Simulation‐based estimation of the early spread of COVID‐19 in Iran: actual versus confirmed cases
Understanding the state of the COVID‐19 pandemic relies on infection and mortality data. Yet official data may underestimate the actual cases due to limited symptoms and testing capacity. We offer a simulation‐based approach which combines various sources of data to estimate the magnitude of outbrea...
Gespeichert in:
Veröffentlicht in: | System dynamics review 2020-01, Vol.36 (1), p.101-129 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 129 |
---|---|
container_issue | 1 |
container_start_page | 101 |
container_title | System dynamics review |
container_volume | 36 |
creator | Ghaffarzadegan, Navid Rahmandad, Hazhir |
description | Understanding the state of the COVID‐19 pandemic relies on infection and mortality data. Yet official data may underestimate the actual cases due to limited symptoms and testing capacity. We offer a simulation‐based approach which combines various sources of data to estimate the magnitude of outbreak. Early in the epidemic we applied the method to Iran's case, an epicenter of the pandemic in winter 2020. Estimates using data up to March 20th, 2020, point to 916,000 (90% UI: 508 K, 1.5 M) cumulative cases and 15,485 (90% UI: 8.4 K, 25.8 K) total deaths, numbers an order of magnitude higher than official statistics. Our projections suggest that absent strong sustaining of contact reductions the epidemic may resurface. We also use data and studies from the succeeding months to reflect on the quality of original estimates. Our proposed approach can be used for similar cases elsewhere to provide a more accurate, early, estimate of outbreak state.
© 2020 System Dynamics Society |
doi_str_mv | 10.1002/sdr.1655 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7361282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437123491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3865-6e9c8ca9294554c589e3e663eb49e57b87c0d25207b192185f1190a90c9dcb3f3</originalsourceid><addsrcrecordid>eNp1kd9KHDEUh4MoulqhTyABb7wZzZ9JJvFCkNXqgiDU1tuQyZypkdnJNplR9s5H6DP2SZpVa1uh5CJwzseXc_JD6CMlh5QQdpSaeEilEGtoQonWBa1YtY4mRCleVETKLbSd0j0hNB-1ibY4U7wspZqg9sbPx84OPvQ_n37UNkGDIQ1-_lzCocXDHWCwsVvitIhgm1Vten07O8s81dj3eBZtf4ytG0bb4QeIaUzYhb71cZ5tLjvTB7TR2i7B7uu9g75-Ov8yvSyuri9m09OrwnElRSFBO-WsZroUonRCaeAgJYe61CCqWlWONEwwUtVUM6pES6kmVhOnG1fzlu-gkxfvYqzz4w76IdrOLGJeKC5NsN782-n9nfkWHkzFJWWKZcHBqyCG72P-CTP3yUHX2R7CmAwreUUZLzXN6P479D6Msc_rZYoRznnJ6B-hiyGlCO3bMJSYVXgmh2dW4WV07-_h38DfaWWgeAEefQfL_4rMzdnnZ-Ev6eGkow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420333421</pqid></control><display><type>article</type><title>Simulation‐based estimation of the early spread of COVID‐19 in Iran: actual versus confirmed cases</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Ghaffarzadegan, Navid ; Rahmandad, Hazhir</creator><creatorcontrib>Ghaffarzadegan, Navid ; Rahmandad, Hazhir</creatorcontrib><description>Understanding the state of the COVID‐19 pandemic relies on infection and mortality data. Yet official data may underestimate the actual cases due to limited symptoms and testing capacity. We offer a simulation‐based approach which combines various sources of data to estimate the magnitude of outbreak. Early in the epidemic we applied the method to Iran's case, an epicenter of the pandemic in winter 2020. Estimates using data up to March 20th, 2020, point to 916,000 (90% UI: 508 K, 1.5 M) cumulative cases and 15,485 (90% UI: 8.4 K, 25.8 K) total deaths, numbers an order of magnitude higher than official statistics. Our projections suggest that absent strong sustaining of contact reductions the epidemic may resurface. We also use data and studies from the succeeding months to reflect on the quality of original estimates. Our proposed approach can be used for similar cases elsewhere to provide a more accurate, early, estimate of outbreak state.
© 2020 System Dynamics Society</description><identifier>ISSN: 0883-7066</identifier><identifier>EISSN: 1099-1727</identifier><identifier>DOI: 10.1002/sdr.1655</identifier><identifier>PMID: 32834468</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>coronavirus ; COVID-19 ; Data science ; Epidemics ; Fast Track ; health care ; Outbreaks ; Pandemics ; public policy ; simulation ; System dynamics ; Viral diseases</subject><ispartof>System dynamics review, 2020-01, Vol.36 (1), p.101-129</ispartof><rights>2020 System Dynamics Society</rights><rights>2020 System Dynamics Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3865-6e9c8ca9294554c589e3e663eb49e57b87c0d25207b192185f1190a90c9dcb3f3</citedby><cites>FETCH-LOGICAL-c3865-6e9c8ca9294554c589e3e663eb49e57b87c0d25207b192185f1190a90c9dcb3f3</cites><orcidid>0000-0003-3632-8588 ; 0000-0002-2784-9042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsdr.1655$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsdr.1655$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32834468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghaffarzadegan, Navid</creatorcontrib><creatorcontrib>Rahmandad, Hazhir</creatorcontrib><title>Simulation‐based estimation of the early spread of COVID‐19 in Iran: actual versus confirmed cases</title><title>System dynamics review</title><addtitle>Syst Dyn Rev</addtitle><description>Understanding the state of the COVID‐19 pandemic relies on infection and mortality data. Yet official data may underestimate the actual cases due to limited symptoms and testing capacity. We offer a simulation‐based approach which combines various sources of data to estimate the magnitude of outbreak. Early in the epidemic we applied the method to Iran's case, an epicenter of the pandemic in winter 2020. Estimates using data up to March 20th, 2020, point to 916,000 (90% UI: 508 K, 1.5 M) cumulative cases and 15,485 (90% UI: 8.4 K, 25.8 K) total deaths, numbers an order of magnitude higher than official statistics. Our projections suggest that absent strong sustaining of contact reductions the epidemic may resurface. We also use data and studies from the succeeding months to reflect on the quality of original estimates. Our proposed approach can be used for similar cases elsewhere to provide a more accurate, early, estimate of outbreak state.
© 2020 System Dynamics Society</description><subject>coronavirus</subject><subject>COVID-19</subject><subject>Data science</subject><subject>Epidemics</subject><subject>Fast Track</subject><subject>health care</subject><subject>Outbreaks</subject><subject>Pandemics</subject><subject>public policy</subject><subject>simulation</subject><subject>System dynamics</subject><subject>Viral diseases</subject><issn>0883-7066</issn><issn>1099-1727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kd9KHDEUh4MoulqhTyABb7wZzZ9JJvFCkNXqgiDU1tuQyZypkdnJNplR9s5H6DP2SZpVa1uh5CJwzseXc_JD6CMlh5QQdpSaeEilEGtoQonWBa1YtY4mRCleVETKLbSd0j0hNB-1ibY4U7wspZqg9sbPx84OPvQ_n37UNkGDIQ1-_lzCocXDHWCwsVvitIhgm1Vten07O8s81dj3eBZtf4ytG0bb4QeIaUzYhb71cZ5tLjvTB7TR2i7B7uu9g75-Ov8yvSyuri9m09OrwnElRSFBO-WsZroUonRCaeAgJYe61CCqWlWONEwwUtVUM6pES6kmVhOnG1fzlu-gkxfvYqzz4w76IdrOLGJeKC5NsN782-n9nfkWHkzFJWWKZcHBqyCG72P-CTP3yUHX2R7CmAwreUUZLzXN6P479D6Msc_rZYoRznnJ6B-hiyGlCO3bMJSYVXgmh2dW4WV07-_h38DfaWWgeAEefQfL_4rMzdnnZ-Ev6eGkow</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Ghaffarzadegan, Navid</creator><creator>Rahmandad, Hazhir</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Periodicals Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3632-8588</orcidid><orcidid>https://orcid.org/0000-0002-2784-9042</orcidid></search><sort><creationdate>202001</creationdate><title>Simulation‐based estimation of the early spread of COVID‐19 in Iran: actual versus confirmed cases</title><author>Ghaffarzadegan, Navid ; Rahmandad, Hazhir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3865-6e9c8ca9294554c589e3e663eb49e57b87c0d25207b192185f1190a90c9dcb3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>coronavirus</topic><topic>COVID-19</topic><topic>Data science</topic><topic>Epidemics</topic><topic>Fast Track</topic><topic>health care</topic><topic>Outbreaks</topic><topic>Pandemics</topic><topic>public policy</topic><topic>simulation</topic><topic>System dynamics</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghaffarzadegan, Navid</creatorcontrib><creatorcontrib>Rahmandad, Hazhir</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>System dynamics review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghaffarzadegan, Navid</au><au>Rahmandad, Hazhir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation‐based estimation of the early spread of COVID‐19 in Iran: actual versus confirmed cases</atitle><jtitle>System dynamics review</jtitle><addtitle>Syst Dyn Rev</addtitle><date>2020-01</date><risdate>2020</risdate><volume>36</volume><issue>1</issue><spage>101</spage><epage>129</epage><pages>101-129</pages><issn>0883-7066</issn><eissn>1099-1727</eissn><abstract>Understanding the state of the COVID‐19 pandemic relies on infection and mortality data. Yet official data may underestimate the actual cases due to limited symptoms and testing capacity. We offer a simulation‐based approach which combines various sources of data to estimate the magnitude of outbreak. Early in the epidemic we applied the method to Iran's case, an epicenter of the pandemic in winter 2020. Estimates using data up to March 20th, 2020, point to 916,000 (90% UI: 508 K, 1.5 M) cumulative cases and 15,485 (90% UI: 8.4 K, 25.8 K) total deaths, numbers an order of magnitude higher than official statistics. Our projections suggest that absent strong sustaining of contact reductions the epidemic may resurface. We also use data and studies from the succeeding months to reflect on the quality of original estimates. Our proposed approach can be used for similar cases elsewhere to provide a more accurate, early, estimate of outbreak state.
© 2020 System Dynamics Society</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>32834468</pmid><doi>10.1002/sdr.1655</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-3632-8588</orcidid><orcidid>https://orcid.org/0000-0002-2784-9042</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7066 |
ispartof | System dynamics review, 2020-01, Vol.36 (1), p.101-129 |
issn | 0883-7066 1099-1727 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7361282 |
source | EBSCOhost Business Source Complete; Access via Wiley Online Library |
subjects | coronavirus COVID-19 Data science Epidemics Fast Track health care Outbreaks Pandemics public policy simulation System dynamics Viral diseases |
title | Simulation‐based estimation of the early spread of COVID‐19 in Iran: actual versus confirmed cases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%E2%80%90based%20estimation%20of%20the%20early%20spread%20of%20COVID%E2%80%9019%20in%20Iran:%20actual%20versus%20confirmed%20cases&rft.jtitle=System%20dynamics%20review&rft.au=Ghaffarzadegan,%20Navid&rft.date=2020-01&rft.volume=36&rft.issue=1&rft.spage=101&rft.epage=129&rft.pages=101-129&rft.issn=0883-7066&rft.eissn=1099-1727&rft_id=info:doi/10.1002/sdr.1655&rft_dat=%3Cproquest_pubme%3E2437123491%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420333421&rft_id=info:pmid/32834468&rfr_iscdi=true |