Simulation‐based estimation of the early spread of COVID‐19 in Iran: actual versus confirmed cases

Understanding the state of the COVID‐19 pandemic relies on infection and mortality data. Yet official data may underestimate the actual cases due to limited symptoms and testing capacity. We offer a simulation‐based approach which combines various sources of data to estimate the magnitude of outbrea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:System dynamics review 2020-01, Vol.36 (1), p.101-129
Hauptverfasser: Ghaffarzadegan, Navid, Rahmandad, Hazhir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129
container_issue 1
container_start_page 101
container_title System dynamics review
container_volume 36
creator Ghaffarzadegan, Navid
Rahmandad, Hazhir
description Understanding the state of the COVID‐19 pandemic relies on infection and mortality data. Yet official data may underestimate the actual cases due to limited symptoms and testing capacity. We offer a simulation‐based approach which combines various sources of data to estimate the magnitude of outbreak. Early in the epidemic we applied the method to Iran's case, an epicenter of the pandemic in winter 2020. Estimates using data up to March 20th, 2020, point to 916,000 (90% UI: 508 K, 1.5 M) cumulative cases and 15,485 (90% UI: 8.4 K, 25.8 K) total deaths, numbers an order of magnitude higher than official statistics. Our projections suggest that absent strong sustaining of contact reductions the epidemic may resurface. We also use data and studies from the succeeding months to reflect on the quality of original estimates. Our proposed approach can be used for similar cases elsewhere to provide a more accurate, early, estimate of outbreak state. © 2020 System Dynamics Society
doi_str_mv 10.1002/sdr.1655
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7361282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437123491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3865-6e9c8ca9294554c589e3e663eb49e57b87c0d25207b192185f1190a90c9dcb3f3</originalsourceid><addsrcrecordid>eNp1kd9KHDEUh4MoulqhTyABb7wZzZ9JJvFCkNXqgiDU1tuQyZypkdnJNplR9s5H6DP2SZpVa1uh5CJwzseXc_JD6CMlh5QQdpSaeEilEGtoQonWBa1YtY4mRCleVETKLbSd0j0hNB-1ibY4U7wspZqg9sbPx84OPvQ_n37UNkGDIQ1-_lzCocXDHWCwsVvitIhgm1Vten07O8s81dj3eBZtf4ytG0bb4QeIaUzYhb71cZ5tLjvTB7TR2i7B7uu9g75-Ov8yvSyuri9m09OrwnElRSFBO-WsZroUonRCaeAgJYe61CCqWlWONEwwUtVUM6pES6kmVhOnG1fzlu-gkxfvYqzz4w76IdrOLGJeKC5NsN782-n9nfkWHkzFJWWKZcHBqyCG72P-CTP3yUHX2R7CmAwreUUZLzXN6P479D6Msc_rZYoRznnJ6B-hiyGlCO3bMJSYVXgmh2dW4WV07-_h38DfaWWgeAEefQfL_4rMzdnnZ-Ev6eGkow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420333421</pqid></control><display><type>article</type><title>Simulation‐based estimation of the early spread of COVID‐19 in Iran: actual versus confirmed cases</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Ghaffarzadegan, Navid ; Rahmandad, Hazhir</creator><creatorcontrib>Ghaffarzadegan, Navid ; Rahmandad, Hazhir</creatorcontrib><description>Understanding the state of the COVID‐19 pandemic relies on infection and mortality data. Yet official data may underestimate the actual cases due to limited symptoms and testing capacity. We offer a simulation‐based approach which combines various sources of data to estimate the magnitude of outbreak. Early in the epidemic we applied the method to Iran's case, an epicenter of the pandemic in winter 2020. Estimates using data up to March 20th, 2020, point to 916,000 (90% UI: 508 K, 1.5 M) cumulative cases and 15,485 (90% UI: 8.4 K, 25.8 K) total deaths, numbers an order of magnitude higher than official statistics. Our projections suggest that absent strong sustaining of contact reductions the epidemic may resurface. We also use data and studies from the succeeding months to reflect on the quality of original estimates. Our proposed approach can be used for similar cases elsewhere to provide a more accurate, early, estimate of outbreak state. © 2020 System Dynamics Society</description><identifier>ISSN: 0883-7066</identifier><identifier>EISSN: 1099-1727</identifier><identifier>DOI: 10.1002/sdr.1655</identifier><identifier>PMID: 32834468</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>coronavirus ; COVID-19 ; Data science ; Epidemics ; Fast Track ; health care ; Outbreaks ; Pandemics ; public policy ; simulation ; System dynamics ; Viral diseases</subject><ispartof>System dynamics review, 2020-01, Vol.36 (1), p.101-129</ispartof><rights>2020 System Dynamics Society</rights><rights>2020 System Dynamics Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3865-6e9c8ca9294554c589e3e663eb49e57b87c0d25207b192185f1190a90c9dcb3f3</citedby><cites>FETCH-LOGICAL-c3865-6e9c8ca9294554c589e3e663eb49e57b87c0d25207b192185f1190a90c9dcb3f3</cites><orcidid>0000-0003-3632-8588 ; 0000-0002-2784-9042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsdr.1655$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsdr.1655$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32834468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghaffarzadegan, Navid</creatorcontrib><creatorcontrib>Rahmandad, Hazhir</creatorcontrib><title>Simulation‐based estimation of the early spread of COVID‐19 in Iran: actual versus confirmed cases</title><title>System dynamics review</title><addtitle>Syst Dyn Rev</addtitle><description>Understanding the state of the COVID‐19 pandemic relies on infection and mortality data. Yet official data may underestimate the actual cases due to limited symptoms and testing capacity. We offer a simulation‐based approach which combines various sources of data to estimate the magnitude of outbreak. Early in the epidemic we applied the method to Iran's case, an epicenter of the pandemic in winter 2020. Estimates using data up to March 20th, 2020, point to 916,000 (90% UI: 508 K, 1.5 M) cumulative cases and 15,485 (90% UI: 8.4 K, 25.8 K) total deaths, numbers an order of magnitude higher than official statistics. Our projections suggest that absent strong sustaining of contact reductions the epidemic may resurface. We also use data and studies from the succeeding months to reflect on the quality of original estimates. Our proposed approach can be used for similar cases elsewhere to provide a more accurate, early, estimate of outbreak state. © 2020 System Dynamics Society</description><subject>coronavirus</subject><subject>COVID-19</subject><subject>Data science</subject><subject>Epidemics</subject><subject>Fast Track</subject><subject>health care</subject><subject>Outbreaks</subject><subject>Pandemics</subject><subject>public policy</subject><subject>simulation</subject><subject>System dynamics</subject><subject>Viral diseases</subject><issn>0883-7066</issn><issn>1099-1727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kd9KHDEUh4MoulqhTyABb7wZzZ9JJvFCkNXqgiDU1tuQyZypkdnJNplR9s5H6DP2SZpVa1uh5CJwzseXc_JD6CMlh5QQdpSaeEilEGtoQonWBa1YtY4mRCleVETKLbSd0j0hNB-1ibY4U7wspZqg9sbPx84OPvQ_n37UNkGDIQ1-_lzCocXDHWCwsVvitIhgm1Vten07O8s81dj3eBZtf4ytG0bb4QeIaUzYhb71cZ5tLjvTB7TR2i7B7uu9g75-Ov8yvSyuri9m09OrwnElRSFBO-WsZroUonRCaeAgJYe61CCqWlWONEwwUtVUM6pES6kmVhOnG1fzlu-gkxfvYqzz4w76IdrOLGJeKC5NsN782-n9nfkWHkzFJWWKZcHBqyCG72P-CTP3yUHX2R7CmAwreUUZLzXN6P479D6Msc_rZYoRznnJ6B-hiyGlCO3bMJSYVXgmh2dW4WV07-_h38DfaWWgeAEefQfL_4rMzdnnZ-Ev6eGkow</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Ghaffarzadegan, Navid</creator><creator>Rahmandad, Hazhir</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Periodicals Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3632-8588</orcidid><orcidid>https://orcid.org/0000-0002-2784-9042</orcidid></search><sort><creationdate>202001</creationdate><title>Simulation‐based estimation of the early spread of COVID‐19 in Iran: actual versus confirmed cases</title><author>Ghaffarzadegan, Navid ; Rahmandad, Hazhir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3865-6e9c8ca9294554c589e3e663eb49e57b87c0d25207b192185f1190a90c9dcb3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>coronavirus</topic><topic>COVID-19</topic><topic>Data science</topic><topic>Epidemics</topic><topic>Fast Track</topic><topic>health care</topic><topic>Outbreaks</topic><topic>Pandemics</topic><topic>public policy</topic><topic>simulation</topic><topic>System dynamics</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghaffarzadegan, Navid</creatorcontrib><creatorcontrib>Rahmandad, Hazhir</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>System dynamics review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghaffarzadegan, Navid</au><au>Rahmandad, Hazhir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation‐based estimation of the early spread of COVID‐19 in Iran: actual versus confirmed cases</atitle><jtitle>System dynamics review</jtitle><addtitle>Syst Dyn Rev</addtitle><date>2020-01</date><risdate>2020</risdate><volume>36</volume><issue>1</issue><spage>101</spage><epage>129</epage><pages>101-129</pages><issn>0883-7066</issn><eissn>1099-1727</eissn><abstract>Understanding the state of the COVID‐19 pandemic relies on infection and mortality data. Yet official data may underestimate the actual cases due to limited symptoms and testing capacity. We offer a simulation‐based approach which combines various sources of data to estimate the magnitude of outbreak. Early in the epidemic we applied the method to Iran's case, an epicenter of the pandemic in winter 2020. Estimates using data up to March 20th, 2020, point to 916,000 (90% UI: 508 K, 1.5 M) cumulative cases and 15,485 (90% UI: 8.4 K, 25.8 K) total deaths, numbers an order of magnitude higher than official statistics. Our projections suggest that absent strong sustaining of contact reductions the epidemic may resurface. We also use data and studies from the succeeding months to reflect on the quality of original estimates. Our proposed approach can be used for similar cases elsewhere to provide a more accurate, early, estimate of outbreak state. © 2020 System Dynamics Society</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>32834468</pmid><doi>10.1002/sdr.1655</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-3632-8588</orcidid><orcidid>https://orcid.org/0000-0002-2784-9042</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-7066
ispartof System dynamics review, 2020-01, Vol.36 (1), p.101-129
issn 0883-7066
1099-1727
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7361282
source EBSCOhost Business Source Complete; Access via Wiley Online Library
subjects coronavirus
COVID-19
Data science
Epidemics
Fast Track
health care
Outbreaks
Pandemics
public policy
simulation
System dynamics
Viral diseases
title Simulation‐based estimation of the early spread of COVID‐19 in Iran: actual versus confirmed cases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%E2%80%90based%20estimation%20of%20the%20early%20spread%20of%20COVID%E2%80%9019%20in%20Iran:%20actual%20versus%20confirmed%20cases&rft.jtitle=System%20dynamics%20review&rft.au=Ghaffarzadegan,%20Navid&rft.date=2020-01&rft.volume=36&rft.issue=1&rft.spage=101&rft.epage=129&rft.pages=101-129&rft.issn=0883-7066&rft.eissn=1099-1727&rft_id=info:doi/10.1002/sdr.1655&rft_dat=%3Cproquest_pubme%3E2437123491%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420333421&rft_id=info:pmid/32834468&rfr_iscdi=true