Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions

Abstract Motivation RNA-protein interactions are key effectors of post-transcriptional regulation. Significant experimental and bioinformatics efforts have been expended on characterizing protein binding mechanisms on the molecular level, and on highlighting the sequence and structural traits of RNA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2020-07, Vol.36 (Supplement_1), p.i276-i284
Hauptverfasser: Yan, Zichao, Hamilton, William L, Blanchette, Mathieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page i284
container_issue Supplement_1
container_start_page i276
container_title Bioinformatics (Oxford, England)
container_volume 36
creator Yan, Zichao
Hamilton, William L
Blanchette, Mathieu
description Abstract Motivation RNA-protein interactions are key effectors of post-transcriptional regulation. Significant experimental and bioinformatics efforts have been expended on characterizing protein binding mechanisms on the molecular level, and on highlighting the sequence and structural traits of RNA that impact the binding specificity for different proteins. Yet our ability to predict these interactions in silico remains relatively poor. Results In this study, we introduce RPI-Net, a graph neural network approach for RNA-protein interaction prediction. RPI-Net learns and exploits a graph representation of RNA molecules, yielding significant performance gains over existing state-of-the-art approaches. We also introduce an approach to rectify an important type of sequence bias caused by the RNase T1 enzyme used in many CLIP-Seq experiments, and we show that correcting this bias is essential in order to learn meaningful predictors and properly evaluate their accuracy. Finally, we provide new approaches to interpret the trained models and extract simple, biologically interpretable representations of the learned sequence and structural motifs. Availability and implementation Source code can be accessed at https://www.github.com/HarveyYan/RNAonGraph. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btaa456
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7355240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btaa456</oup_id><sourcerecordid>2423533536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-fb452a6776db3a3128fed33c6c3c1c66bb56878ddd6cfb5794c0a6c53ff8e8873</originalsourceid><addsrcrecordid>eNqNkUFLAzEQhYMoVqt_oeToZW2y2STbi1BEqyAKoueQzSZtyjZZk6zgvzeltehNCExIvnnzhgfABKNrjGZk2lhvnfFhI5NVcdokKSvKjsAZJowXVY3x8eGOyAicx7hGCFFE2SkYkZJRXiF-BtaLIPsVdHoIsoNB90FH7VJW9S4_dFoGZ90SegNfn-cwauVdK8MXjCkMKg0Zh9kGzH2tVWmLZq7og0_aOmhd0kGqrVq8ACdGdlFf7usYvN_fvd0-FE8vi8fb-VOhKlqmwjS5SMY5axsiCS5ro1tCFFNEYcVY01BW87ptW6ZMQ_msUkgyRYkxta5rTsbgZqfbD81Gtyqvk3cTfbCbbFx4acXfH2dXYuk_BSeUlhXKAld7geA_Bh2T2NiodNdJp_0QRVmVhJJ8WEbZDlXBxxi0OYzBSGyDEn-DEvugcuPkt8lD208yGcA7wA_9f0W_AdFBqxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423533536</pqid></control><display><type>article</type><title>Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Yan, Zichao ; Hamilton, William L ; Blanchette, Mathieu</creator><creatorcontrib>Yan, Zichao ; Hamilton, William L ; Blanchette, Mathieu</creatorcontrib><description>Abstract Motivation RNA-protein interactions are key effectors of post-transcriptional regulation. Significant experimental and bioinformatics efforts have been expended on characterizing protein binding mechanisms on the molecular level, and on highlighting the sequence and structural traits of RNA that impact the binding specificity for different proteins. Yet our ability to predict these interactions in silico remains relatively poor. Results In this study, we introduce RPI-Net, a graph neural network approach for RNA-protein interaction prediction. RPI-Net learns and exploits a graph representation of RNA molecules, yielding significant performance gains over existing state-of-the-art approaches. We also introduce an approach to rectify an important type of sequence bias caused by the RNase T1 enzyme used in many CLIP-Seq experiments, and we show that correcting this bias is essential in order to learn meaningful predictors and properly evaluate their accuracy. Finally, we provide new approaches to interpret the trained models and extract simple, biologically interpretable representations of the learned sequence and structural motifs. Availability and implementation Source code can be accessed at https://www.github.com/HarveyYan/RNAonGraph. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btaa456</identifier><identifier>PMID: 32657407</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Macromolecular Sequence, Structure, and Function ; Neural Networks, Computer ; Protein Binding ; Protein Structure, Secondary ; RNA - metabolism ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2020-07, Vol.36 (Supplement_1), p.i276-i284</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-fb452a6776db3a3128fed33c6c3c1c66bb56878ddd6cfb5794c0a6c53ff8e8873</citedby><cites>FETCH-LOGICAL-c452t-fb452a6776db3a3128fed33c6c3c1c66bb56878ddd6cfb5794c0a6c53ff8e8873</cites><orcidid>0000-0002-9555-860X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355240/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355240/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32657407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Zichao</creatorcontrib><creatorcontrib>Hamilton, William L</creatorcontrib><creatorcontrib>Blanchette, Mathieu</creatorcontrib><title>Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation RNA-protein interactions are key effectors of post-transcriptional regulation. Significant experimental and bioinformatics efforts have been expended on characterizing protein binding mechanisms on the molecular level, and on highlighting the sequence and structural traits of RNA that impact the binding specificity for different proteins. Yet our ability to predict these interactions in silico remains relatively poor. Results In this study, we introduce RPI-Net, a graph neural network approach for RNA-protein interaction prediction. RPI-Net learns and exploits a graph representation of RNA molecules, yielding significant performance gains over existing state-of-the-art approaches. We also introduce an approach to rectify an important type of sequence bias caused by the RNase T1 enzyme used in many CLIP-Seq experiments, and we show that correcting this bias is essential in order to learn meaningful predictors and properly evaluate their accuracy. Finally, we provide new approaches to interpret the trained models and extract simple, biologically interpretable representations of the learned sequence and structural motifs. Availability and implementation Source code can be accessed at https://www.github.com/HarveyYan/RNAonGraph. Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Macromolecular Sequence, Structure, and Function</subject><subject>Neural Networks, Computer</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>RNA - metabolism</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUFLAzEQhYMoVqt_oeToZW2y2STbi1BEqyAKoueQzSZtyjZZk6zgvzeltehNCExIvnnzhgfABKNrjGZk2lhvnfFhI5NVcdokKSvKjsAZJowXVY3x8eGOyAicx7hGCFFE2SkYkZJRXiF-BtaLIPsVdHoIsoNB90FH7VJW9S4_dFoGZ90SegNfn-cwauVdK8MXjCkMKg0Zh9kGzH2tVWmLZq7og0_aOmhd0kGqrVq8ACdGdlFf7usYvN_fvd0-FE8vi8fb-VOhKlqmwjS5SMY5axsiCS5ro1tCFFNEYcVY01BW87ptW6ZMQ_msUkgyRYkxta5rTsbgZqfbD81Gtyqvk3cTfbCbbFx4acXfH2dXYuk_BSeUlhXKAld7geA_Bh2T2NiodNdJp_0QRVmVhJJ8WEbZDlXBxxi0OYzBSGyDEn-DEvugcuPkt8lD208yGcA7wA_9f0W_AdFBqxA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Yan, Zichao</creator><creator>Hamilton, William L</creator><creator>Blanchette, Mathieu</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9555-860X</orcidid></search><sort><creationdate>20200701</creationdate><title>Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions</title><author>Yan, Zichao ; Hamilton, William L ; Blanchette, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-fb452a6776db3a3128fed33c6c3c1c66bb56878ddd6cfb5794c0a6c53ff8e8873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Macromolecular Sequence, Structure, and Function</topic><topic>Neural Networks, Computer</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>RNA - metabolism</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Zichao</creatorcontrib><creatorcontrib>Hamilton, William L</creatorcontrib><creatorcontrib>Blanchette, Mathieu</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Zichao</au><au>Hamilton, William L</au><au>Blanchette, Mathieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>36</volume><issue>Supplement_1</issue><spage>i276</spage><epage>i284</epage><pages>i276-i284</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract Motivation RNA-protein interactions are key effectors of post-transcriptional regulation. Significant experimental and bioinformatics efforts have been expended on characterizing protein binding mechanisms on the molecular level, and on highlighting the sequence and structural traits of RNA that impact the binding specificity for different proteins. Yet our ability to predict these interactions in silico remains relatively poor. Results In this study, we introduce RPI-Net, a graph neural network approach for RNA-protein interaction prediction. RPI-Net learns and exploits a graph representation of RNA molecules, yielding significant performance gains over existing state-of-the-art approaches. We also introduce an approach to rectify an important type of sequence bias caused by the RNase T1 enzyme used in many CLIP-Seq experiments, and we show that correcting this bias is essential in order to learn meaningful predictors and properly evaluate their accuracy. Finally, we provide new approaches to interpret the trained models and extract simple, biologically interpretable representations of the learned sequence and structural motifs. Availability and implementation Source code can be accessed at https://www.github.com/HarveyYan/RNAonGraph. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32657407</pmid><doi>10.1093/bioinformatics/btaa456</doi><orcidid>https://orcid.org/0000-0002-9555-860X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2020-07, Vol.36 (Supplement_1), p.i276-i284
issn 1367-4803
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7355240
source MEDLINE; Access via Oxford University Press (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Macromolecular Sequence, Structure, and Function
Neural Networks, Computer
Protein Binding
Protein Structure, Secondary
RNA - metabolism
Software
title Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20neural%20representational%20learning%20of%20RNA%20secondary%20structures%20for%20predicting%20RNA-protein%20interactions&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Yan,%20Zichao&rft.date=2020-07-01&rft.volume=36&rft.issue=Supplement_1&rft.spage=i276&rft.epage=i284&rft.pages=i276-i284&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btaa456&rft_dat=%3Cproquest_pubme%3E2423533536%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423533536&rft_id=info:pmid/32657407&rft_oup_id=10.1093/bioinformatics/btaa456&rfr_iscdi=true