ATR inhibition potentiates ionizing radiation‐induced interferon response via cytosolic nucleic acid‐sensing pathways

Mechanistic understanding of how ionizing radiation induces type I interferon signaling and how to amplify this signaling module should help to maximize the efficacy of radiotherapy. In the current study, we report that inhibitors of the DNA damage response kinase ATR can significantly potentiate io...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2020-07, Vol.39 (14), p.e104036-n/a
Hauptverfasser: Feng, Xu, Tubbs, Anthony, Zhang, Chunchao, Tang, Mengfan, Sridharan, Sriram, Wang, Chao, Jiang, Dadi, Su, Dan, Zhang, Huimin, Chen, Zhen, Nie, Litong, Xiong, Yun, Huang, Min, Nussenzweig, André, Chen, Junjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 14
container_start_page e104036
container_title The EMBO journal
container_volume 39
creator Feng, Xu
Tubbs, Anthony
Zhang, Chunchao
Tang, Mengfan
Sridharan, Sriram
Wang, Chao
Jiang, Dadi
Su, Dan
Zhang, Huimin
Chen, Zhen
Nie, Litong
Xiong, Yun
Huang, Min
Nussenzweig, André
Chen, Junjie
description Mechanistic understanding of how ionizing radiation induces type I interferon signaling and how to amplify this signaling module should help to maximize the efficacy of radiotherapy. In the current study, we report that inhibitors of the DNA damage response kinase ATR can significantly potentiate ionizing radiation‐induced innate immune responses. Using a series of mammalian knockout cell lines, we demonstrate that, surprisingly, both the cGAS/STING‐dependent DNA‐sensing pathway and the MAVS‐dependent RNA‐sensing pathway are responsible for type I interferon signaling induced by ionizing radiation in the presence or absence of ATR inhibitors. The relative contributions of these two pathways in type I interferon signaling depend on cell type and/or genetic background. We propose that DNA damage‐elicited double‐strand DNA breaks releases DNA fragments, which may either activate the cGAS/STING‐dependent pathway or—especially in the case of AT‐rich DNA sequences—be transcribed and initiate MAVS‐dependent RNA sensing and signaling. Together, our results suggest the involvement of two distinct pathways in type I interferon signaling upon DNA damage. Moreover, radiation plus ATR inhibition may be a promising new combination therapy against cancer. Synopsis Type I interferon signaling plays key roles in cancer radiotherapy with ionizing radiation (IR). Here, exploration of combinatory effects of IR and DNA damage kinase inhibitors reveals surprising involvement of distinct cytosolic nucleic acid‐sensing pathways in interferon response induction. Inhibition of DNA damage response kinase ATR (ATRi) significantly potentiates IR‐induced type I interferon response in multiple human and murine cancer cells. MAVS‐dependent RNA sensing pathway is indispensable for interferon signaling induced by combined IR+ATRi in some human cells. Both cGAS/STING‐dependent cytosolic DNA‐ and MAVS‐dependent cytosolic RNA‐sensing pathways contribute to IR+ATRi‐induced interferon signaling to varying extent in different cell lines. DNA damage‐elicited AT‐rich DNA mediates type I interferon signaling in a subset of human cells. Graphical Abstract Surprisingly, both cGAS/STING‐dependent DNA‐ and MAVS‐dependent RNA‐sensing pathways contribute to the effects of combined radiotherapy and blocked DNA damage signaling, depending on cellular context.
doi_str_mv 10.15252/embj.2019104036
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7361286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423712900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5856-c6b3f8254ab656b55e4c7a0d3739cedfcd1c44ae9643a331df800c5b16308c153</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokNhzwpFYp1y_ZtEQkilKn8qQkJlbTnOzYxHGTvYSauw4hF4Rp4ElyktXSBWV9c-3_GxDiFPKRxRySR7gbt2e8SANhQEcHWPrKhQUDKo5H2yAqZoKWjdHJBHKW0BQNYVfUgOOBO1aJRckeX4_HPh_Ma1bnLBF2OY0E_OTJiKvLtvzq-LaLp8ktef3384380Wu8xMGHuMmYmYxuATFhfOFHaZQgqDs4Wf7YB5Guu6DCb06cpsNNPm0izpMXnQmyHhk-t5SL68OT0_eVeefXr7_uT4rLSylqq0quV9zaQwrZKqlRKFrQx0vOJNztHbjlohDDZKcMM57foawMqWKg61pZIfkld733Fud9jZ_L1oBj1GtzNx0cE4fffGu41ehwtdcUVZrbLB82uDGL7OmCa9DXP0ObNmgvGKsgYgq2CvsjGkFLG_eYGC_l2WvipL35aVkWd_J7sB_rSTBS_3gks34PJfQ3368fWHO_50j6dM-jXG2-D_zPQLAey31A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423712900</pqid></control><display><type>article</type><title>ATR inhibition potentiates ionizing radiation‐induced interferon response via cytosolic nucleic acid‐sensing pathways</title><source>Springer Nature OA Free Journals</source><creator>Feng, Xu ; Tubbs, Anthony ; Zhang, Chunchao ; Tang, Mengfan ; Sridharan, Sriram ; Wang, Chao ; Jiang, Dadi ; Su, Dan ; Zhang, Huimin ; Chen, Zhen ; Nie, Litong ; Xiong, Yun ; Huang, Min ; Nussenzweig, André ; Chen, Junjie</creator><creatorcontrib>Feng, Xu ; Tubbs, Anthony ; Zhang, Chunchao ; Tang, Mengfan ; Sridharan, Sriram ; Wang, Chao ; Jiang, Dadi ; Su, Dan ; Zhang, Huimin ; Chen, Zhen ; Nie, Litong ; Xiong, Yun ; Huang, Min ; Nussenzweig, André ; Chen, Junjie</creatorcontrib><description>Mechanistic understanding of how ionizing radiation induces type I interferon signaling and how to amplify this signaling module should help to maximize the efficacy of radiotherapy. In the current study, we report that inhibitors of the DNA damage response kinase ATR can significantly potentiate ionizing radiation‐induced innate immune responses. Using a series of mammalian knockout cell lines, we demonstrate that, surprisingly, both the cGAS/STING‐dependent DNA‐sensing pathway and the MAVS‐dependent RNA‐sensing pathway are responsible for type I interferon signaling induced by ionizing radiation in the presence or absence of ATR inhibitors. The relative contributions of these two pathways in type I interferon signaling depend on cell type and/or genetic background. We propose that DNA damage‐elicited double‐strand DNA breaks releases DNA fragments, which may either activate the cGAS/STING‐dependent pathway or—especially in the case of AT‐rich DNA sequences—be transcribed and initiate MAVS‐dependent RNA sensing and signaling. Together, our results suggest the involvement of two distinct pathways in type I interferon signaling upon DNA damage. Moreover, radiation plus ATR inhibition may be a promising new combination therapy against cancer. Synopsis Type I interferon signaling plays key roles in cancer radiotherapy with ionizing radiation (IR). Here, exploration of combinatory effects of IR and DNA damage kinase inhibitors reveals surprising involvement of distinct cytosolic nucleic acid‐sensing pathways in interferon response induction. Inhibition of DNA damage response kinase ATR (ATRi) significantly potentiates IR‐induced type I interferon response in multiple human and murine cancer cells. MAVS‐dependent RNA sensing pathway is indispensable for interferon signaling induced by combined IR+ATRi in some human cells. Both cGAS/STING‐dependent cytosolic DNA‐ and MAVS‐dependent cytosolic RNA‐sensing pathways contribute to IR+ATRi‐induced interferon signaling to varying extent in different cell lines. DNA damage‐elicited AT‐rich DNA mediates type I interferon signaling in a subset of human cells. Graphical Abstract Surprisingly, both cGAS/STING‐dependent DNA‐ and MAVS‐dependent RNA‐sensing pathways contribute to the effects of combined radiotherapy and blocked DNA damage signaling, depending on cellular context.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2019104036</identifier><identifier>PMID: 32484965</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Ataxia Telangiectasia Mutated Proteins - genetics ; Ataxia Telangiectasia Mutated Proteins - immunology ; ATR ; Biotechnology ; Cancer ; Cell Line, Tumor ; cGAS/STING ; Deoxyribonucleic acid ; Detection ; DNA ; DNA Breaks, Double-Stranded - radiation effects ; DNA damage ; EMBO13 ; EMBO19 ; Gene sequencing ; Humans ; Immune response ; Inhibitors ; Innate immunity ; Interferon ; Interferon Type I - genetics ; Interferon Type I - immunology ; Ionizing radiation ; Kinases ; MAVS ; Nucleic acids ; Nucleotide sequence ; radiation ; Radiation damage ; Radiation therapy ; Radiation, Ionizing ; Ribonucleic acid ; RNA ; Signal transduction ; Signal Transduction - genetics ; Signal Transduction - immunology ; Signal Transduction - radiation effects ; Signaling ; type I interferon</subject><ispartof>The EMBO journal, 2020-07, Vol.39 (14), p.e104036-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors</rights><rights>2020 The Authors.</rights><rights>2020 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5856-c6b3f8254ab656b55e4c7a0d3739cedfcd1c44ae9643a331df800c5b16308c153</citedby><cites>FETCH-LOGICAL-c5856-c6b3f8254ab656b55e4c7a0d3739cedfcd1c44ae9643a331df800c5b16308c153</cites><orcidid>0000-0003-0037-7898 ; 0000-0001-6191-5261 ; 0000-0001-8987-6014 ; 0000-0002-1493-2189 ; 0000-0003-1468-3538 ; 0000-0003-1603-7070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7361286/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7361286/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27903,27904,41099,42168,45553,45554,46387,46811,51554,53769,53771</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.2019104036$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32484965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Xu</creatorcontrib><creatorcontrib>Tubbs, Anthony</creatorcontrib><creatorcontrib>Zhang, Chunchao</creatorcontrib><creatorcontrib>Tang, Mengfan</creatorcontrib><creatorcontrib>Sridharan, Sriram</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Jiang, Dadi</creatorcontrib><creatorcontrib>Su, Dan</creatorcontrib><creatorcontrib>Zhang, Huimin</creatorcontrib><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Nie, Litong</creatorcontrib><creatorcontrib>Xiong, Yun</creatorcontrib><creatorcontrib>Huang, Min</creatorcontrib><creatorcontrib>Nussenzweig, André</creatorcontrib><creatorcontrib>Chen, Junjie</creatorcontrib><title>ATR inhibition potentiates ionizing radiation‐induced interferon response via cytosolic nucleic acid‐sensing pathways</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Mechanistic understanding of how ionizing radiation induces type I interferon signaling and how to amplify this signaling module should help to maximize the efficacy of radiotherapy. In the current study, we report that inhibitors of the DNA damage response kinase ATR can significantly potentiate ionizing radiation‐induced innate immune responses. Using a series of mammalian knockout cell lines, we demonstrate that, surprisingly, both the cGAS/STING‐dependent DNA‐sensing pathway and the MAVS‐dependent RNA‐sensing pathway are responsible for type I interferon signaling induced by ionizing radiation in the presence or absence of ATR inhibitors. The relative contributions of these two pathways in type I interferon signaling depend on cell type and/or genetic background. We propose that DNA damage‐elicited double‐strand DNA breaks releases DNA fragments, which may either activate the cGAS/STING‐dependent pathway or—especially in the case of AT‐rich DNA sequences—be transcribed and initiate MAVS‐dependent RNA sensing and signaling. Together, our results suggest the involvement of two distinct pathways in type I interferon signaling upon DNA damage. Moreover, radiation plus ATR inhibition may be a promising new combination therapy against cancer. Synopsis Type I interferon signaling plays key roles in cancer radiotherapy with ionizing radiation (IR). Here, exploration of combinatory effects of IR and DNA damage kinase inhibitors reveals surprising involvement of distinct cytosolic nucleic acid‐sensing pathways in interferon response induction. Inhibition of DNA damage response kinase ATR (ATRi) significantly potentiates IR‐induced type I interferon response in multiple human and murine cancer cells. MAVS‐dependent RNA sensing pathway is indispensable for interferon signaling induced by combined IR+ATRi in some human cells. Both cGAS/STING‐dependent cytosolic DNA‐ and MAVS‐dependent cytosolic RNA‐sensing pathways contribute to IR+ATRi‐induced interferon signaling to varying extent in different cell lines. DNA damage‐elicited AT‐rich DNA mediates type I interferon signaling in a subset of human cells. Graphical Abstract Surprisingly, both cGAS/STING‐dependent DNA‐ and MAVS‐dependent RNA‐sensing pathways contribute to the effects of combined radiotherapy and blocked DNA damage signaling, depending on cellular context.</description><subject>Ataxia Telangiectasia Mutated Proteins - genetics</subject><subject>Ataxia Telangiectasia Mutated Proteins - immunology</subject><subject>ATR</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>cGAS/STING</subject><subject>Deoxyribonucleic acid</subject><subject>Detection</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded - radiation effects</subject><subject>DNA damage</subject><subject>EMBO13</subject><subject>EMBO19</subject><subject>Gene sequencing</subject><subject>Humans</subject><subject>Immune response</subject><subject>Inhibitors</subject><subject>Innate immunity</subject><subject>Interferon</subject><subject>Interferon Type I - genetics</subject><subject>Interferon Type I - immunology</subject><subject>Ionizing radiation</subject><subject>Kinases</subject><subject>MAVS</subject><subject>Nucleic acids</subject><subject>Nucleotide sequence</subject><subject>radiation</subject><subject>Radiation damage</subject><subject>Radiation therapy</subject><subject>Radiation, Ionizing</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - immunology</subject><subject>Signal Transduction - radiation effects</subject><subject>Signaling</subject><subject>type I interferon</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EokNhzwpFYp1y_ZtEQkilKn8qQkJlbTnOzYxHGTvYSauw4hF4Rp4ElyktXSBWV9c-3_GxDiFPKRxRySR7gbt2e8SANhQEcHWPrKhQUDKo5H2yAqZoKWjdHJBHKW0BQNYVfUgOOBO1aJRckeX4_HPh_Ma1bnLBF2OY0E_OTJiKvLtvzq-LaLp8ktef3384380Wu8xMGHuMmYmYxuATFhfOFHaZQgqDs4Wf7YB5Guu6DCb06cpsNNPm0izpMXnQmyHhk-t5SL68OT0_eVeefXr7_uT4rLSylqq0quV9zaQwrZKqlRKFrQx0vOJNztHbjlohDDZKcMM57foawMqWKg61pZIfkld733Fud9jZ_L1oBj1GtzNx0cE4fffGu41ehwtdcUVZrbLB82uDGL7OmCa9DXP0ObNmgvGKsgYgq2CvsjGkFLG_eYGC_l2WvipL35aVkWd_J7sB_rSTBS_3gks34PJfQ3368fWHO_50j6dM-jXG2-D_zPQLAey31A</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Feng, Xu</creator><creator>Tubbs, Anthony</creator><creator>Zhang, Chunchao</creator><creator>Tang, Mengfan</creator><creator>Sridharan, Sriram</creator><creator>Wang, Chao</creator><creator>Jiang, Dadi</creator><creator>Su, Dan</creator><creator>Zhang, Huimin</creator><creator>Chen, Zhen</creator><creator>Nie, Litong</creator><creator>Xiong, Yun</creator><creator>Huang, Min</creator><creator>Nussenzweig, André</creator><creator>Chen, Junjie</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0037-7898</orcidid><orcidid>https://orcid.org/0000-0001-6191-5261</orcidid><orcidid>https://orcid.org/0000-0001-8987-6014</orcidid><orcidid>https://orcid.org/0000-0002-1493-2189</orcidid><orcidid>https://orcid.org/0000-0003-1468-3538</orcidid><orcidid>https://orcid.org/0000-0003-1603-7070</orcidid></search><sort><creationdate>20200715</creationdate><title>ATR inhibition potentiates ionizing radiation‐induced interferon response via cytosolic nucleic acid‐sensing pathways</title><author>Feng, Xu ; Tubbs, Anthony ; Zhang, Chunchao ; Tang, Mengfan ; Sridharan, Sriram ; Wang, Chao ; Jiang, Dadi ; Su, Dan ; Zhang, Huimin ; Chen, Zhen ; Nie, Litong ; Xiong, Yun ; Huang, Min ; Nussenzweig, André ; Chen, Junjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5856-c6b3f8254ab656b55e4c7a0d3739cedfcd1c44ae9643a331df800c5b16308c153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ataxia Telangiectasia Mutated Proteins - genetics</topic><topic>Ataxia Telangiectasia Mutated Proteins - immunology</topic><topic>ATR</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>cGAS/STING</topic><topic>Deoxyribonucleic acid</topic><topic>Detection</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded - radiation effects</topic><topic>DNA damage</topic><topic>EMBO13</topic><topic>EMBO19</topic><topic>Gene sequencing</topic><topic>Humans</topic><topic>Immune response</topic><topic>Inhibitors</topic><topic>Innate immunity</topic><topic>Interferon</topic><topic>Interferon Type I - genetics</topic><topic>Interferon Type I - immunology</topic><topic>Ionizing radiation</topic><topic>Kinases</topic><topic>MAVS</topic><topic>Nucleic acids</topic><topic>Nucleotide sequence</topic><topic>radiation</topic><topic>Radiation damage</topic><topic>Radiation therapy</topic><topic>Radiation, Ionizing</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - immunology</topic><topic>Signal Transduction - radiation effects</topic><topic>Signaling</topic><topic>type I interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Xu</creatorcontrib><creatorcontrib>Tubbs, Anthony</creatorcontrib><creatorcontrib>Zhang, Chunchao</creatorcontrib><creatorcontrib>Tang, Mengfan</creatorcontrib><creatorcontrib>Sridharan, Sriram</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Jiang, Dadi</creatorcontrib><creatorcontrib>Su, Dan</creatorcontrib><creatorcontrib>Zhang, Huimin</creatorcontrib><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Nie, Litong</creatorcontrib><creatorcontrib>Xiong, Yun</creatorcontrib><creatorcontrib>Huang, Min</creatorcontrib><creatorcontrib>Nussenzweig, André</creatorcontrib><creatorcontrib>Chen, Junjie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Xu</au><au>Tubbs, Anthony</au><au>Zhang, Chunchao</au><au>Tang, Mengfan</au><au>Sridharan, Sriram</au><au>Wang, Chao</au><au>Jiang, Dadi</au><au>Su, Dan</au><au>Zhang, Huimin</au><au>Chen, Zhen</au><au>Nie, Litong</au><au>Xiong, Yun</au><au>Huang, Min</au><au>Nussenzweig, André</au><au>Chen, Junjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATR inhibition potentiates ionizing radiation‐induced interferon response via cytosolic nucleic acid‐sensing pathways</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2020-07-15</date><risdate>2020</risdate><volume>39</volume><issue>14</issue><spage>e104036</spage><epage>n/a</epage><pages>e104036-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Mechanistic understanding of how ionizing radiation induces type I interferon signaling and how to amplify this signaling module should help to maximize the efficacy of radiotherapy. In the current study, we report that inhibitors of the DNA damage response kinase ATR can significantly potentiate ionizing radiation‐induced innate immune responses. Using a series of mammalian knockout cell lines, we demonstrate that, surprisingly, both the cGAS/STING‐dependent DNA‐sensing pathway and the MAVS‐dependent RNA‐sensing pathway are responsible for type I interferon signaling induced by ionizing radiation in the presence or absence of ATR inhibitors. The relative contributions of these two pathways in type I interferon signaling depend on cell type and/or genetic background. We propose that DNA damage‐elicited double‐strand DNA breaks releases DNA fragments, which may either activate the cGAS/STING‐dependent pathway or—especially in the case of AT‐rich DNA sequences—be transcribed and initiate MAVS‐dependent RNA sensing and signaling. Together, our results suggest the involvement of two distinct pathways in type I interferon signaling upon DNA damage. Moreover, radiation plus ATR inhibition may be a promising new combination therapy against cancer. Synopsis Type I interferon signaling plays key roles in cancer radiotherapy with ionizing radiation (IR). Here, exploration of combinatory effects of IR and DNA damage kinase inhibitors reveals surprising involvement of distinct cytosolic nucleic acid‐sensing pathways in interferon response induction. Inhibition of DNA damage response kinase ATR (ATRi) significantly potentiates IR‐induced type I interferon response in multiple human and murine cancer cells. MAVS‐dependent RNA sensing pathway is indispensable for interferon signaling induced by combined IR+ATRi in some human cells. Both cGAS/STING‐dependent cytosolic DNA‐ and MAVS‐dependent cytosolic RNA‐sensing pathways contribute to IR+ATRi‐induced interferon signaling to varying extent in different cell lines. DNA damage‐elicited AT‐rich DNA mediates type I interferon signaling in a subset of human cells. Graphical Abstract Surprisingly, both cGAS/STING‐dependent DNA‐ and MAVS‐dependent RNA‐sensing pathways contribute to the effects of combined radiotherapy and blocked DNA damage signaling, depending on cellular context.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32484965</pmid><doi>10.15252/embj.2019104036</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0037-7898</orcidid><orcidid>https://orcid.org/0000-0001-6191-5261</orcidid><orcidid>https://orcid.org/0000-0001-8987-6014</orcidid><orcidid>https://orcid.org/0000-0002-1493-2189</orcidid><orcidid>https://orcid.org/0000-0003-1468-3538</orcidid><orcidid>https://orcid.org/0000-0003-1603-7070</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2020-07, Vol.39 (14), p.e104036-n/a
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7361286
source Springer Nature OA Free Journals
subjects Ataxia Telangiectasia Mutated Proteins - genetics
Ataxia Telangiectasia Mutated Proteins - immunology
ATR
Biotechnology
Cancer
Cell Line, Tumor
cGAS/STING
Deoxyribonucleic acid
Detection
DNA
DNA Breaks, Double-Stranded - radiation effects
DNA damage
EMBO13
EMBO19
Gene sequencing
Humans
Immune response
Inhibitors
Innate immunity
Interferon
Interferon Type I - genetics
Interferon Type I - immunology
Ionizing radiation
Kinases
MAVS
Nucleic acids
Nucleotide sequence
radiation
Radiation damage
Radiation therapy
Radiation, Ionizing
Ribonucleic acid
RNA
Signal transduction
Signal Transduction - genetics
Signal Transduction - immunology
Signal Transduction - radiation effects
Signaling
type I interferon
title ATR inhibition potentiates ionizing radiation‐induced interferon response via cytosolic nucleic acid‐sensing pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A19%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATR%20inhibition%20potentiates%20ionizing%20radiation%E2%80%90induced%20interferon%20response%20via%20cytosolic%20nucleic%20acid%E2%80%90sensing%20pathways&rft.jtitle=The%20EMBO%20journal&rft.au=Feng,%20Xu&rft.date=2020-07-15&rft.volume=39&rft.issue=14&rft.spage=e104036&rft.epage=n/a&rft.pages=e104036-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2019104036&rft_dat=%3Cproquest_C6C%3E2423712900%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423712900&rft_id=info:pmid/32484965&rfr_iscdi=true