The Metabolism of Epoxyeicosatrienoic Acids by Soluble Epoxide Hydrolase Is Protective against the Development of Vascular Calcification

This study addressed the hypothesis that soluble epoxide hydrolase (sEH), which metabolizes endothelium-derived epoxyeicosatrienoic acids, plays a role in vascular calcification. The sEH inhibitor -4-(4-(3-adamantan-1-yl-ureido)-cyclohexyloxy)-benzoic acid ( -AUCB) potentiated the increase in calciu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2020-06, Vol.21 (12), p.4313
Hauptverfasser: Varennes, Olivier, Mentaverri, Romuald, Duflot, Thomas, Kauffenstein, Gilles, Objois, Thibaut, Lenglet, Gaëlle, Avondo, Carine, Morisseau, Christophe, Brazier, Michel, Kamel, Saïd, Six, Isabelle, Bellien, Jeremy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 4313
container_title International journal of molecular sciences
container_volume 21
creator Varennes, Olivier
Mentaverri, Romuald
Duflot, Thomas
Kauffenstein, Gilles
Objois, Thibaut
Lenglet, Gaëlle
Avondo, Carine
Morisseau, Christophe
Brazier, Michel
Kamel, Saïd
Six, Isabelle
Bellien, Jeremy
description This study addressed the hypothesis that soluble epoxide hydrolase (sEH), which metabolizes endothelium-derived epoxyeicosatrienoic acids, plays a role in vascular calcification. The sEH inhibitor -4-(4-(3-adamantan-1-yl-ureido)-cyclohexyloxy)-benzoic acid ( -AUCB) potentiated the increase in calcium deposition of rat aortic rings cultured in high-phosphate conditions. This was associated with increased tissue-nonspecific alkaline phosphatase activity and mRNA expression level of the osteochondrogenic marker Runx2. The procalcifying effect of -AUCB was prevented by mechanical aortic deendothelialization or inhibition of the production and action of epoxyeicosatrienoic acids using the cytochrome P450 inhibitor fluconazole and the antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), respectively. Similarly, exogenous epoxyeicosatrienoic acids potentiated the calcification of rat aortic rings through a protein kinase A (PKA)-dependent mechanism and of human aortic vascular smooth muscle cells when sEH was inhibited by -AUCB. Finally, a global gene expression profiling analysis revealed that the mRNA expression level of sEH was decreased in human carotid calcified plaques compared to adjacent lesion-free sites and was inversely correlated with Runx2 expression. These results show that sEH hydrolase plays a protective role against vascular calcification by reducing the bioavailability of epoxyeicosatrienoic acids.
doi_str_mv 10.3390/ijms21124313
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7352784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415566985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-742cb9102e8cc58be2a121d7c41d7bd3a0f3e4bcdba9875d44055d6e0c4f07ed3</originalsourceid><addsrcrecordid>eNpdkktvEzEQgFcIRF_cOCNLXKhEwM99XJCiUEilICpRuFp-zDaOvOvU9kbkH_Cz2TRtlfbisezP34ztKYq3BH9irMGf3apLlBDKGWEvimPCKZ1gXFYvD-ZHxUlKK4wpo6J5XRyNocSspMfFv-sloB-QlQ7epQ6FFl2sw98tOBOSytFBH5xBU-NsQnqLfgU_aA93kLOA5lsbg1cJ0GVCVzFkMNltAKkb5fqUUR71X2EDPqw76PPO_0clM3gV0Ux541pnVHahPytetconeHMfT4vf3y6uZ_PJ4uf3y9l0MTGcl3lScWp0QzCF2hhRa6CKUGIrw8dBW6Zwy4BrY7Vq6kpYzrEQtgRseIsrsOy0-LL3rgfdgTVjUVF5uY6uU3Erg3Ly6U7vlvImbGTFBK1qPgrO94Lls2Pz6ULu1jBjvCRltSEj--E-WQy3A6QsO5cMeK96CEOSlBNBm2avff8MXYUh9uNT3FGiLJtajNTHPWViSClC-1gBwXLXDvKwHUb83eFlH-GH_2f_AZ1Gsz0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415566985</pqid></control><display><type>article</type><title>The Metabolism of Epoxyeicosatrienoic Acids by Soluble Epoxide Hydrolase Is Protective against the Development of Vascular Calcification</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Varennes, Olivier ; Mentaverri, Romuald ; Duflot, Thomas ; Kauffenstein, Gilles ; Objois, Thibaut ; Lenglet, Gaëlle ; Avondo, Carine ; Morisseau, Christophe ; Brazier, Michel ; Kamel, Saïd ; Six, Isabelle ; Bellien, Jeremy</creator><creatorcontrib>Varennes, Olivier ; Mentaverri, Romuald ; Duflot, Thomas ; Kauffenstein, Gilles ; Objois, Thibaut ; Lenglet, Gaëlle ; Avondo, Carine ; Morisseau, Christophe ; Brazier, Michel ; Kamel, Saïd ; Six, Isabelle ; Bellien, Jeremy</creatorcontrib><description>This study addressed the hypothesis that soluble epoxide hydrolase (sEH), which metabolizes endothelium-derived epoxyeicosatrienoic acids, plays a role in vascular calcification. The sEH inhibitor -4-(4-(3-adamantan-1-yl-ureido)-cyclohexyloxy)-benzoic acid ( -AUCB) potentiated the increase in calcium deposition of rat aortic rings cultured in high-phosphate conditions. This was associated with increased tissue-nonspecific alkaline phosphatase activity and mRNA expression level of the osteochondrogenic marker Runx2. The procalcifying effect of -AUCB was prevented by mechanical aortic deendothelialization or inhibition of the production and action of epoxyeicosatrienoic acids using the cytochrome P450 inhibitor fluconazole and the antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), respectively. Similarly, exogenous epoxyeicosatrienoic acids potentiated the calcification of rat aortic rings through a protein kinase A (PKA)-dependent mechanism and of human aortic vascular smooth muscle cells when sEH was inhibited by -AUCB. Finally, a global gene expression profiling analysis revealed that the mRNA expression level of sEH was decreased in human carotid calcified plaques compared to adjacent lesion-free sites and was inversely correlated with Runx2 expression. These results show that sEH hydrolase plays a protective role against vascular calcification by reducing the bioavailability of epoxyeicosatrienoic acids.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21124313</identifier><identifier>PMID: 32560362</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alkaline phosphatase ; Animals ; Aorta ; Benzoic acid ; Bioavailability ; Biomedical materials ; Calcification ; Calcification (ectopic) ; Calcium ; Carotid Arteries - metabolism ; Carotid Arteries - pathology ; Cbfa-1 protein ; Cell Differentiation ; Cytochrome ; Cytochrome P450 ; Cytochromes P450 ; Disease Susceptibility ; Endothelium ; Endothelium - metabolism ; Epoxide hydrolase ; Epoxide Hydrolases - metabolism ; Experiments ; Fatty Acids, Monounsaturated - metabolism ; Fluconazole ; Gene expression ; Humans ; Kinases ; Life Sciences ; Lipid Metabolism ; Metabolism ; Metabolites ; Mineralization ; Muscles ; Phosphatase ; Phosphoric Monoester Hydrolases - metabolism ; Plaques ; Protein kinase A ; Rats ; RNA, Messenger - genetics ; Smooth muscle ; Staphylococcal enterotoxin H ; Vascular Calcification - etiology ; Vascular Calcification - metabolism</subject><ispartof>International journal of molecular sciences, 2020-06, Vol.21 (12), p.4313</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-742cb9102e8cc58be2a121d7c41d7bd3a0f3e4bcdba9875d44055d6e0c4f07ed3</citedby><cites>FETCH-LOGICAL-c446t-742cb9102e8cc58be2a121d7c41d7bd3a0f3e4bcdba9875d44055d6e0c4f07ed3</cites><orcidid>0000-0002-8730-284X ; 0000-0003-0827-4746 ; 0000-0002-0383-2342 ; 0000-0003-0572-844X ; 0000-0002-3993-1561 ; 0000-0002-5256-8138 ; 0000-0001-9310-7840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352784/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352784/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32560362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://u-picardie.hal.science/hal-03346167$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Varennes, Olivier</creatorcontrib><creatorcontrib>Mentaverri, Romuald</creatorcontrib><creatorcontrib>Duflot, Thomas</creatorcontrib><creatorcontrib>Kauffenstein, Gilles</creatorcontrib><creatorcontrib>Objois, Thibaut</creatorcontrib><creatorcontrib>Lenglet, Gaëlle</creatorcontrib><creatorcontrib>Avondo, Carine</creatorcontrib><creatorcontrib>Morisseau, Christophe</creatorcontrib><creatorcontrib>Brazier, Michel</creatorcontrib><creatorcontrib>Kamel, Saïd</creatorcontrib><creatorcontrib>Six, Isabelle</creatorcontrib><creatorcontrib>Bellien, Jeremy</creatorcontrib><title>The Metabolism of Epoxyeicosatrienoic Acids by Soluble Epoxide Hydrolase Is Protective against the Development of Vascular Calcification</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>This study addressed the hypothesis that soluble epoxide hydrolase (sEH), which metabolizes endothelium-derived epoxyeicosatrienoic acids, plays a role in vascular calcification. The sEH inhibitor -4-(4-(3-adamantan-1-yl-ureido)-cyclohexyloxy)-benzoic acid ( -AUCB) potentiated the increase in calcium deposition of rat aortic rings cultured in high-phosphate conditions. This was associated with increased tissue-nonspecific alkaline phosphatase activity and mRNA expression level of the osteochondrogenic marker Runx2. The procalcifying effect of -AUCB was prevented by mechanical aortic deendothelialization or inhibition of the production and action of epoxyeicosatrienoic acids using the cytochrome P450 inhibitor fluconazole and the antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), respectively. Similarly, exogenous epoxyeicosatrienoic acids potentiated the calcification of rat aortic rings through a protein kinase A (PKA)-dependent mechanism and of human aortic vascular smooth muscle cells when sEH was inhibited by -AUCB. Finally, a global gene expression profiling analysis revealed that the mRNA expression level of sEH was decreased in human carotid calcified plaques compared to adjacent lesion-free sites and was inversely correlated with Runx2 expression. These results show that sEH hydrolase plays a protective role against vascular calcification by reducing the bioavailability of epoxyeicosatrienoic acids.</description><subject>Alkaline phosphatase</subject><subject>Animals</subject><subject>Aorta</subject><subject>Benzoic acid</subject><subject>Bioavailability</subject><subject>Biomedical materials</subject><subject>Calcification</subject><subject>Calcification (ectopic)</subject><subject>Calcium</subject><subject>Carotid Arteries - metabolism</subject><subject>Carotid Arteries - pathology</subject><subject>Cbfa-1 protein</subject><subject>Cell Differentiation</subject><subject>Cytochrome</subject><subject>Cytochrome P450</subject><subject>Cytochromes P450</subject><subject>Disease Susceptibility</subject><subject>Endothelium</subject><subject>Endothelium - metabolism</subject><subject>Epoxide hydrolase</subject><subject>Epoxide Hydrolases - metabolism</subject><subject>Experiments</subject><subject>Fatty Acids, Monounsaturated - metabolism</subject><subject>Fluconazole</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Lipid Metabolism</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mineralization</subject><subject>Muscles</subject><subject>Phosphatase</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Plaques</subject><subject>Protein kinase A</subject><subject>Rats</subject><subject>RNA, Messenger - genetics</subject><subject>Smooth muscle</subject><subject>Staphylococcal enterotoxin H</subject><subject>Vascular Calcification - etiology</subject><subject>Vascular Calcification - metabolism</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkktvEzEQgFcIRF_cOCNLXKhEwM99XJCiUEilICpRuFp-zDaOvOvU9kbkH_Cz2TRtlfbisezP34ztKYq3BH9irMGf3apLlBDKGWEvimPCKZ1gXFYvD-ZHxUlKK4wpo6J5XRyNocSspMfFv-sloB-QlQ7epQ6FFl2sw98tOBOSytFBH5xBU-NsQnqLfgU_aA93kLOA5lsbg1cJ0GVCVzFkMNltAKkb5fqUUR71X2EDPqw76PPO_0clM3gV0Ux541pnVHahPytetconeHMfT4vf3y6uZ_PJ4uf3y9l0MTGcl3lScWp0QzCF2hhRa6CKUGIrw8dBW6Zwy4BrY7Vq6kpYzrEQtgRseIsrsOy0-LL3rgfdgTVjUVF5uY6uU3Erg3Ly6U7vlvImbGTFBK1qPgrO94Lls2Pz6ULu1jBjvCRltSEj--E-WQy3A6QsO5cMeK96CEOSlBNBm2avff8MXYUh9uNT3FGiLJtajNTHPWViSClC-1gBwXLXDvKwHUb83eFlH-GH_2f_AZ1Gsz0</recordid><startdate>20200617</startdate><enddate>20200617</enddate><creator>Varennes, Olivier</creator><creator>Mentaverri, Romuald</creator><creator>Duflot, Thomas</creator><creator>Kauffenstein, Gilles</creator><creator>Objois, Thibaut</creator><creator>Lenglet, Gaëlle</creator><creator>Avondo, Carine</creator><creator>Morisseau, Christophe</creator><creator>Brazier, Michel</creator><creator>Kamel, Saïd</creator><creator>Six, Isabelle</creator><creator>Bellien, Jeremy</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8730-284X</orcidid><orcidid>https://orcid.org/0000-0003-0827-4746</orcidid><orcidid>https://orcid.org/0000-0002-0383-2342</orcidid><orcidid>https://orcid.org/0000-0003-0572-844X</orcidid><orcidid>https://orcid.org/0000-0002-3993-1561</orcidid><orcidid>https://orcid.org/0000-0002-5256-8138</orcidid><orcidid>https://orcid.org/0000-0001-9310-7840</orcidid></search><sort><creationdate>20200617</creationdate><title>The Metabolism of Epoxyeicosatrienoic Acids by Soluble Epoxide Hydrolase Is Protective against the Development of Vascular Calcification</title><author>Varennes, Olivier ; Mentaverri, Romuald ; Duflot, Thomas ; Kauffenstein, Gilles ; Objois, Thibaut ; Lenglet, Gaëlle ; Avondo, Carine ; Morisseau, Christophe ; Brazier, Michel ; Kamel, Saïd ; Six, Isabelle ; Bellien, Jeremy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-742cb9102e8cc58be2a121d7c41d7bd3a0f3e4bcdba9875d44055d6e0c4f07ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkaline phosphatase</topic><topic>Animals</topic><topic>Aorta</topic><topic>Benzoic acid</topic><topic>Bioavailability</topic><topic>Biomedical materials</topic><topic>Calcification</topic><topic>Calcification (ectopic)</topic><topic>Calcium</topic><topic>Carotid Arteries - metabolism</topic><topic>Carotid Arteries - pathology</topic><topic>Cbfa-1 protein</topic><topic>Cell Differentiation</topic><topic>Cytochrome</topic><topic>Cytochrome P450</topic><topic>Cytochromes P450</topic><topic>Disease Susceptibility</topic><topic>Endothelium</topic><topic>Endothelium - metabolism</topic><topic>Epoxide hydrolase</topic><topic>Epoxide Hydrolases - metabolism</topic><topic>Experiments</topic><topic>Fatty Acids, Monounsaturated - metabolism</topic><topic>Fluconazole</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Lipid Metabolism</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mineralization</topic><topic>Muscles</topic><topic>Phosphatase</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Plaques</topic><topic>Protein kinase A</topic><topic>Rats</topic><topic>RNA, Messenger - genetics</topic><topic>Smooth muscle</topic><topic>Staphylococcal enterotoxin H</topic><topic>Vascular Calcification - etiology</topic><topic>Vascular Calcification - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varennes, Olivier</creatorcontrib><creatorcontrib>Mentaverri, Romuald</creatorcontrib><creatorcontrib>Duflot, Thomas</creatorcontrib><creatorcontrib>Kauffenstein, Gilles</creatorcontrib><creatorcontrib>Objois, Thibaut</creatorcontrib><creatorcontrib>Lenglet, Gaëlle</creatorcontrib><creatorcontrib>Avondo, Carine</creatorcontrib><creatorcontrib>Morisseau, Christophe</creatorcontrib><creatorcontrib>Brazier, Michel</creatorcontrib><creatorcontrib>Kamel, Saïd</creatorcontrib><creatorcontrib>Six, Isabelle</creatorcontrib><creatorcontrib>Bellien, Jeremy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varennes, Olivier</au><au>Mentaverri, Romuald</au><au>Duflot, Thomas</au><au>Kauffenstein, Gilles</au><au>Objois, Thibaut</au><au>Lenglet, Gaëlle</au><au>Avondo, Carine</au><au>Morisseau, Christophe</au><au>Brazier, Michel</au><au>Kamel, Saïd</au><au>Six, Isabelle</au><au>Bellien, Jeremy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Metabolism of Epoxyeicosatrienoic Acids by Soluble Epoxide Hydrolase Is Protective against the Development of Vascular Calcification</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-06-17</date><risdate>2020</risdate><volume>21</volume><issue>12</issue><spage>4313</spage><pages>4313-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>This study addressed the hypothesis that soluble epoxide hydrolase (sEH), which metabolizes endothelium-derived epoxyeicosatrienoic acids, plays a role in vascular calcification. The sEH inhibitor -4-(4-(3-adamantan-1-yl-ureido)-cyclohexyloxy)-benzoic acid ( -AUCB) potentiated the increase in calcium deposition of rat aortic rings cultured in high-phosphate conditions. This was associated with increased tissue-nonspecific alkaline phosphatase activity and mRNA expression level of the osteochondrogenic marker Runx2. The procalcifying effect of -AUCB was prevented by mechanical aortic deendothelialization or inhibition of the production and action of epoxyeicosatrienoic acids using the cytochrome P450 inhibitor fluconazole and the antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), respectively. Similarly, exogenous epoxyeicosatrienoic acids potentiated the calcification of rat aortic rings through a protein kinase A (PKA)-dependent mechanism and of human aortic vascular smooth muscle cells when sEH was inhibited by -AUCB. Finally, a global gene expression profiling analysis revealed that the mRNA expression level of sEH was decreased in human carotid calcified plaques compared to adjacent lesion-free sites and was inversely correlated with Runx2 expression. These results show that sEH hydrolase plays a protective role against vascular calcification by reducing the bioavailability of epoxyeicosatrienoic acids.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32560362</pmid><doi>10.3390/ijms21124313</doi><orcidid>https://orcid.org/0000-0002-8730-284X</orcidid><orcidid>https://orcid.org/0000-0003-0827-4746</orcidid><orcidid>https://orcid.org/0000-0002-0383-2342</orcidid><orcidid>https://orcid.org/0000-0003-0572-844X</orcidid><orcidid>https://orcid.org/0000-0002-3993-1561</orcidid><orcidid>https://orcid.org/0000-0002-5256-8138</orcidid><orcidid>https://orcid.org/0000-0001-9310-7840</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2020-06, Vol.21 (12), p.4313
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7352784
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Alkaline phosphatase
Animals
Aorta
Benzoic acid
Bioavailability
Biomedical materials
Calcification
Calcification (ectopic)
Calcium
Carotid Arteries - metabolism
Carotid Arteries - pathology
Cbfa-1 protein
Cell Differentiation
Cytochrome
Cytochrome P450
Cytochromes P450
Disease Susceptibility
Endothelium
Endothelium - metabolism
Epoxide hydrolase
Epoxide Hydrolases - metabolism
Experiments
Fatty Acids, Monounsaturated - metabolism
Fluconazole
Gene expression
Humans
Kinases
Life Sciences
Lipid Metabolism
Metabolism
Metabolites
Mineralization
Muscles
Phosphatase
Phosphoric Monoester Hydrolases - metabolism
Plaques
Protein kinase A
Rats
RNA, Messenger - genetics
Smooth muscle
Staphylococcal enterotoxin H
Vascular Calcification - etiology
Vascular Calcification - metabolism
title The Metabolism of Epoxyeicosatrienoic Acids by Soluble Epoxide Hydrolase Is Protective against the Development of Vascular Calcification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Metabolism%20of%20Epoxyeicosatrienoic%20Acids%20by%20Soluble%20Epoxide%20Hydrolase%20Is%20Protective%20against%20the%20Development%20of%20Vascular%20Calcification&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Varennes,%20Olivier&rft.date=2020-06-17&rft.volume=21&rft.issue=12&rft.spage=4313&rft.pages=4313-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21124313&rft_dat=%3Cproquest_pubme%3E2415566985%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415566985&rft_id=info:pmid/32560362&rfr_iscdi=true