christopher D. ; Deutschmann, Andre U. ; Pather, Sarshan R. ; Goldberg, Ethan M. ; Su, Kenong ; Li, Shiying ; Lu, Lu ; Jacob, Fadi ; Nguyen, Phuong T.T. ; Huh, Sooyoung ; Hoke, Ahmet ; Swinford-Jackson, Sarah E. ; Wen, Zhexing ; Gu, Xiaosong ; Pierce, R. Christopher ; Wu, Hao ; Briand, Lisa A. ; Chen, H. Isaac ; Wolf, John A. ; Song, Hongjun ; Ming, Guo-li</creatorcontrib><description>Human brain organoids provide unique platforms for modeling development and diseases by recapitulating the architecture of the embryonic brain. However, current organoid methods are limited by interior hypoxia and cell death due to insufficient surface diffusion, preventing generation of architecture resembling late developmental stages. Here, we report the sliced neocortical organoid (SNO) system, which bypasses the diffusion limit to prevent cell death over long-term cultures. This method leads to sustained neurogenesis and formation of an expanded cortical plate that establishes distinct upper and deep cortical layers for neurons and astrocytes, resembling the third trimester embryonic human neocortex. Using the SNO system, we further identify a critical role of WNT/β-catenin signaling in regulating human cortical neuron subtype fate specification, which is disrupted by a psychiatric-disorder-associated genetic mutation in patient induced pluripotent stem cell (iPSC)-derived SNOs. These results demonstrate the utility of SNOs for investigating previously inaccessible human-specific, late-stage cortical development and disease-relevant mechanisms. [Display omitted] •SNOs maintain growth and laminar expansion over long-term culture•SNOs exhibit separated upper and deep cortical layers•Layer-specific WNT/β-catenin signaling regulates neuronal fate specification•DISC1 mutation causes deficits in cortical neuron fate specification Cortical organoids can be used to model human brain development and disorders. Ming and colleagues overcome the diffusion limit using a slicing method to prevent interior cell death and sustain organoid growth over long-term culture. The resulting organoids recapitulate late-stage human cortical developmental features, including formation of distinct cortical layers.</description><identifier>ISSN: 1934-5909</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2020.02.002</identifier><identifier>PMID: 32142682</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Brain organoid ; cerebral cortex ; DISC1 ; forebrain organoid ; human iPSC ; Humans ; Induced Pluripotent Stem Cells ; lamination ; Neocortex ; neurodevelopment ; Neurogenesis ; neuron fate specification ; Neurons ; Organoids ; schizophrenia ; WNT</subject><ispartof>Cell stem cell, 2020-05, Vol.26 (5), p.766-781.e9</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-f5bdc3e6a4edc030233fc706293f0f08bce13c020ad2496f0f779bd53c762fc93</citedby><cites>FETCH-LOGICAL-c521t-f5bdc3e6a4edc030233fc706293f0f08bce13c020ad2496f0f779bd53c762fc93</cites><orcidid>0000-0002-2517-6075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.stem.2020.02.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32142682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qian, Xuyu</creatorcontrib><creatorcontrib>Su, Yijing</creatorcontrib><creatorcontrib>Adam, Christopher D.</creatorcontrib><creatorcontrib>Deutschmann, Andre U.</creatorcontrib><creatorcontrib>Pather, Sarshan R.</creatorcontrib><creatorcontrib>Goldberg, Ethan M.</creatorcontrib><creatorcontrib>Su, Kenong</creatorcontrib><creatorcontrib>Li, Shiying</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Jacob, Fadi</creatorcontrib><creatorcontrib>Nguyen, Phuong T.T.</creatorcontrib><creatorcontrib>Huh, Sooyoung</creatorcontrib><creatorcontrib>Hoke, Ahmet</creatorcontrib><creatorcontrib>Swinford-Jackson, Sarah E.</creatorcontrib><creatorcontrib>Wen, Zhexing</creatorcontrib><creatorcontrib>Gu, Xiaosong</creatorcontrib><creatorcontrib>Pierce, R. Christopher</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Briand, Lisa A.</creatorcontrib><creatorcontrib>Chen, H. Isaac</creatorcontrib><creatorcontrib>Wolf, John A.</creatorcontrib><creatorcontrib>Song, Hongjun</creatorcontrib><creatorcontrib>Ming, Guo-li</creatorcontrib><title>Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>Human brain organoids provide unique platforms for modeling development and diseases by recapitulating the architecture of the embryonic brain. However, current organoid methods are limited by interior hypoxia and cell death due to insufficient surface diffusion, preventing generation of architecture resembling late developmental stages. Here, we report the sliced neocortical organoid (SNO) system, which bypasses the diffusion limit to prevent cell death over long-term cultures. This method leads to sustained neurogenesis and formation of an expanded cortical plate that establishes distinct upper and deep cortical layers for neurons and astrocytes, resembling the third trimester embryonic human neocortex. Using the SNO system, we further identify a critical role of WNT/β-catenin signaling in regulating human cortical neuron subtype fate specification, which is disrupted by a psychiatric-disorder-associated genetic mutation in patient induced pluripotent stem cell (iPSC)-derived SNOs. These results demonstrate the utility of SNOs for investigating previously inaccessible human-specific, late-stage cortical development and disease-relevant mechanisms. [Display omitted] •SNOs maintain growth and laminar expansion over long-term culture•SNOs exhibit separated upper and deep cortical layers•Layer-specific WNT/β-catenin signaling regulates neuronal fate specification•DISC1 mutation causes deficits in cortical neuron fate specification Cortical organoids can be used to model human brain development and disorders. Ming and colleagues overcome the diffusion limit using a slicing method to prevent interior cell death and sustain organoid growth over long-term culture. The resulting organoids recapitulate late-stage human cortical developmental features, including formation of distinct cortical layers.</description><subject>Brain organoid</subject><subject>cerebral cortex</subject><subject>DISC1</subject><subject>forebrain organoid</subject><subject>human iPSC</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells</subject><subject>lamination</subject><subject>Neocortex</subject><subject>neurodevelopment</subject><subject>Neurogenesis</subject><subject>neuron fate specification</subject><subject>Neurons</subject><subject>Organoids</subject><subject>schizophrenia</subject><subject>WNT</subject><issn>1934-5909</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1PJCEQhonRrF_7BzyYPnrptoDuZkg2JmZcP5JRD-6eCUNXj0y6QYEx8d8vk1FXL54g8NZTUA8hRxQqCrQ9XVYx4VgxYFABqwDYFtmjE9GUUgixnfeS12UjQe6S_RiXAI2gIH6QXc5ozdoJ2yN3D4M12BXXq1G7YupDskYPxX1YaOdtF4veh-LWdzhYtygubEzWmfQ_ONOvGIpLH0adrHeHZKfXQ8Sfb-sB-Xv5-8_0upzdX91Mz2elaRhNZd_MO8Ox1TV2BjgwznsjoGWS99DDZG6QcpP_pTtWyzafCSHnXcONaFlvJD8gZxvu02o-Zga6FPSgnoIddXhVXlv19cbZR7XwL0rwtm2oyICTN0DwzyuMSY02GhwG7dCvomJc1JxKKtZRtoma4GMM2H-0oaDWItRSrUWotQgFTGURuej48wM_St4nnwO_NgHMY3qxGFQ0Fl12YQOapDpvv-P_A-8Ym0s</recordid><startdate>20200507</startdate><enddate>20200507</enddate><creator>Qian, Xuyu</creator><creator>Su, Yijing</creator><creator>Adam, Christopher D.</creator><creator>Deutschmann, Andre U.</creator><creator>Pather, Sarshan R.</creator><creator>Goldberg, Ethan M.</creator><creator>Su, Kenong</creator><creator>Li, Shiying</creator><creator>Lu, Lu</creator><creator>Jacob, Fadi</creator><creator>Nguyen, Phuong T.T.</creator><creator>Huh, Sooyoung</creator><creator>Hoke, Ahmet</creator><creator>Swinford-Jackson, Sarah E.</creator><creator>Wen, Zhexing</creator><creator>Gu, Xiaosong</creator><creator>Pierce, R. Christopher</creator><creator>Wu, Hao</creator><creator>Briand, Lisa A.</creator><creator>Chen, H. Isaac</creator><creator>Wolf, John A.</creator><creator>Song, Hongjun</creator><creator>Ming, Guo-li</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2517-6075</orcidid></search><sort><creationdate>20200507</creationdate><title>Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation</title><author>Qian, Xuyu ; Su, Yijing ; Adam, Christopher D. ; Deutschmann, Andre U. ; Pather, Sarshan R. ; Goldberg, Ethan M. ; Su, Kenong ; Li, Shiying ; Lu, Lu ; Jacob, Fadi ; Nguyen, Phuong T.T. ; Huh, Sooyoung ; Hoke, Ahmet ; Swinford-Jackson, Sarah E. ; Wen, Zhexing ; Gu, Xiaosong ; Pierce, R. Christopher ; Wu, Hao ; Briand, Lisa A. ; Chen, H. Isaac ; Wolf, John A. ; Song, Hongjun ; Ming, Guo-li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-f5bdc3e6a4edc030233fc706293f0f08bce13c020ad2496f0f779bd53c762fc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brain organoid</topic><topic>cerebral cortex</topic><topic>DISC1</topic><topic>forebrain organoid</topic><topic>human iPSC</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells</topic><topic>lamination</topic><topic>Neocortex</topic><topic>neurodevelopment</topic><topic>Neurogenesis</topic><topic>neuron fate specification</topic><topic>Neurons</topic><topic>Organoids</topic><topic>schizophrenia</topic><topic>WNT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Xuyu</creatorcontrib><creatorcontrib>Su, Yijing</creatorcontrib><creatorcontrib>Adam, Christopher D.</creatorcontrib><creatorcontrib>Deutschmann, Andre U.</creatorcontrib><creatorcontrib>Pather, Sarshan R.</creatorcontrib><creatorcontrib>Goldberg, Ethan M.</creatorcontrib><creatorcontrib>Su, Kenong</creatorcontrib><creatorcontrib>Li, Shiying</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Jacob, Fadi</creatorcontrib><creatorcontrib>Nguyen, Phuong T.T.</creatorcontrib><creatorcontrib>Huh, Sooyoung</creatorcontrib><creatorcontrib>Hoke, Ahmet</creatorcontrib><creatorcontrib>Swinford-Jackson, Sarah E.</creatorcontrib><creatorcontrib>Wen, Zhexing</creatorcontrib><creatorcontrib>Gu, Xiaosong</creatorcontrib><creatorcontrib>Pierce, R. Christopher</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Briand, Lisa A.</creatorcontrib><creatorcontrib>Chen, H. Isaac</creatorcontrib><creatorcontrib>Wolf, John A.</creatorcontrib><creatorcontrib>Song, Hongjun</creatorcontrib><creatorcontrib>Ming, Guo-li</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Xuyu</au><au>Su, Yijing</au><au>Adam, Christopher D.</au><au>Deutschmann, Andre U.</au><au>Pather, Sarshan R.</au><au>Goldberg, Ethan M.</au><au>Su, Kenong</au><au>Li, Shiying</au><au>Lu, Lu</au><au>Jacob, Fadi</au><au>Nguyen, Phuong T.T.</au><au>Huh, Sooyoung</au><au>Hoke, Ahmet</au><au>Swinford-Jackson, Sarah E.</au><au>Wen, Zhexing</au><au>Gu, Xiaosong</au><au>Pierce, R. Christopher</au><au>Wu, Hao</au><au>Briand, Lisa A.</au><au>Chen, H. Isaac</au><au>Wolf, John A.</au><au>Song, Hongjun</au><au>Ming, Guo-li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2020-05-07</date><risdate>2020</risdate><volume>26</volume><issue>5</issue><spage>766</spage><epage>781.e9</epage><pages>766-781.e9</pages><issn>1934-5909</issn><eissn>1875-9777</eissn><abstract>Human brain organoids provide unique platforms for modeling development and diseases by recapitulating the architecture of the embryonic brain. However, current organoid methods are limited by interior hypoxia and cell death due to insufficient surface diffusion, preventing generation of architecture resembling late developmental stages. Here, we report the sliced neocortical organoid (SNO) system, which bypasses the diffusion limit to prevent cell death over long-term cultures. This method leads to sustained neurogenesis and formation of an expanded cortical plate that establishes distinct upper and deep cortical layers for neurons and astrocytes, resembling the third trimester embryonic human neocortex. Using the SNO system, we further identify a critical role of WNT/β-catenin signaling in regulating human cortical neuron subtype fate specification, which is disrupted by a psychiatric-disorder-associated genetic mutation in patient induced pluripotent stem cell (iPSC)-derived SNOs. These results demonstrate the utility of SNOs for investigating previously inaccessible human-specific, late-stage cortical development and disease-relevant mechanisms. [Display omitted] •SNOs maintain growth and laminar expansion over long-term culture•SNOs exhibit separated upper and deep cortical layers•Layer-specific WNT/β-catenin signaling regulates neuronal fate specification•DISC1 mutation causes deficits in cortical neuron fate specification Cortical organoids can be used to model human brain development and disorders. Ming and colleagues overcome the diffusion limit using a slicing method to prevent interior cell death and sustain organoid growth over long-term culture. The resulting organoids recapitulate late-stage human cortical developmental features, including formation of distinct cortical layers.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32142682</pmid><doi>10.1016/j.stem.2020.02.002</doi><orcidid>https://orcid.org/0000-0002-2517-6075</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1934-5909
ispartof Cell stem cell, 2020-05, Vol.26 (5), p.766-781.e9
issn 1934-5909
1875-9777
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7366517
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Brain organoid
cerebral cortex
DISC1
forebrain organoid
human iPSC
Humans
Induced Pluripotent Stem Cells
lamination
Neocortex
neurodevelopment
Neurogenesis
neuron fate specification
Neurons
Organoids
schizophrenia
WNT
title Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliced%20Human%20Cortical%20Organoids%20for%20Modeling%20Distinct%20Cortical%20Layer%20Formation&rft.jtitle=Cell%20stem%20cell&rft.au=Qian,%20Xuyu&rft.date=2020-05-07&rft.volume=26&rft.issue=5&rft.spage=766&rft.epage=781.e9&rft.pages=766-781.e9&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2020.02.002&rft_dat=%3Cproquest_pubme%3E2374319177%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374319177&rft_id=info:pmid/32142682&rft_els_id=S1934590920300552&rfr_iscdi=true