Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions
Abstract Motivation RNA-protein interactions are key effectors of post-transcriptional regulation. Significant experimental and bioinformatics efforts have been expended on characterizing protein binding mechanisms on the molecular level, and on highlighting the sequence and structural traits of RNA...
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2020-07, Vol.36 (Supplement_1), p.i276-i284 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | i284 |
---|---|
container_issue | Supplement_1 |
container_start_page | i276 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 36 |
creator | Yan, Zichao Hamilton, William L Blanchette, Mathieu |
description | Abstract
Motivation
RNA-protein interactions are key effectors of post-transcriptional regulation. Significant experimental and bioinformatics efforts have been expended on characterizing protein binding mechanisms on the molecular level, and on highlighting the sequence and structural traits of RNA that impact the binding specificity for different proteins. Yet our ability to predict these interactions in silico remains relatively poor.
Results
In this study, we introduce RPI-Net, a graph neural network approach for RNA-protein interaction prediction. RPI-Net learns and exploits a graph representation of RNA molecules, yielding significant performance gains over existing state-of-the-art approaches. We also introduce an approach to rectify an important type of sequence bias caused by the RNase T1 enzyme used in many CLIP-Seq experiments, and we show that correcting this bias is essential in order to learn meaningful predictors and properly evaluate their accuracy. Finally, we provide new approaches to interpret the trained models and extract simple, biologically interpretable representations of the learned sequence and structural motifs.
Availability and implementation
Source code can be accessed at https://www.github.com/HarveyYan/RNAonGraph.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btaa456 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7355240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btaa456</oup_id><sourcerecordid>2423533536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-fb452a6776db3a3128fed33c6c3c1c66bb56878ddd6cfb5794c0a6c53ff8e8873</originalsourceid><addsrcrecordid>eNqNkUFLAzEQhYMoVqt_oeToZW2y2STbi1BEqyAKoueQzSZtyjZZk6zgvzeltehNCExIvnnzhgfABKNrjGZk2lhvnfFhI5NVcdokKSvKjsAZJowXVY3x8eGOyAicx7hGCFFE2SkYkZJRXiF-BtaLIPsVdHoIsoNB90FH7VJW9S4_dFoGZ90SegNfn-cwauVdK8MXjCkMKg0Zh9kGzH2tVWmLZq7og0_aOmhd0kGqrVq8ACdGdlFf7usYvN_fvd0-FE8vi8fb-VOhKlqmwjS5SMY5axsiCS5ro1tCFFNEYcVY01BW87ptW6ZMQ_msUkgyRYkxta5rTsbgZqfbD81Gtyqvk3cTfbCbbFx4acXfH2dXYuk_BSeUlhXKAld7geA_Bh2T2NiodNdJp_0QRVmVhJJ8WEbZDlXBxxi0OYzBSGyDEn-DEvugcuPkt8lD208yGcA7wA_9f0W_AdFBqxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423533536</pqid></control><display><type>article</type><title>Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Yan, Zichao ; Hamilton, William L ; Blanchette, Mathieu</creator><creatorcontrib>Yan, Zichao ; Hamilton, William L ; Blanchette, Mathieu</creatorcontrib><description>Abstract
Motivation
RNA-protein interactions are key effectors of post-transcriptional regulation. Significant experimental and bioinformatics efforts have been expended on characterizing protein binding mechanisms on the molecular level, and on highlighting the sequence and structural traits of RNA that impact the binding specificity for different proteins. Yet our ability to predict these interactions in silico remains relatively poor.
Results
In this study, we introduce RPI-Net, a graph neural network approach for RNA-protein interaction prediction. RPI-Net learns and exploits a graph representation of RNA molecules, yielding significant performance gains over existing state-of-the-art approaches. We also introduce an approach to rectify an important type of sequence bias caused by the RNase T1 enzyme used in many CLIP-Seq experiments, and we show that correcting this bias is essential in order to learn meaningful predictors and properly evaluate their accuracy. Finally, we provide new approaches to interpret the trained models and extract simple, biologically interpretable representations of the learned sequence and structural motifs.
Availability and implementation
Source code can be accessed at https://www.github.com/HarveyYan/RNAonGraph.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btaa456</identifier><identifier>PMID: 32657407</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Macromolecular Sequence, Structure, and Function ; Neural Networks, Computer ; Protein Binding ; Protein Structure, Secondary ; RNA - metabolism ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2020-07, Vol.36 (Supplement_1), p.i276-i284</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-fb452a6776db3a3128fed33c6c3c1c66bb56878ddd6cfb5794c0a6c53ff8e8873</citedby><cites>FETCH-LOGICAL-c452t-fb452a6776db3a3128fed33c6c3c1c66bb56878ddd6cfb5794c0a6c53ff8e8873</cites><orcidid>0000-0002-9555-860X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355240/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355240/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32657407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Zichao</creatorcontrib><creatorcontrib>Hamilton, William L</creatorcontrib><creatorcontrib>Blanchette, Mathieu</creatorcontrib><title>Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
RNA-protein interactions are key effectors of post-transcriptional regulation. Significant experimental and bioinformatics efforts have been expended on characterizing protein binding mechanisms on the molecular level, and on highlighting the sequence and structural traits of RNA that impact the binding specificity for different proteins. Yet our ability to predict these interactions in silico remains relatively poor.
Results
In this study, we introduce RPI-Net, a graph neural network approach for RNA-protein interaction prediction. RPI-Net learns and exploits a graph representation of RNA molecules, yielding significant performance gains over existing state-of-the-art approaches. We also introduce an approach to rectify an important type of sequence bias caused by the RNase T1 enzyme used in many CLIP-Seq experiments, and we show that correcting this bias is essential in order to learn meaningful predictors and properly evaluate their accuracy. Finally, we provide new approaches to interpret the trained models and extract simple, biologically interpretable representations of the learned sequence and structural motifs.
Availability and implementation
Source code can be accessed at https://www.github.com/HarveyYan/RNAonGraph.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Macromolecular Sequence, Structure, and Function</subject><subject>Neural Networks, Computer</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>RNA - metabolism</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUFLAzEQhYMoVqt_oeToZW2y2STbi1BEqyAKoueQzSZtyjZZk6zgvzeltehNCExIvnnzhgfABKNrjGZk2lhvnfFhI5NVcdokKSvKjsAZJowXVY3x8eGOyAicx7hGCFFE2SkYkZJRXiF-BtaLIPsVdHoIsoNB90FH7VJW9S4_dFoGZ90SegNfn-cwauVdK8MXjCkMKg0Zh9kGzH2tVWmLZq7og0_aOmhd0kGqrVq8ACdGdlFf7usYvN_fvd0-FE8vi8fb-VOhKlqmwjS5SMY5axsiCS5ro1tCFFNEYcVY01BW87ptW6ZMQ_msUkgyRYkxta5rTsbgZqfbD81Gtyqvk3cTfbCbbFx4acXfH2dXYuk_BSeUlhXKAld7geA_Bh2T2NiodNdJp_0QRVmVhJJ8WEbZDlXBxxi0OYzBSGyDEn-DEvugcuPkt8lD208yGcA7wA_9f0W_AdFBqxA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Yan, Zichao</creator><creator>Hamilton, William L</creator><creator>Blanchette, Mathieu</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9555-860X</orcidid></search><sort><creationdate>20200701</creationdate><title>Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions</title><author>Yan, Zichao ; Hamilton, William L ; Blanchette, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-fb452a6776db3a3128fed33c6c3c1c66bb56878ddd6cfb5794c0a6c53ff8e8873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Macromolecular Sequence, Structure, and Function</topic><topic>Neural Networks, Computer</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>RNA - metabolism</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Zichao</creatorcontrib><creatorcontrib>Hamilton, William L</creatorcontrib><creatorcontrib>Blanchette, Mathieu</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Zichao</au><au>Hamilton, William L</au><au>Blanchette, Mathieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>36</volume><issue>Supplement_1</issue><spage>i276</spage><epage>i284</epage><pages>i276-i284</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
RNA-protein interactions are key effectors of post-transcriptional regulation. Significant experimental and bioinformatics efforts have been expended on characterizing protein binding mechanisms on the molecular level, and on highlighting the sequence and structural traits of RNA that impact the binding specificity for different proteins. Yet our ability to predict these interactions in silico remains relatively poor.
Results
In this study, we introduce RPI-Net, a graph neural network approach for RNA-protein interaction prediction. RPI-Net learns and exploits a graph representation of RNA molecules, yielding significant performance gains over existing state-of-the-art approaches. We also introduce an approach to rectify an important type of sequence bias caused by the RNase T1 enzyme used in many CLIP-Seq experiments, and we show that correcting this bias is essential in order to learn meaningful predictors and properly evaluate their accuracy. Finally, we provide new approaches to interpret the trained models and extract simple, biologically interpretable representations of the learned sequence and structural motifs.
Availability and implementation
Source code can be accessed at https://www.github.com/HarveyYan/RNAonGraph.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32657407</pmid><doi>10.1093/bioinformatics/btaa456</doi><orcidid>https://orcid.org/0000-0002-9555-860X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2020-07, Vol.36 (Supplement_1), p.i276-i284 |
issn | 1367-4803 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7355240 |
source | MEDLINE; Access via Oxford University Press (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Macromolecular Sequence, Structure, and Function Neural Networks, Computer Protein Binding Protein Structure, Secondary RNA - metabolism Software |
title | Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20neural%20representational%20learning%20of%20RNA%20secondary%20structures%20for%20predicting%20RNA-protein%20interactions&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Yan,%20Zichao&rft.date=2020-07-01&rft.volume=36&rft.issue=Supplement_1&rft.spage=i276&rft.epage=i284&rft.pages=i276-i284&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btaa456&rft_dat=%3Cproquest_pubme%3E2423533536%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423533536&rft_id=info:pmid/32657407&rft_oup_id=10.1093/bioinformatics/btaa456&rfr_iscdi=true |