Telomerase Biogenesis and Activities from the Perspective of Its Direct Interacting Partners
Telomerase reverse transcriptase (TERT)—the catalytic subunit of telomerase—is reactivated in up to 90% of all human cancers. TERT is observed in heterogenous populations of protein complexes, which are dynamically regulated in a cell type- and cell cycle-specific manner. Over the past two decades,...
Gespeichert in:
Veröffentlicht in: | Cancers 2020-06, Vol.12 (6), p.1679 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 1679 |
container_title | Cancers |
container_volume | 12 |
creator | Nguyen, Kathryn T. T. T. Wong, Judy M. Y. |
description | Telomerase reverse transcriptase (TERT)—the catalytic subunit of telomerase—is reactivated in up to 90% of all human cancers. TERT is observed in heterogenous populations of protein complexes, which are dynamically regulated in a cell type- and cell cycle-specific manner. Over the past two decades, in vitro protein–protein interaction detection methods have discovered a number of endogenous TERT binding partners in human cells that are responsible for the biogenesis and functionalization of the telomerase holoenzyme, including the processes of TERT trafficking between subcellular compartments, assembly into telomerase, and catalytic action at telomeres. Additionally, TERT have been found to interact with protein species with no known telomeric functions, suggesting that these complexes may contribute to non-canonical activities of TERT. Here, we survey TERT direct binding partners and discuss their contributions to TERT biogenesis and functions. The goal is to review the comprehensive spectrum of TERT pro-malignant activities, both telomeric and non-telomeric, which may explain the prevalence of its upregulation in cancer. |
doi_str_mv | 10.3390/cancers12061679 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7352425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419086334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-ed7c52f718e24232aec51de34529b5d72aa7752983bb02f9cfcd7b25994aea43</originalsourceid><addsrcrecordid>eNpdkc9LwzAUx4MobkzPXgNevNS1Sds0F2HOXwNBDzsKIU1ft4w2mUk28L83ZUPUXPLI98P3-14eQldZekspT6dKGgXOZyQts5LxEzQmKSNJWfL89Fc9Qpfeb9J4KM1Yyc7RiJKC86oqxuhjCZ3twUkP-F7bFRjw2mNpGjxTQe910OBx62yPwxrwe8zbwiAAti1eBI8ftIsPeGFCdImKWeF36YKJ5AU6a2Xn4fJ4T9Dy6XE5f0le354X89lroiivQgINUwVpWVYByQklElSRNUDzgvC6aBiRkrFYV7SuU9Jy1aqG1cMIuQSZ0wm6O9hud3UPjQITnOzE1uleui9hpRZ_FaPXYmX3gtEiBhbR4OZo4OznDnwQvfYKuk4asDsvSJ7xtCopHbKu_6Ebu3MmTjdQFeNl_OFITQ-UctZ7B-1PM1kqht2Jf7uj38pGjeM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418796767</pqid></control><display><type>article</type><title>Telomerase Biogenesis and Activities from the Perspective of Its Direct Interacting Partners</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Nguyen, Kathryn T. T. T. ; Wong, Judy M. Y.</creator><creatorcontrib>Nguyen, Kathryn T. T. T. ; Wong, Judy M. Y.</creatorcontrib><description>Telomerase reverse transcriptase (TERT)—the catalytic subunit of telomerase—is reactivated in up to 90% of all human cancers. TERT is observed in heterogenous populations of protein complexes, which are dynamically regulated in a cell type- and cell cycle-specific manner. Over the past two decades, in vitro protein–protein interaction detection methods have discovered a number of endogenous TERT binding partners in human cells that are responsible for the biogenesis and functionalization of the telomerase holoenzyme, including the processes of TERT trafficking between subcellular compartments, assembly into telomerase, and catalytic action at telomeres. Additionally, TERT have been found to interact with protein species with no known telomeric functions, suggesting that these complexes may contribute to non-canonical activities of TERT. Here, we survey TERT direct binding partners and discuss their contributions to TERT biogenesis and functions. The goal is to review the comprehensive spectrum of TERT pro-malignant activities, both telomeric and non-telomeric, which may explain the prevalence of its upregulation in cancer.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers12061679</identifier><identifier>PMID: 32599885</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Apoptosis ; Binding sites ; Biosynthesis ; Cancer ; Cell cycle ; Cell division ; Chromosomes ; Cytoplasm ; Deoxyribonucleic acid ; DNA ; DNA damage ; Heat shock proteins ; Kinases ; Localization ; Mutation ; Phosphatase ; Phosphorylation ; Review ; RNA-directed DNA polymerase ; Senescence ; Telomerase ; Telomerase reverse transcriptase ; Telomeres</subject><ispartof>Cancers, 2020-06, Vol.12 (6), p.1679</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-ed7c52f718e24232aec51de34529b5d72aa7752983bb02f9cfcd7b25994aea43</citedby><cites>FETCH-LOGICAL-c398t-ed7c52f718e24232aec51de34529b5d72aa7752983bb02f9cfcd7b25994aea43</cites><orcidid>0000-0001-5572-4143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352425/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352425/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids></links><search><creatorcontrib>Nguyen, Kathryn T. T. T.</creatorcontrib><creatorcontrib>Wong, Judy M. Y.</creatorcontrib><title>Telomerase Biogenesis and Activities from the Perspective of Its Direct Interacting Partners</title><title>Cancers</title><description>Telomerase reverse transcriptase (TERT)—the catalytic subunit of telomerase—is reactivated in up to 90% of all human cancers. TERT is observed in heterogenous populations of protein complexes, which are dynamically regulated in a cell type- and cell cycle-specific manner. Over the past two decades, in vitro protein–protein interaction detection methods have discovered a number of endogenous TERT binding partners in human cells that are responsible for the biogenesis and functionalization of the telomerase holoenzyme, including the processes of TERT trafficking between subcellular compartments, assembly into telomerase, and catalytic action at telomeres. Additionally, TERT have been found to interact with protein species with no known telomeric functions, suggesting that these complexes may contribute to non-canonical activities of TERT. Here, we survey TERT direct binding partners and discuss their contributions to TERT biogenesis and functions. The goal is to review the comprehensive spectrum of TERT pro-malignant activities, both telomeric and non-telomeric, which may explain the prevalence of its upregulation in cancer.</description><subject>Apoptosis</subject><subject>Binding sites</subject><subject>Biosynthesis</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Chromosomes</subject><subject>Cytoplasm</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>Heat shock proteins</subject><subject>Kinases</subject><subject>Localization</subject><subject>Mutation</subject><subject>Phosphatase</subject><subject>Phosphorylation</subject><subject>Review</subject><subject>RNA-directed DNA polymerase</subject><subject>Senescence</subject><subject>Telomerase</subject><subject>Telomerase reverse transcriptase</subject><subject>Telomeres</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc9LwzAUx4MobkzPXgNevNS1Sds0F2HOXwNBDzsKIU1ft4w2mUk28L83ZUPUXPLI98P3-14eQldZekspT6dKGgXOZyQts5LxEzQmKSNJWfL89Fc9Qpfeb9J4KM1Yyc7RiJKC86oqxuhjCZ3twUkP-F7bFRjw2mNpGjxTQe910OBx62yPwxrwe8zbwiAAti1eBI8ftIsPeGFCdImKWeF36YKJ5AU6a2Xn4fJ4T9Dy6XE5f0le354X89lroiivQgINUwVpWVYByQklElSRNUDzgvC6aBiRkrFYV7SuU9Jy1aqG1cMIuQSZ0wm6O9hud3UPjQITnOzE1uleui9hpRZ_FaPXYmX3gtEiBhbR4OZo4OznDnwQvfYKuk4asDsvSJ7xtCopHbKu_6Ebu3MmTjdQFeNl_OFITQ-UctZ7B-1PM1kqht2Jf7uj38pGjeM</recordid><startdate>20200624</startdate><enddate>20200624</enddate><creator>Nguyen, Kathryn T. T. T.</creator><creator>Wong, Judy M. Y.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5572-4143</orcidid></search><sort><creationdate>20200624</creationdate><title>Telomerase Biogenesis and Activities from the Perspective of Its Direct Interacting Partners</title><author>Nguyen, Kathryn T. T. T. ; Wong, Judy M. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-ed7c52f718e24232aec51de34529b5d72aa7752983bb02f9cfcd7b25994aea43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apoptosis</topic><topic>Binding sites</topic><topic>Biosynthesis</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Chromosomes</topic><topic>Cytoplasm</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>Heat shock proteins</topic><topic>Kinases</topic><topic>Localization</topic><topic>Mutation</topic><topic>Phosphatase</topic><topic>Phosphorylation</topic><topic>Review</topic><topic>RNA-directed DNA polymerase</topic><topic>Senescence</topic><topic>Telomerase</topic><topic>Telomerase reverse transcriptase</topic><topic>Telomeres</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Kathryn T. T. T.</creatorcontrib><creatorcontrib>Wong, Judy M. Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Kathryn T. T. T.</au><au>Wong, Judy M. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Telomerase Biogenesis and Activities from the Perspective of Its Direct Interacting Partners</atitle><jtitle>Cancers</jtitle><date>2020-06-24</date><risdate>2020</risdate><volume>12</volume><issue>6</issue><spage>1679</spage><pages>1679-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Telomerase reverse transcriptase (TERT)—the catalytic subunit of telomerase—is reactivated in up to 90% of all human cancers. TERT is observed in heterogenous populations of protein complexes, which are dynamically regulated in a cell type- and cell cycle-specific manner. Over the past two decades, in vitro protein–protein interaction detection methods have discovered a number of endogenous TERT binding partners in human cells that are responsible for the biogenesis and functionalization of the telomerase holoenzyme, including the processes of TERT trafficking between subcellular compartments, assembly into telomerase, and catalytic action at telomeres. Additionally, TERT have been found to interact with protein species with no known telomeric functions, suggesting that these complexes may contribute to non-canonical activities of TERT. Here, we survey TERT direct binding partners and discuss their contributions to TERT biogenesis and functions. The goal is to review the comprehensive spectrum of TERT pro-malignant activities, both telomeric and non-telomeric, which may explain the prevalence of its upregulation in cancer.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32599885</pmid><doi>10.3390/cancers12061679</doi><orcidid>https://orcid.org/0000-0001-5572-4143</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6694 |
ispartof | Cancers, 2020-06, Vol.12 (6), p.1679 |
issn | 2072-6694 2072-6694 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7352425 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Apoptosis Binding sites Biosynthesis Cancer Cell cycle Cell division Chromosomes Cytoplasm Deoxyribonucleic acid DNA DNA damage Heat shock proteins Kinases Localization Mutation Phosphatase Phosphorylation Review RNA-directed DNA polymerase Senescence Telomerase Telomerase reverse transcriptase Telomeres |
title | Telomerase Biogenesis and Activities from the Perspective of Its Direct Interacting Partners |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Telomerase%20Biogenesis%20and%20Activities%20from%20the%20Perspective%20of%20Its%20Direct%20Interacting%20Partners&rft.jtitle=Cancers&rft.au=Nguyen,%20Kathryn%20T.%20T.%20T.&rft.date=2020-06-24&rft.volume=12&rft.issue=6&rft.spage=1679&rft.pages=1679-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers12061679&rft_dat=%3Cproquest_pubme%3E2419086334%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418796767&rft_id=info:pmid/32599885&rfr_iscdi=true |