Identification of a Blood-Based Protein Biomarker Panel for Lung Cancer Detection

Lung cancer is the deadliest cancer worldwide, mainly due to its advanced stage at the time of diagnosis. A non-invasive method for its early detection remains mandatory to improve patients' survival. Plasma levels of 351 proteins were quantified by Liquid Chromatography-Parallel Reaction Monit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2020-06, Vol.12 (6), p.1629
Hauptverfasser: El-Khoury, Victoria, Schritz, Anna, Kim, Sang-Yoon, Lesur, Antoine, Sertamo, Katriina, Bernardin, François, Petritis, Konstantinos, Pirrotte, Patrick, Selinsky, Cheryl, Whiteaker, Jeffrey R, Zhang, Haizhen, Kennedy, Jacob J, Lin, Chenwei, Lee, Lik Wee, Yan, Ping, Tran, Nhan L, Inge, Landon J, Chalabi, Khaled, Decker, Georges, Bjerkvig, Rolf, Paulovich, Amanda G, Berchem, Guy, Kim, Yeoun Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1629
container_title Cancers
container_volume 12
creator El-Khoury, Victoria
Schritz, Anna
Kim, Sang-Yoon
Lesur, Antoine
Sertamo, Katriina
Bernardin, François
Petritis, Konstantinos
Pirrotte, Patrick
Selinsky, Cheryl
Whiteaker, Jeffrey R
Zhang, Haizhen
Kennedy, Jacob J
Lin, Chenwei
Lee, Lik Wee
Yan, Ping
Tran, Nhan L
Inge, Landon J
Chalabi, Khaled
Decker, Georges
Bjerkvig, Rolf
Paulovich, Amanda G
Berchem, Guy
Kim, Yeoun Jin
description Lung cancer is the deadliest cancer worldwide, mainly due to its advanced stage at the time of diagnosis. A non-invasive method for its early detection remains mandatory to improve patients' survival. Plasma levels of 351 proteins were quantified by Liquid Chromatography-Parallel Reaction Monitoring (LC-PRM)-based mass spectrometry in 128 lung cancer patients and 93 healthy donors. Bootstrap sampling and least absolute shrinkage and selection operator (LASSO) penalization were used to find the best protein combination for outcome prediction. The PanelomiX platform was used to select the optimal biomarker thresholds. The panel was validated in 48 patients and 49 healthy volunteers. A 6-protein panel clearly distinguished lung cancer from healthy individuals. The panel displayed excellent performance: area under the receiver operating characteristic curve (AUC) = 0.999, positive predictive value (PPV) = 0.992, negative predictive value (NPV) = 0.989, specificity = 0.989 and sensitivity = 0.992. The panel detected lung cancer independently of the disease stage. The 6-protein panel and other sub-combinations displayed excellent results in the validation dataset. In conclusion, we identified a blood-based 6-protein panel as a diagnostic tool in lung cancer. Used as a routine test for high- and average-risk individuals, it may complement currently adopted techniques in lung cancer screening.
doi_str_mv 10.3390/cancers12061629
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7352295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416701269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-5a480dc4231480939ada240898767baa72aade862bc280eeb7cfb3e95696bff53</originalsourceid><addsrcrecordid>eNpdkU1LxDAYhIMoKqtnbxLw4qVuPtqkuQju-gkLKug5pOnbNWu30aQV_PdmXRU1lwzkyTDDIHRAyQnnioyt6SyESBkRVDC1gXYZkSwTQuWbv_QO2o9xQdLhnEoht9EOZ4Usckl30f1NDV3vGmdN73yHfYMNnrTe19nERKjxXfA9uA5PnF-a8AwB35kOWtz4gGdDN8fTzxT4HHqwK4s9tNWYNsL-1z1Cj5cXD9PrbHZ7dTM9m2U2Z7TPCpOXpE6a0yQUV6Y2LCelKlPEyhjJjKmhFKyyrCQAlbRNxUEVQomqaQo-Qqdr35ehWkJtU41gWv0SXMr5rr1x-u9L55703L9pyQvG1Mrg-Msg-NcBYq-XLlpo29TPD1GznArFpRJ5Qo_-oQs_hC7V-6QkoSyhIzReUzb4GAM0P2Eo0avF9L_F0o_D3x1--O99-AcR3pKo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416701269</pqid></control><display><type>article</type><title>Identification of a Blood-Based Protein Biomarker Panel for Lung Cancer Detection</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>El-Khoury, Victoria ; Schritz, Anna ; Kim, Sang-Yoon ; Lesur, Antoine ; Sertamo, Katriina ; Bernardin, François ; Petritis, Konstantinos ; Pirrotte, Patrick ; Selinsky, Cheryl ; Whiteaker, Jeffrey R ; Zhang, Haizhen ; Kennedy, Jacob J ; Lin, Chenwei ; Lee, Lik Wee ; Yan, Ping ; Tran, Nhan L ; Inge, Landon J ; Chalabi, Khaled ; Decker, Georges ; Bjerkvig, Rolf ; Paulovich, Amanda G ; Berchem, Guy ; Kim, Yeoun Jin</creator><creatorcontrib>El-Khoury, Victoria ; Schritz, Anna ; Kim, Sang-Yoon ; Lesur, Antoine ; Sertamo, Katriina ; Bernardin, François ; Petritis, Konstantinos ; Pirrotte, Patrick ; Selinsky, Cheryl ; Whiteaker, Jeffrey R ; Zhang, Haizhen ; Kennedy, Jacob J ; Lin, Chenwei ; Lee, Lik Wee ; Yan, Ping ; Tran, Nhan L ; Inge, Landon J ; Chalabi, Khaled ; Decker, Georges ; Bjerkvig, Rolf ; Paulovich, Amanda G ; Berchem, Guy ; Kim, Yeoun Jin</creatorcontrib><description>Lung cancer is the deadliest cancer worldwide, mainly due to its advanced stage at the time of diagnosis. A non-invasive method for its early detection remains mandatory to improve patients' survival. Plasma levels of 351 proteins were quantified by Liquid Chromatography-Parallel Reaction Monitoring (LC-PRM)-based mass spectrometry in 128 lung cancer patients and 93 healthy donors. Bootstrap sampling and least absolute shrinkage and selection operator (LASSO) penalization were used to find the best protein combination for outcome prediction. The PanelomiX platform was used to select the optimal biomarker thresholds. The panel was validated in 48 patients and 49 healthy volunteers. A 6-protein panel clearly distinguished lung cancer from healthy individuals. The panel displayed excellent performance: area under the receiver operating characteristic curve (AUC) = 0.999, positive predictive value (PPV) = 0.992, negative predictive value (NPV) = 0.989, specificity = 0.989 and sensitivity = 0.992. The panel detected lung cancer independently of the disease stage. The 6-protein panel and other sub-combinations displayed excellent results in the validation dataset. In conclusion, we identified a blood-based 6-protein panel as a diagnostic tool in lung cancer. Used as a routine test for high- and average-risk individuals, it may complement currently adopted techniques in lung cancer screening.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers12061629</identifier><identifier>PMID: 32575471</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Biomarkers ; Business metrics ; Cancer screening ; Growth factors ; Liquid chromatography ; Lung cancer ; Mass spectrometry ; Mass spectroscopy ; Medical prognosis ; Medical screening ; Mortality ; Patients ; Plasma ; Plasma levels ; Proteins ; Proteomics ; Scientific imaging ; Tumor necrosis factor-TNF ; Tumors ; Wound healing</subject><ispartof>Cancers, 2020-06, Vol.12 (6), p.1629</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-5a480dc4231480939ada240898767baa72aade862bc280eeb7cfb3e95696bff53</citedby><cites>FETCH-LOGICAL-c421t-5a480dc4231480939ada240898767baa72aade862bc280eeb7cfb3e95696bff53</cites><orcidid>0000-0003-0157-2257 ; 0000-0002-8478-8055 ; 0000-0002-6329-5542 ; 0000-0001-8660-8532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352295/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352295/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32575471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>El-Khoury, Victoria</creatorcontrib><creatorcontrib>Schritz, Anna</creatorcontrib><creatorcontrib>Kim, Sang-Yoon</creatorcontrib><creatorcontrib>Lesur, Antoine</creatorcontrib><creatorcontrib>Sertamo, Katriina</creatorcontrib><creatorcontrib>Bernardin, François</creatorcontrib><creatorcontrib>Petritis, Konstantinos</creatorcontrib><creatorcontrib>Pirrotte, Patrick</creatorcontrib><creatorcontrib>Selinsky, Cheryl</creatorcontrib><creatorcontrib>Whiteaker, Jeffrey R</creatorcontrib><creatorcontrib>Zhang, Haizhen</creatorcontrib><creatorcontrib>Kennedy, Jacob J</creatorcontrib><creatorcontrib>Lin, Chenwei</creatorcontrib><creatorcontrib>Lee, Lik Wee</creatorcontrib><creatorcontrib>Yan, Ping</creatorcontrib><creatorcontrib>Tran, Nhan L</creatorcontrib><creatorcontrib>Inge, Landon J</creatorcontrib><creatorcontrib>Chalabi, Khaled</creatorcontrib><creatorcontrib>Decker, Georges</creatorcontrib><creatorcontrib>Bjerkvig, Rolf</creatorcontrib><creatorcontrib>Paulovich, Amanda G</creatorcontrib><creatorcontrib>Berchem, Guy</creatorcontrib><creatorcontrib>Kim, Yeoun Jin</creatorcontrib><title>Identification of a Blood-Based Protein Biomarker Panel for Lung Cancer Detection</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>Lung cancer is the deadliest cancer worldwide, mainly due to its advanced stage at the time of diagnosis. A non-invasive method for its early detection remains mandatory to improve patients' survival. Plasma levels of 351 proteins were quantified by Liquid Chromatography-Parallel Reaction Monitoring (LC-PRM)-based mass spectrometry in 128 lung cancer patients and 93 healthy donors. Bootstrap sampling and least absolute shrinkage and selection operator (LASSO) penalization were used to find the best protein combination for outcome prediction. The PanelomiX platform was used to select the optimal biomarker thresholds. The panel was validated in 48 patients and 49 healthy volunteers. A 6-protein panel clearly distinguished lung cancer from healthy individuals. The panel displayed excellent performance: area under the receiver operating characteristic curve (AUC) = 0.999, positive predictive value (PPV) = 0.992, negative predictive value (NPV) = 0.989, specificity = 0.989 and sensitivity = 0.992. The panel detected lung cancer independently of the disease stage. The 6-protein panel and other sub-combinations displayed excellent results in the validation dataset. In conclusion, we identified a blood-based 6-protein panel as a diagnostic tool in lung cancer. Used as a routine test for high- and average-risk individuals, it may complement currently adopted techniques in lung cancer screening.</description><subject>Biomarkers</subject><subject>Business metrics</subject><subject>Cancer screening</subject><subject>Growth factors</subject><subject>Liquid chromatography</subject><subject>Lung cancer</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Medical prognosis</subject><subject>Medical screening</subject><subject>Mortality</subject><subject>Patients</subject><subject>Plasma</subject><subject>Plasma levels</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Scientific imaging</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumors</subject><subject>Wound healing</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkU1LxDAYhIMoKqtnbxLw4qVuPtqkuQju-gkLKug5pOnbNWu30aQV_PdmXRU1lwzkyTDDIHRAyQnnioyt6SyESBkRVDC1gXYZkSwTQuWbv_QO2o9xQdLhnEoht9EOZ4Usckl30f1NDV3vGmdN73yHfYMNnrTe19nERKjxXfA9uA5PnF-a8AwB35kOWtz4gGdDN8fTzxT4HHqwK4s9tNWYNsL-1z1Cj5cXD9PrbHZ7dTM9m2U2Z7TPCpOXpE6a0yQUV6Y2LCelKlPEyhjJjKmhFKyyrCQAlbRNxUEVQomqaQo-Qqdr35ehWkJtU41gWv0SXMr5rr1x-u9L55703L9pyQvG1Mrg-Msg-NcBYq-XLlpo29TPD1GznArFpRJ5Qo_-oQs_hC7V-6QkoSyhIzReUzb4GAM0P2Eo0avF9L_F0o_D3x1--O99-AcR3pKo</recordid><startdate>20200619</startdate><enddate>20200619</enddate><creator>El-Khoury, Victoria</creator><creator>Schritz, Anna</creator><creator>Kim, Sang-Yoon</creator><creator>Lesur, Antoine</creator><creator>Sertamo, Katriina</creator><creator>Bernardin, François</creator><creator>Petritis, Konstantinos</creator><creator>Pirrotte, Patrick</creator><creator>Selinsky, Cheryl</creator><creator>Whiteaker, Jeffrey R</creator><creator>Zhang, Haizhen</creator><creator>Kennedy, Jacob J</creator><creator>Lin, Chenwei</creator><creator>Lee, Lik Wee</creator><creator>Yan, Ping</creator><creator>Tran, Nhan L</creator><creator>Inge, Landon J</creator><creator>Chalabi, Khaled</creator><creator>Decker, Georges</creator><creator>Bjerkvig, Rolf</creator><creator>Paulovich, Amanda G</creator><creator>Berchem, Guy</creator><creator>Kim, Yeoun Jin</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0157-2257</orcidid><orcidid>https://orcid.org/0000-0002-8478-8055</orcidid><orcidid>https://orcid.org/0000-0002-6329-5542</orcidid><orcidid>https://orcid.org/0000-0001-8660-8532</orcidid></search><sort><creationdate>20200619</creationdate><title>Identification of a Blood-Based Protein Biomarker Panel for Lung Cancer Detection</title><author>El-Khoury, Victoria ; Schritz, Anna ; Kim, Sang-Yoon ; Lesur, Antoine ; Sertamo, Katriina ; Bernardin, François ; Petritis, Konstantinos ; Pirrotte, Patrick ; Selinsky, Cheryl ; Whiteaker, Jeffrey R ; Zhang, Haizhen ; Kennedy, Jacob J ; Lin, Chenwei ; Lee, Lik Wee ; Yan, Ping ; Tran, Nhan L ; Inge, Landon J ; Chalabi, Khaled ; Decker, Georges ; Bjerkvig, Rolf ; Paulovich, Amanda G ; Berchem, Guy ; Kim, Yeoun Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-5a480dc4231480939ada240898767baa72aade862bc280eeb7cfb3e95696bff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomarkers</topic><topic>Business metrics</topic><topic>Cancer screening</topic><topic>Growth factors</topic><topic>Liquid chromatography</topic><topic>Lung cancer</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Medical prognosis</topic><topic>Medical screening</topic><topic>Mortality</topic><topic>Patients</topic><topic>Plasma</topic><topic>Plasma levels</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Scientific imaging</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumors</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Khoury, Victoria</creatorcontrib><creatorcontrib>Schritz, Anna</creatorcontrib><creatorcontrib>Kim, Sang-Yoon</creatorcontrib><creatorcontrib>Lesur, Antoine</creatorcontrib><creatorcontrib>Sertamo, Katriina</creatorcontrib><creatorcontrib>Bernardin, François</creatorcontrib><creatorcontrib>Petritis, Konstantinos</creatorcontrib><creatorcontrib>Pirrotte, Patrick</creatorcontrib><creatorcontrib>Selinsky, Cheryl</creatorcontrib><creatorcontrib>Whiteaker, Jeffrey R</creatorcontrib><creatorcontrib>Zhang, Haizhen</creatorcontrib><creatorcontrib>Kennedy, Jacob J</creatorcontrib><creatorcontrib>Lin, Chenwei</creatorcontrib><creatorcontrib>Lee, Lik Wee</creatorcontrib><creatorcontrib>Yan, Ping</creatorcontrib><creatorcontrib>Tran, Nhan L</creatorcontrib><creatorcontrib>Inge, Landon J</creatorcontrib><creatorcontrib>Chalabi, Khaled</creatorcontrib><creatorcontrib>Decker, Georges</creatorcontrib><creatorcontrib>Bjerkvig, Rolf</creatorcontrib><creatorcontrib>Paulovich, Amanda G</creatorcontrib><creatorcontrib>Berchem, Guy</creatorcontrib><creatorcontrib>Kim, Yeoun Jin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Khoury, Victoria</au><au>Schritz, Anna</au><au>Kim, Sang-Yoon</au><au>Lesur, Antoine</au><au>Sertamo, Katriina</au><au>Bernardin, François</au><au>Petritis, Konstantinos</au><au>Pirrotte, Patrick</au><au>Selinsky, Cheryl</au><au>Whiteaker, Jeffrey R</au><au>Zhang, Haizhen</au><au>Kennedy, Jacob J</au><au>Lin, Chenwei</au><au>Lee, Lik Wee</au><au>Yan, Ping</au><au>Tran, Nhan L</au><au>Inge, Landon J</au><au>Chalabi, Khaled</au><au>Decker, Georges</au><au>Bjerkvig, Rolf</au><au>Paulovich, Amanda G</au><au>Berchem, Guy</au><au>Kim, Yeoun Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a Blood-Based Protein Biomarker Panel for Lung Cancer Detection</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2020-06-19</date><risdate>2020</risdate><volume>12</volume><issue>6</issue><spage>1629</spage><pages>1629-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Lung cancer is the deadliest cancer worldwide, mainly due to its advanced stage at the time of diagnosis. A non-invasive method for its early detection remains mandatory to improve patients' survival. Plasma levels of 351 proteins were quantified by Liquid Chromatography-Parallel Reaction Monitoring (LC-PRM)-based mass spectrometry in 128 lung cancer patients and 93 healthy donors. Bootstrap sampling and least absolute shrinkage and selection operator (LASSO) penalization were used to find the best protein combination for outcome prediction. The PanelomiX platform was used to select the optimal biomarker thresholds. The panel was validated in 48 patients and 49 healthy volunteers. A 6-protein panel clearly distinguished lung cancer from healthy individuals. The panel displayed excellent performance: area under the receiver operating characteristic curve (AUC) = 0.999, positive predictive value (PPV) = 0.992, negative predictive value (NPV) = 0.989, specificity = 0.989 and sensitivity = 0.992. The panel detected lung cancer independently of the disease stage. The 6-protein panel and other sub-combinations displayed excellent results in the validation dataset. In conclusion, we identified a blood-based 6-protein panel as a diagnostic tool in lung cancer. Used as a routine test for high- and average-risk individuals, it may complement currently adopted techniques in lung cancer screening.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32575471</pmid><doi>10.3390/cancers12061629</doi><orcidid>https://orcid.org/0000-0003-0157-2257</orcidid><orcidid>https://orcid.org/0000-0002-8478-8055</orcidid><orcidid>https://orcid.org/0000-0002-6329-5542</orcidid><orcidid>https://orcid.org/0000-0001-8660-8532</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2020-06, Vol.12 (6), p.1629
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7352295
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biomarkers
Business metrics
Cancer screening
Growth factors
Liquid chromatography
Lung cancer
Mass spectrometry
Mass spectroscopy
Medical prognosis
Medical screening
Mortality
Patients
Plasma
Plasma levels
Proteins
Proteomics
Scientific imaging
Tumor necrosis factor-TNF
Tumors
Wound healing
title Identification of a Blood-Based Protein Biomarker Panel for Lung Cancer Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20Blood-Based%20Protein%20Biomarker%20Panel%20for%20Lung%20Cancer%20Detection&rft.jtitle=Cancers&rft.au=El-Khoury,%20Victoria&rft.date=2020-06-19&rft.volume=12&rft.issue=6&rft.spage=1629&rft.pages=1629-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers12061629&rft_dat=%3Cproquest_pubme%3E2416701269%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416701269&rft_id=info:pmid/32575471&rfr_iscdi=true