Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation
Human brain organoids provide unique platforms for modeling development and diseases by recapitulating the architecture of the embryonic brain. However, current organoid methods are limited by interior hypoxia and cell death due to insufficient surface diffusion, preventing generation of architectur...
Gespeichert in:
Veröffentlicht in: | Cell stem cell 2020-05, Vol.26 (5), p.766-781.e9 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 781.e9 |
---|---|
container_issue | 5 |
container_start_page | 766 |
container_title | Cell stem cell |
container_volume | 26 |
creator | Qian, Xuyu Su, Yijing Adam, Christopher D. Deutschmann, Andre U. Pather, Sarshan R. Goldberg, Ethan M. Su, Kenong Li, Shiying Lu, Lu Jacob, Fadi Nguyen, Phuong T.T. Huh, Sooyoung Hoke, Ahmet Swinford-Jackson, Sarah E. Wen, Zhexing Gu, Xiaosong Pierce, R. Christopher Wu, Hao Briand, Lisa A. Chen, H. Isaac Wolf, John A. Song, Hongjun Ming, Guo-li |
description | Human brain organoids provide unique platforms for modeling development and diseases by recapitulating the architecture of the embryonic brain. However, current organoid methods are limited by interior hypoxia and cell death due to insufficient surface diffusion, preventing generation of architecture resembling late developmental stages. Here, we report the sliced neocortical organoid (SNO) system, which bypasses the diffusion limit to prevent cell death over long-term cultures. This method leads to sustained neurogenesis and formation of an expanded cortical plate that establishes distinct upper and deep cortical layers for neurons and astrocytes, resembling the third trimester embryonic human neocortex. Using the SNO system, we further identify a critical role of WNT/β-catenin signaling in regulating human cortical neuron subtype fate specification, which is disrupted by a psychiatric-disorder-associated genetic mutation in patient induced pluripotent stem cell (iPSC)-derived SNOs. These results demonstrate the utility of SNOs for investigating previously inaccessible human-specific, late-stage cortical development and disease-relevant mechanisms.
[Display omitted]
•SNOs maintain growth and laminar expansion over long-term culture•SNOs exhibit separated upper and deep cortical layers•Layer-specific WNT/β-catenin signaling regulates neuronal fate specification•DISC1 mutation causes deficits in cortical neuron fate specification
Cortical organoids can be used to model human brain development and disorders. Ming and colleagues overcome the diffusion limit using a slicing method to prevent interior cell death and sustain organoid growth over long-term culture. The resulting organoids recapitulate late-stage human cortical developmental features, including formation of distinct cortical layers. |
doi_str_mv | 10.1016/j.stem.2020.02.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7366517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1934590920300552</els_id><sourcerecordid>2374319177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-f5bdc3e6a4edc030233fc706293f0f08bce13c020ad2496f0f779bd53c762fc93</originalsourceid><addsrcrecordid>eNp9kU1PJCEQhonRrF_7BzyYPnrptoDuZkg2JmZcP5JRD-6eCUNXj0y6QYEx8d8vk1FXL54g8NZTUA8hRxQqCrQ9XVYx4VgxYFABqwDYFtmjE9GUUgixnfeS12UjQe6S_RiXAI2gIH6QXc5ozdoJ2yN3D4M12BXXq1G7YupDskYPxX1YaOdtF4veh-LWdzhYtygubEzWmfQ_ONOvGIpLH0adrHeHZKfXQ8Sfb-sB-Xv5-8_0upzdX91Mz2elaRhNZd_MO8Ox1TV2BjgwznsjoGWS99DDZG6QcpP_pTtWyzafCSHnXcONaFlvJD8gZxvu02o-Zga6FPSgnoIddXhVXlv19cbZR7XwL0rwtm2oyICTN0DwzyuMSY02GhwG7dCvomJc1JxKKtZRtoma4GMM2H-0oaDWItRSrUWotQgFTGURuej48wM_St4nnwO_NgHMY3qxGFQ0Fl12YQOapDpvv-P_A-8Ym0s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374319177</pqid></control><display><type>article</type><title>Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Qian, Xuyu ; Su, Yijing ; Adam, Christopher D. ; Deutschmann, Andre U. ; Pather, Sarshan R. ; Goldberg, Ethan M. ; Su, Kenong ; Li, Shiying ; Lu, Lu ; Jacob, Fadi ; Nguyen, Phuong T.T. ; Huh, Sooyoung ; Hoke, Ahmet ; Swinford-Jackson, Sarah E. ; Wen, Zhexing ; Gu, Xiaosong ; Pierce, R. Christopher ; Wu, Hao ; Briand, Lisa A. ; Chen, H. Isaac ; Wolf, John A. ; Song, Hongjun ; Ming, Guo-li</creator><creatorcontrib>Qian, Xuyu ; Su, Yijing ; Adam, Christopher D. ; Deutschmann, Andre U. ; Pather, Sarshan R. ; Goldberg, Ethan M. ; Su, Kenong ; Li, Shiying ; Lu, Lu ; Jacob, Fadi ; Nguyen, Phuong T.T. ; Huh, Sooyoung ; Hoke, Ahmet ; Swinford-Jackson, Sarah E. ; Wen, Zhexing ; Gu, Xiaosong ; Pierce, R. Christopher ; Wu, Hao ; Briand, Lisa A. ; Chen, H. Isaac ; Wolf, John A. ; Song, Hongjun ; Ming, Guo-li</creatorcontrib><description>Human brain organoids provide unique platforms for modeling development and diseases by recapitulating the architecture of the embryonic brain. However, current organoid methods are limited by interior hypoxia and cell death due to insufficient surface diffusion, preventing generation of architecture resembling late developmental stages. Here, we report the sliced neocortical organoid (SNO) system, which bypasses the diffusion limit to prevent cell death over long-term cultures. This method leads to sustained neurogenesis and formation of an expanded cortical plate that establishes distinct upper and deep cortical layers for neurons and astrocytes, resembling the third trimester embryonic human neocortex. Using the SNO system, we further identify a critical role of WNT/β-catenin signaling in regulating human cortical neuron subtype fate specification, which is disrupted by a psychiatric-disorder-associated genetic mutation in patient induced pluripotent stem cell (iPSC)-derived SNOs. These results demonstrate the utility of SNOs for investigating previously inaccessible human-specific, late-stage cortical development and disease-relevant mechanisms.
[Display omitted]
•SNOs maintain growth and laminar expansion over long-term culture•SNOs exhibit separated upper and deep cortical layers•Layer-specific WNT/β-catenin signaling regulates neuronal fate specification•DISC1 mutation causes deficits in cortical neuron fate specification
Cortical organoids can be used to model human brain development and disorders. Ming and colleagues overcome the diffusion limit using a slicing method to prevent interior cell death and sustain organoid growth over long-term culture. The resulting organoids recapitulate late-stage human cortical developmental features, including formation of distinct cortical layers.</description><identifier>ISSN: 1934-5909</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2020.02.002</identifier><identifier>PMID: 32142682</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Brain organoid ; cerebral cortex ; DISC1 ; forebrain organoid ; human iPSC ; Humans ; Induced Pluripotent Stem Cells ; lamination ; Neocortex ; neurodevelopment ; Neurogenesis ; neuron fate specification ; Neurons ; Organoids ; schizophrenia ; WNT</subject><ispartof>Cell stem cell, 2020-05, Vol.26 (5), p.766-781.e9</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-f5bdc3e6a4edc030233fc706293f0f08bce13c020ad2496f0f779bd53c762fc93</citedby><cites>FETCH-LOGICAL-c521t-f5bdc3e6a4edc030233fc706293f0f08bce13c020ad2496f0f779bd53c762fc93</cites><orcidid>0000-0002-2517-6075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.stem.2020.02.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32142682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qian, Xuyu</creatorcontrib><creatorcontrib>Su, Yijing</creatorcontrib><creatorcontrib>Adam, Christopher D.</creatorcontrib><creatorcontrib>Deutschmann, Andre U.</creatorcontrib><creatorcontrib>Pather, Sarshan R.</creatorcontrib><creatorcontrib>Goldberg, Ethan M.</creatorcontrib><creatorcontrib>Su, Kenong</creatorcontrib><creatorcontrib>Li, Shiying</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Jacob, Fadi</creatorcontrib><creatorcontrib>Nguyen, Phuong T.T.</creatorcontrib><creatorcontrib>Huh, Sooyoung</creatorcontrib><creatorcontrib>Hoke, Ahmet</creatorcontrib><creatorcontrib>Swinford-Jackson, Sarah E.</creatorcontrib><creatorcontrib>Wen, Zhexing</creatorcontrib><creatorcontrib>Gu, Xiaosong</creatorcontrib><creatorcontrib>Pierce, R. Christopher</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Briand, Lisa A.</creatorcontrib><creatorcontrib>Chen, H. Isaac</creatorcontrib><creatorcontrib>Wolf, John A.</creatorcontrib><creatorcontrib>Song, Hongjun</creatorcontrib><creatorcontrib>Ming, Guo-li</creatorcontrib><title>Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>Human brain organoids provide unique platforms for modeling development and diseases by recapitulating the architecture of the embryonic brain. However, current organoid methods are limited by interior hypoxia and cell death due to insufficient surface diffusion, preventing generation of architecture resembling late developmental stages. Here, we report the sliced neocortical organoid (SNO) system, which bypasses the diffusion limit to prevent cell death over long-term cultures. This method leads to sustained neurogenesis and formation of an expanded cortical plate that establishes distinct upper and deep cortical layers for neurons and astrocytes, resembling the third trimester embryonic human neocortex. Using the SNO system, we further identify a critical role of WNT/β-catenin signaling in regulating human cortical neuron subtype fate specification, which is disrupted by a psychiatric-disorder-associated genetic mutation in patient induced pluripotent stem cell (iPSC)-derived SNOs. These results demonstrate the utility of SNOs for investigating previously inaccessible human-specific, late-stage cortical development and disease-relevant mechanisms.
[Display omitted]
•SNOs maintain growth and laminar expansion over long-term culture•SNOs exhibit separated upper and deep cortical layers•Layer-specific WNT/β-catenin signaling regulates neuronal fate specification•DISC1 mutation causes deficits in cortical neuron fate specification
Cortical organoids can be used to model human brain development and disorders. Ming and colleagues overcome the diffusion limit using a slicing method to prevent interior cell death and sustain organoid growth over long-term culture. The resulting organoids recapitulate late-stage human cortical developmental features, including formation of distinct cortical layers.</description><subject>Brain organoid</subject><subject>cerebral cortex</subject><subject>DISC1</subject><subject>forebrain organoid</subject><subject>human iPSC</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells</subject><subject>lamination</subject><subject>Neocortex</subject><subject>neurodevelopment</subject><subject>Neurogenesis</subject><subject>neuron fate specification</subject><subject>Neurons</subject><subject>Organoids</subject><subject>schizophrenia</subject><subject>WNT</subject><issn>1934-5909</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1PJCEQhonRrF_7BzyYPnrptoDuZkg2JmZcP5JRD-6eCUNXj0y6QYEx8d8vk1FXL54g8NZTUA8hRxQqCrQ9XVYx4VgxYFABqwDYFtmjE9GUUgixnfeS12UjQe6S_RiXAI2gIH6QXc5ozdoJ2yN3D4M12BXXq1G7YupDskYPxX1YaOdtF4veh-LWdzhYtygubEzWmfQ_ONOvGIpLH0adrHeHZKfXQ8Sfb-sB-Xv5-8_0upzdX91Mz2elaRhNZd_MO8Ox1TV2BjgwznsjoGWS99DDZG6QcpP_pTtWyzafCSHnXcONaFlvJD8gZxvu02o-Zga6FPSgnoIddXhVXlv19cbZR7XwL0rwtm2oyICTN0DwzyuMSY02GhwG7dCvomJc1JxKKtZRtoma4GMM2H-0oaDWItRSrUWotQgFTGURuej48wM_St4nnwO_NgHMY3qxGFQ0Fl12YQOapDpvv-P_A-8Ym0s</recordid><startdate>20200507</startdate><enddate>20200507</enddate><creator>Qian, Xuyu</creator><creator>Su, Yijing</creator><creator>Adam, Christopher D.</creator><creator>Deutschmann, Andre U.</creator><creator>Pather, Sarshan R.</creator><creator>Goldberg, Ethan M.</creator><creator>Su, Kenong</creator><creator>Li, Shiying</creator><creator>Lu, Lu</creator><creator>Jacob, Fadi</creator><creator>Nguyen, Phuong T.T.</creator><creator>Huh, Sooyoung</creator><creator>Hoke, Ahmet</creator><creator>Swinford-Jackson, Sarah E.</creator><creator>Wen, Zhexing</creator><creator>Gu, Xiaosong</creator><creator>Pierce, R. Christopher</creator><creator>Wu, Hao</creator><creator>Briand, Lisa A.</creator><creator>Chen, H. Isaac</creator><creator>Wolf, John A.</creator><creator>Song, Hongjun</creator><creator>Ming, Guo-li</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2517-6075</orcidid></search><sort><creationdate>20200507</creationdate><title>Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation</title><author>Qian, Xuyu ; Su, Yijing ; Adam, Christopher D. ; Deutschmann, Andre U. ; Pather, Sarshan R. ; Goldberg, Ethan M. ; Su, Kenong ; Li, Shiying ; Lu, Lu ; Jacob, Fadi ; Nguyen, Phuong T.T. ; Huh, Sooyoung ; Hoke, Ahmet ; Swinford-Jackson, Sarah E. ; Wen, Zhexing ; Gu, Xiaosong ; Pierce, R. Christopher ; Wu, Hao ; Briand, Lisa A. ; Chen, H. Isaac ; Wolf, John A. ; Song, Hongjun ; Ming, Guo-li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-f5bdc3e6a4edc030233fc706293f0f08bce13c020ad2496f0f779bd53c762fc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brain organoid</topic><topic>cerebral cortex</topic><topic>DISC1</topic><topic>forebrain organoid</topic><topic>human iPSC</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells</topic><topic>lamination</topic><topic>Neocortex</topic><topic>neurodevelopment</topic><topic>Neurogenesis</topic><topic>neuron fate specification</topic><topic>Neurons</topic><topic>Organoids</topic><topic>schizophrenia</topic><topic>WNT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Xuyu</creatorcontrib><creatorcontrib>Su, Yijing</creatorcontrib><creatorcontrib>Adam, Christopher D.</creatorcontrib><creatorcontrib>Deutschmann, Andre U.</creatorcontrib><creatorcontrib>Pather, Sarshan R.</creatorcontrib><creatorcontrib>Goldberg, Ethan M.</creatorcontrib><creatorcontrib>Su, Kenong</creatorcontrib><creatorcontrib>Li, Shiying</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Jacob, Fadi</creatorcontrib><creatorcontrib>Nguyen, Phuong T.T.</creatorcontrib><creatorcontrib>Huh, Sooyoung</creatorcontrib><creatorcontrib>Hoke, Ahmet</creatorcontrib><creatorcontrib>Swinford-Jackson, Sarah E.</creatorcontrib><creatorcontrib>Wen, Zhexing</creatorcontrib><creatorcontrib>Gu, Xiaosong</creatorcontrib><creatorcontrib>Pierce, R. Christopher</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Briand, Lisa A.</creatorcontrib><creatorcontrib>Chen, H. Isaac</creatorcontrib><creatorcontrib>Wolf, John A.</creatorcontrib><creatorcontrib>Song, Hongjun</creatorcontrib><creatorcontrib>Ming, Guo-li</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Xuyu</au><au>Su, Yijing</au><au>Adam, Christopher D.</au><au>Deutschmann, Andre U.</au><au>Pather, Sarshan R.</au><au>Goldberg, Ethan M.</au><au>Su, Kenong</au><au>Li, Shiying</au><au>Lu, Lu</au><au>Jacob, Fadi</au><au>Nguyen, Phuong T.T.</au><au>Huh, Sooyoung</au><au>Hoke, Ahmet</au><au>Swinford-Jackson, Sarah E.</au><au>Wen, Zhexing</au><au>Gu, Xiaosong</au><au>Pierce, R. Christopher</au><au>Wu, Hao</au><au>Briand, Lisa A.</au><au>Chen, H. Isaac</au><au>Wolf, John A.</au><au>Song, Hongjun</au><au>Ming, Guo-li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2020-05-07</date><risdate>2020</risdate><volume>26</volume><issue>5</issue><spage>766</spage><epage>781.e9</epage><pages>766-781.e9</pages><issn>1934-5909</issn><eissn>1875-9777</eissn><abstract>Human brain organoids provide unique platforms for modeling development and diseases by recapitulating the architecture of the embryonic brain. However, current organoid methods are limited by interior hypoxia and cell death due to insufficient surface diffusion, preventing generation of architecture resembling late developmental stages. Here, we report the sliced neocortical organoid (SNO) system, which bypasses the diffusion limit to prevent cell death over long-term cultures. This method leads to sustained neurogenesis and formation of an expanded cortical plate that establishes distinct upper and deep cortical layers for neurons and astrocytes, resembling the third trimester embryonic human neocortex. Using the SNO system, we further identify a critical role of WNT/β-catenin signaling in regulating human cortical neuron subtype fate specification, which is disrupted by a psychiatric-disorder-associated genetic mutation in patient induced pluripotent stem cell (iPSC)-derived SNOs. These results demonstrate the utility of SNOs for investigating previously inaccessible human-specific, late-stage cortical development and disease-relevant mechanisms.
[Display omitted]
•SNOs maintain growth and laminar expansion over long-term culture•SNOs exhibit separated upper and deep cortical layers•Layer-specific WNT/β-catenin signaling regulates neuronal fate specification•DISC1 mutation causes deficits in cortical neuron fate specification
Cortical organoids can be used to model human brain development and disorders. Ming and colleagues overcome the diffusion limit using a slicing method to prevent interior cell death and sustain organoid growth over long-term culture. The resulting organoids recapitulate late-stage human cortical developmental features, including formation of distinct cortical layers.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32142682</pmid><doi>10.1016/j.stem.2020.02.002</doi><orcidid>https://orcid.org/0000-0002-2517-6075</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1934-5909 |
ispartof | Cell stem cell, 2020-05, Vol.26 (5), p.766-781.e9 |
issn | 1934-5909 1875-9777 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7366517 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Brain organoid cerebral cortex DISC1 forebrain organoid human iPSC Humans Induced Pluripotent Stem Cells lamination Neocortex neurodevelopment Neurogenesis neuron fate specification Neurons Organoids schizophrenia WNT |
title | Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliced%20Human%20Cortical%20Organoids%20for%20Modeling%20Distinct%20Cortical%20Layer%20Formation&rft.jtitle=Cell%20stem%20cell&rft.au=Qian,%20Xuyu&rft.date=2020-05-07&rft.volume=26&rft.issue=5&rft.spage=766&rft.epage=781.e9&rft.pages=766-781.e9&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2020.02.002&rft_dat=%3Cproquest_pubme%3E2374319177%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374319177&rft_id=info:pmid/32142682&rft_els_id=S1934590920300552&rfr_iscdi=true |