The sources and transmission routes of microbial populations throughout a meat processing facility
Microbial food spoilage is responsible for a considerable amount of waste and can cause food-borne diseases in humans, particularly in immunocompromised individuals and children. Therefore, preventing microbial food spoilage is a major concern for health authorities, regulators, consumers, and the f...
Gespeichert in:
Veröffentlicht in: | NPJ biofilms and microbiomes 2020-07, Vol.6 (1), p.26, Article 26 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 26 |
container_title | NPJ biofilms and microbiomes |
container_volume | 6 |
creator | Zwirzitz, Benjamin Wetzels, Stefanie U. Dixon, Emmanuel D. Stessl, Beatrix Zaiser, Andreas Rabanser, Isabel Thalguter, Sarah Pinior, Beate Roch, Franz-Ferdinand Strachan, Cameron Zanghellini, Jürgen Dzieciol, Monika Wagner, Martin Selberherr, Evelyne |
description | Microbial food spoilage is responsible for a considerable amount of waste and can cause food-borne diseases in humans, particularly in immunocompromised individuals and children. Therefore, preventing microbial food spoilage is a major concern for health authorities, regulators, consumers, and the food industry. However, the contamination of food products is difficult to control because there are several potential sources during production, processing, storage, distribution, and consumption, where microorganisms come in contact with the product. Here, we use high-throughput full-length 16S rRNA gene sequencing to provide insights into bacterial community structure throughout a pork-processing plant. Specifically, we investigated what proportion of bacteria on meat are presumptively not animal-associated and are therefore transferred during cutting via personnel, equipment, machines, or the slaughter environment. We then created a facility-specific transmission map of bacterial flow, which predicted previously unknown sources of bacterial contamination. This allowed us to pinpoint specific taxa to particular environmental sources and provide the facility with essential information for targeted disinfection. For example,
Moraxella
spp., a prominent meat spoilage organism, which was one of the most abundant amplicon sequence variants (ASVs) detected on the meat, was most likely transferred from the gloves of employees, a railing at the classification step, and the polishing tunnel whips. Our results suggest that high-throughput full-length 16S rRNA gene sequencing has great potential in food monitoring applications. |
doi_str_mv | 10.1038/s41522-020-0136-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7351959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488352050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-14446a37cdda75b689549254b1151dba39cde0f96706dced6341d9c819111cc3</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMotlz7A9xIwI2b0Zx8zCQbQYpfUHBz9yGTydybMpOMyYzQ_npPubVWQVcJOc95T877EvIS2FtgQr-rEhTnDeOsYSDa5vYJOedMqUYxpp8-up-Ri1qvGWOgZCe0ek7OBG8VCCPOSb8_BlrzVnyo1KWBrsWlOsdaY0605G3F9zzSOfqS--gmuuRlm9yK5UrXIxKHI1LU0Tm4lS4lo1KN6UBH5-MU15sX5Nnophou7s8d2X_6uL_80lx9-_z18sNV46XRawNSytaJzg-D61TfaqOk4Ur2AAqG3gnjh8BG03asHXwYWiFhMF6DAQDvxY68P8kuWz8HJBKuMtmlxNmVG5tdtH9WUjzaQ_5hO6HAKIMCb-4FSv6-hbpatMGHaXIp5K1aLrlgrZbo3I68_gu9RgsTboeU1kKh-ez_FOcYomAaKThRaHCtJYwPXwZm75K2p6QtJm3vkra32PPq8a4PHb9yRYCfgIqldAjl9-h_q_4ETmW1MQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422038308</pqid></control><display><type>article</type><title>The sources and transmission routes of microbial populations throughout a meat processing facility</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Zwirzitz, Benjamin ; Wetzels, Stefanie U. ; Dixon, Emmanuel D. ; Stessl, Beatrix ; Zaiser, Andreas ; Rabanser, Isabel ; Thalguter, Sarah ; Pinior, Beate ; Roch, Franz-Ferdinand ; Strachan, Cameron ; Zanghellini, Jürgen ; Dzieciol, Monika ; Wagner, Martin ; Selberherr, Evelyne</creator><creatorcontrib>Zwirzitz, Benjamin ; Wetzels, Stefanie U. ; Dixon, Emmanuel D. ; Stessl, Beatrix ; Zaiser, Andreas ; Rabanser, Isabel ; Thalguter, Sarah ; Pinior, Beate ; Roch, Franz-Ferdinand ; Strachan, Cameron ; Zanghellini, Jürgen ; Dzieciol, Monika ; Wagner, Martin ; Selberherr, Evelyne</creatorcontrib><description>Microbial food spoilage is responsible for a considerable amount of waste and can cause food-borne diseases in humans, particularly in immunocompromised individuals and children. Therefore, preventing microbial food spoilage is a major concern for health authorities, regulators, consumers, and the food industry. However, the contamination of food products is difficult to control because there are several potential sources during production, processing, storage, distribution, and consumption, where microorganisms come in contact with the product. Here, we use high-throughput full-length 16S rRNA gene sequencing to provide insights into bacterial community structure throughout a pork-processing plant. Specifically, we investigated what proportion of bacteria on meat are presumptively not animal-associated and are therefore transferred during cutting via personnel, equipment, machines, or the slaughter environment. We then created a facility-specific transmission map of bacterial flow, which predicted previously unknown sources of bacterial contamination. This allowed us to pinpoint specific taxa to particular environmental sources and provide the facility with essential information for targeted disinfection. For example,
Moraxella
spp., a prominent meat spoilage organism, which was one of the most abundant amplicon sequence variants (ASVs) detected on the meat, was most likely transferred from the gloves of employees, a railing at the classification step, and the polishing tunnel whips. Our results suggest that high-throughput full-length 16S rRNA gene sequencing has great potential in food monitoring applications.</description><identifier>ISSN: 2055-5008</identifier><identifier>EISSN: 2055-5008</identifier><identifier>DOI: 10.1038/s41522-020-0136-z</identifier><identifier>PMID: 32651393</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/514/2254 ; 631/326/171/1495 ; 631/326/2522 ; 631/326/2565/2134 ; 631/326/2565/855 ; Animals ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation & purification ; Biomedical and Life Sciences ; Community structure ; Disinfection ; DNA, Bacterial - genetics ; DNA, Ribosomal - genetics ; Food ; Food contamination ; Food Contamination - analysis ; Food Handling ; Food industry ; Food Microbiology ; Food processing ; Food spoilage ; Food-Processing Industry ; Foodborne diseases ; Gloves ; Gloves, Protective - microbiology ; High-Throughput Nucleotide Sequencing ; Humans ; Life Sciences ; Meat ; Meat processing ; Medical Microbiology ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Phylogeny ; Pork ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Sequence Analysis, DNA - methods ; Swine</subject><ispartof>NPJ biofilms and microbiomes, 2020-07, Vol.6 (1), p.26, Article 26</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-14446a37cdda75b689549254b1151dba39cde0f96706dced6341d9c819111cc3</citedby><cites>FETCH-LOGICAL-c498t-14446a37cdda75b689549254b1151dba39cde0f96706dced6341d9c819111cc3</cites><orcidid>0000-0002-1550-3511 ; 0000-0002-0972-6241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351959/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351959/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32651393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zwirzitz, Benjamin</creatorcontrib><creatorcontrib>Wetzels, Stefanie U.</creatorcontrib><creatorcontrib>Dixon, Emmanuel D.</creatorcontrib><creatorcontrib>Stessl, Beatrix</creatorcontrib><creatorcontrib>Zaiser, Andreas</creatorcontrib><creatorcontrib>Rabanser, Isabel</creatorcontrib><creatorcontrib>Thalguter, Sarah</creatorcontrib><creatorcontrib>Pinior, Beate</creatorcontrib><creatorcontrib>Roch, Franz-Ferdinand</creatorcontrib><creatorcontrib>Strachan, Cameron</creatorcontrib><creatorcontrib>Zanghellini, Jürgen</creatorcontrib><creatorcontrib>Dzieciol, Monika</creatorcontrib><creatorcontrib>Wagner, Martin</creatorcontrib><creatorcontrib>Selberherr, Evelyne</creatorcontrib><title>The sources and transmission routes of microbial populations throughout a meat processing facility</title><title>NPJ biofilms and microbiomes</title><addtitle>npj Biofilms Microbiomes</addtitle><addtitle>NPJ Biofilms Microbiomes</addtitle><description>Microbial food spoilage is responsible for a considerable amount of waste and can cause food-borne diseases in humans, particularly in immunocompromised individuals and children. Therefore, preventing microbial food spoilage is a major concern for health authorities, regulators, consumers, and the food industry. However, the contamination of food products is difficult to control because there are several potential sources during production, processing, storage, distribution, and consumption, where microorganisms come in contact with the product. Here, we use high-throughput full-length 16S rRNA gene sequencing to provide insights into bacterial community structure throughout a pork-processing plant. Specifically, we investigated what proportion of bacteria on meat are presumptively not animal-associated and are therefore transferred during cutting via personnel, equipment, machines, or the slaughter environment. We then created a facility-specific transmission map of bacterial flow, which predicted previously unknown sources of bacterial contamination. This allowed us to pinpoint specific taxa to particular environmental sources and provide the facility with essential information for targeted disinfection. For example,
Moraxella
spp., a prominent meat spoilage organism, which was one of the most abundant amplicon sequence variants (ASVs) detected on the meat, was most likely transferred from the gloves of employees, a railing at the classification step, and the polishing tunnel whips. Our results suggest that high-throughput full-length 16S rRNA gene sequencing has great potential in food monitoring applications.</description><subject>631/1647/514/2254</subject><subject>631/326/171/1495</subject><subject>631/326/2522</subject><subject>631/326/2565/2134</subject><subject>631/326/2565/855</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>Biomedical and Life Sciences</subject><subject>Community structure</subject><subject>Disinfection</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Ribosomal - genetics</subject><subject>Food</subject><subject>Food contamination</subject><subject>Food Contamination - analysis</subject><subject>Food Handling</subject><subject>Food industry</subject><subject>Food Microbiology</subject><subject>Food processing</subject><subject>Food spoilage</subject><subject>Food-Processing Industry</subject><subject>Foodborne diseases</subject><subject>Gloves</subject><subject>Gloves, Protective - microbiology</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Meat</subject><subject>Meat processing</subject><subject>Medical Microbiology</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Phylogeny</subject><subject>Pork</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Swine</subject><issn>2055-5008</issn><issn>2055-5008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1rFTEUhoMotlz7A9xIwI2b0Zx8zCQbQYpfUHBz9yGTydybMpOMyYzQ_npPubVWQVcJOc95T877EvIS2FtgQr-rEhTnDeOsYSDa5vYJOedMqUYxpp8-up-Ri1qvGWOgZCe0ek7OBG8VCCPOSb8_BlrzVnyo1KWBrsWlOsdaY0605G3F9zzSOfqS--gmuuRlm9yK5UrXIxKHI1LU0Tm4lS4lo1KN6UBH5-MU15sX5Nnophou7s8d2X_6uL_80lx9-_z18sNV46XRawNSytaJzg-D61TfaqOk4Ur2AAqG3gnjh8BG03asHXwYWiFhMF6DAQDvxY68P8kuWz8HJBKuMtmlxNmVG5tdtH9WUjzaQ_5hO6HAKIMCb-4FSv6-hbpatMGHaXIp5K1aLrlgrZbo3I68_gu9RgsTboeU1kKh-ez_FOcYomAaKThRaHCtJYwPXwZm75K2p6QtJm3vkra32PPq8a4PHb9yRYCfgIqldAjl9-h_q_4ETmW1MQ</recordid><startdate>20200710</startdate><enddate>20200710</enddate><creator>Zwirzitz, Benjamin</creator><creator>Wetzels, Stefanie U.</creator><creator>Dixon, Emmanuel D.</creator><creator>Stessl, Beatrix</creator><creator>Zaiser, Andreas</creator><creator>Rabanser, Isabel</creator><creator>Thalguter, Sarah</creator><creator>Pinior, Beate</creator><creator>Roch, Franz-Ferdinand</creator><creator>Strachan, Cameron</creator><creator>Zanghellini, Jürgen</creator><creator>Dzieciol, Monika</creator><creator>Wagner, Martin</creator><creator>Selberherr, Evelyne</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1550-3511</orcidid><orcidid>https://orcid.org/0000-0002-0972-6241</orcidid></search><sort><creationdate>20200710</creationdate><title>The sources and transmission routes of microbial populations throughout a meat processing facility</title><author>Zwirzitz, Benjamin ; Wetzels, Stefanie U. ; Dixon, Emmanuel D. ; Stessl, Beatrix ; Zaiser, Andreas ; Rabanser, Isabel ; Thalguter, Sarah ; Pinior, Beate ; Roch, Franz-Ferdinand ; Strachan, Cameron ; Zanghellini, Jürgen ; Dzieciol, Monika ; Wagner, Martin ; Selberherr, Evelyne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-14446a37cdda75b689549254b1151dba39cde0f96706dced6341d9c819111cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/1647/514/2254</topic><topic>631/326/171/1495</topic><topic>631/326/2522</topic><topic>631/326/2565/2134</topic><topic>631/326/2565/855</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>Biomedical and Life Sciences</topic><topic>Community structure</topic><topic>Disinfection</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Ribosomal - genetics</topic><topic>Food</topic><topic>Food contamination</topic><topic>Food Contamination - analysis</topic><topic>Food Handling</topic><topic>Food industry</topic><topic>Food Microbiology</topic><topic>Food processing</topic><topic>Food spoilage</topic><topic>Food-Processing Industry</topic><topic>Foodborne diseases</topic><topic>Gloves</topic><topic>Gloves, Protective - microbiology</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Meat</topic><topic>Meat processing</topic><topic>Medical Microbiology</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Phylogeny</topic><topic>Pork</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zwirzitz, Benjamin</creatorcontrib><creatorcontrib>Wetzels, Stefanie U.</creatorcontrib><creatorcontrib>Dixon, Emmanuel D.</creatorcontrib><creatorcontrib>Stessl, Beatrix</creatorcontrib><creatorcontrib>Zaiser, Andreas</creatorcontrib><creatorcontrib>Rabanser, Isabel</creatorcontrib><creatorcontrib>Thalguter, Sarah</creatorcontrib><creatorcontrib>Pinior, Beate</creatorcontrib><creatorcontrib>Roch, Franz-Ferdinand</creatorcontrib><creatorcontrib>Strachan, Cameron</creatorcontrib><creatorcontrib>Zanghellini, Jürgen</creatorcontrib><creatorcontrib>Dzieciol, Monika</creatorcontrib><creatorcontrib>Wagner, Martin</creatorcontrib><creatorcontrib>Selberherr, Evelyne</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NPJ biofilms and microbiomes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zwirzitz, Benjamin</au><au>Wetzels, Stefanie U.</au><au>Dixon, Emmanuel D.</au><au>Stessl, Beatrix</au><au>Zaiser, Andreas</au><au>Rabanser, Isabel</au><au>Thalguter, Sarah</au><au>Pinior, Beate</au><au>Roch, Franz-Ferdinand</au><au>Strachan, Cameron</au><au>Zanghellini, Jürgen</au><au>Dzieciol, Monika</au><au>Wagner, Martin</au><au>Selberherr, Evelyne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The sources and transmission routes of microbial populations throughout a meat processing facility</atitle><jtitle>NPJ biofilms and microbiomes</jtitle><stitle>npj Biofilms Microbiomes</stitle><addtitle>NPJ Biofilms Microbiomes</addtitle><date>2020-07-10</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><spage>26</spage><pages>26-</pages><artnum>26</artnum><issn>2055-5008</issn><eissn>2055-5008</eissn><abstract>Microbial food spoilage is responsible for a considerable amount of waste and can cause food-borne diseases in humans, particularly in immunocompromised individuals and children. Therefore, preventing microbial food spoilage is a major concern for health authorities, regulators, consumers, and the food industry. However, the contamination of food products is difficult to control because there are several potential sources during production, processing, storage, distribution, and consumption, where microorganisms come in contact with the product. Here, we use high-throughput full-length 16S rRNA gene sequencing to provide insights into bacterial community structure throughout a pork-processing plant. Specifically, we investigated what proportion of bacteria on meat are presumptively not animal-associated and are therefore transferred during cutting via personnel, equipment, machines, or the slaughter environment. We then created a facility-specific transmission map of bacterial flow, which predicted previously unknown sources of bacterial contamination. This allowed us to pinpoint specific taxa to particular environmental sources and provide the facility with essential information for targeted disinfection. For example,
Moraxella
spp., a prominent meat spoilage organism, which was one of the most abundant amplicon sequence variants (ASVs) detected on the meat, was most likely transferred from the gloves of employees, a railing at the classification step, and the polishing tunnel whips. Our results suggest that high-throughput full-length 16S rRNA gene sequencing has great potential in food monitoring applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32651393</pmid><doi>10.1038/s41522-020-0136-z</doi><orcidid>https://orcid.org/0000-0002-1550-3511</orcidid><orcidid>https://orcid.org/0000-0002-0972-6241</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2055-5008 |
ispartof | NPJ biofilms and microbiomes, 2020-07, Vol.6 (1), p.26, Article 26 |
issn | 2055-5008 2055-5008 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7351959 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals |
subjects | 631/1647/514/2254 631/326/171/1495 631/326/2522 631/326/2565/2134 631/326/2565/855 Animals Bacteria Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Biomedical and Life Sciences Community structure Disinfection DNA, Bacterial - genetics DNA, Ribosomal - genetics Food Food contamination Food Contamination - analysis Food Handling Food industry Food Microbiology Food processing Food spoilage Food-Processing Industry Foodborne diseases Gloves Gloves, Protective - microbiology High-Throughput Nucleotide Sequencing Humans Life Sciences Meat Meat processing Medical Microbiology Microbial Ecology Microbial Genetics and Genomics Microbiology Phylogeny Pork RNA, Ribosomal, 16S - genetics rRNA 16S Sequence Analysis, DNA - methods Swine |
title | The sources and transmission routes of microbial populations throughout a meat processing facility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A29%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20sources%20and%20transmission%20routes%20of%20microbial%20populations%20throughout%20a%20meat%20processing%20facility&rft.jtitle=NPJ%20biofilms%20and%20microbiomes&rft.au=Zwirzitz,%20Benjamin&rft.date=2020-07-10&rft.volume=6&rft.issue=1&rft.spage=26&rft.pages=26-&rft.artnum=26&rft.issn=2055-5008&rft.eissn=2055-5008&rft_id=info:doi/10.1038/s41522-020-0136-z&rft_dat=%3Cproquest_pubme%3E2488352050%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422038308&rft_id=info:pmid/32651393&rfr_iscdi=true |