The sources and transmission routes of microbial populations throughout a meat processing facility

Microbial food spoilage is responsible for a considerable amount of waste and can cause food-borne diseases in humans, particularly in immunocompromised individuals and children. Therefore, preventing microbial food spoilage is a major concern for health authorities, regulators, consumers, and the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ biofilms and microbiomes 2020-07, Vol.6 (1), p.26, Article 26
Hauptverfasser: Zwirzitz, Benjamin, Wetzels, Stefanie U., Dixon, Emmanuel D., Stessl, Beatrix, Zaiser, Andreas, Rabanser, Isabel, Thalguter, Sarah, Pinior, Beate, Roch, Franz-Ferdinand, Strachan, Cameron, Zanghellini, Jürgen, Dzieciol, Monika, Wagner, Martin, Selberherr, Evelyne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 26
container_title NPJ biofilms and microbiomes
container_volume 6
creator Zwirzitz, Benjamin
Wetzels, Stefanie U.
Dixon, Emmanuel D.
Stessl, Beatrix
Zaiser, Andreas
Rabanser, Isabel
Thalguter, Sarah
Pinior, Beate
Roch, Franz-Ferdinand
Strachan, Cameron
Zanghellini, Jürgen
Dzieciol, Monika
Wagner, Martin
Selberherr, Evelyne
description Microbial food spoilage is responsible for a considerable amount of waste and can cause food-borne diseases in humans, particularly in immunocompromised individuals and children. Therefore, preventing microbial food spoilage is a major concern for health authorities, regulators, consumers, and the food industry. However, the contamination of food products is difficult to control because there are several potential sources during production, processing, storage, distribution, and consumption, where microorganisms come in contact with the product. Here, we use high-throughput full-length 16S rRNA gene sequencing to provide insights into bacterial community structure throughout a pork-processing plant. Specifically, we investigated what proportion of bacteria on meat are presumptively not animal-associated and are therefore transferred during cutting via personnel, equipment, machines, or the slaughter environment. We then created a facility-specific transmission map of bacterial flow, which predicted previously unknown sources of bacterial contamination. This allowed us to pinpoint specific taxa to particular environmental sources and provide the facility with essential information for targeted disinfection. For example, Moraxella spp., a prominent meat spoilage organism, which was one of the most abundant amplicon sequence variants (ASVs) detected on the meat, was most likely transferred from the gloves of employees, a railing at the classification step, and the polishing tunnel whips. Our results suggest that high-throughput full-length 16S rRNA gene sequencing has great potential in food monitoring applications.
doi_str_mv 10.1038/s41522-020-0136-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7351959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488352050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-14446a37cdda75b689549254b1151dba39cde0f96706dced6341d9c819111cc3</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMotlz7A9xIwI2b0Zx8zCQbQYpfUHBz9yGTydybMpOMyYzQ_npPubVWQVcJOc95T877EvIS2FtgQr-rEhTnDeOsYSDa5vYJOedMqUYxpp8-up-Ri1qvGWOgZCe0ek7OBG8VCCPOSb8_BlrzVnyo1KWBrsWlOsdaY0605G3F9zzSOfqS--gmuuRlm9yK5UrXIxKHI1LU0Tm4lS4lo1KN6UBH5-MU15sX5Nnophou7s8d2X_6uL_80lx9-_z18sNV46XRawNSytaJzg-D61TfaqOk4Ur2AAqG3gnjh8BG03asHXwYWiFhMF6DAQDvxY68P8kuWz8HJBKuMtmlxNmVG5tdtH9WUjzaQ_5hO6HAKIMCb-4FSv6-hbpatMGHaXIp5K1aLrlgrZbo3I68_gu9RgsTboeU1kKh-ez_FOcYomAaKThRaHCtJYwPXwZm75K2p6QtJm3vkra32PPq8a4PHb9yRYCfgIqldAjl9-h_q_4ETmW1MQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422038308</pqid></control><display><type>article</type><title>The sources and transmission routes of microbial populations throughout a meat processing facility</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Zwirzitz, Benjamin ; Wetzels, Stefanie U. ; Dixon, Emmanuel D. ; Stessl, Beatrix ; Zaiser, Andreas ; Rabanser, Isabel ; Thalguter, Sarah ; Pinior, Beate ; Roch, Franz-Ferdinand ; Strachan, Cameron ; Zanghellini, Jürgen ; Dzieciol, Monika ; Wagner, Martin ; Selberherr, Evelyne</creator><creatorcontrib>Zwirzitz, Benjamin ; Wetzels, Stefanie U. ; Dixon, Emmanuel D. ; Stessl, Beatrix ; Zaiser, Andreas ; Rabanser, Isabel ; Thalguter, Sarah ; Pinior, Beate ; Roch, Franz-Ferdinand ; Strachan, Cameron ; Zanghellini, Jürgen ; Dzieciol, Monika ; Wagner, Martin ; Selberherr, Evelyne</creatorcontrib><description>Microbial food spoilage is responsible for a considerable amount of waste and can cause food-borne diseases in humans, particularly in immunocompromised individuals and children. Therefore, preventing microbial food spoilage is a major concern for health authorities, regulators, consumers, and the food industry. However, the contamination of food products is difficult to control because there are several potential sources during production, processing, storage, distribution, and consumption, where microorganisms come in contact with the product. Here, we use high-throughput full-length 16S rRNA gene sequencing to provide insights into bacterial community structure throughout a pork-processing plant. Specifically, we investigated what proportion of bacteria on meat are presumptively not animal-associated and are therefore transferred during cutting via personnel, equipment, machines, or the slaughter environment. We then created a facility-specific transmission map of bacterial flow, which predicted previously unknown sources of bacterial contamination. This allowed us to pinpoint specific taxa to particular environmental sources and provide the facility with essential information for targeted disinfection. For example, Moraxella spp., a prominent meat spoilage organism, which was one of the most abundant amplicon sequence variants (ASVs) detected on the meat, was most likely transferred from the gloves of employees, a railing at the classification step, and the polishing tunnel whips. Our results suggest that high-throughput full-length 16S rRNA gene sequencing has great potential in food monitoring applications.</description><identifier>ISSN: 2055-5008</identifier><identifier>EISSN: 2055-5008</identifier><identifier>DOI: 10.1038/s41522-020-0136-z</identifier><identifier>PMID: 32651393</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/514/2254 ; 631/326/171/1495 ; 631/326/2522 ; 631/326/2565/2134 ; 631/326/2565/855 ; Animals ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation &amp; purification ; Biomedical and Life Sciences ; Community structure ; Disinfection ; DNA, Bacterial - genetics ; DNA, Ribosomal - genetics ; Food ; Food contamination ; Food Contamination - analysis ; Food Handling ; Food industry ; Food Microbiology ; Food processing ; Food spoilage ; Food-Processing Industry ; Foodborne diseases ; Gloves ; Gloves, Protective - microbiology ; High-Throughput Nucleotide Sequencing ; Humans ; Life Sciences ; Meat ; Meat processing ; Medical Microbiology ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Phylogeny ; Pork ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Sequence Analysis, DNA - methods ; Swine</subject><ispartof>NPJ biofilms and microbiomes, 2020-07, Vol.6 (1), p.26, Article 26</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-14446a37cdda75b689549254b1151dba39cde0f96706dced6341d9c819111cc3</citedby><cites>FETCH-LOGICAL-c498t-14446a37cdda75b689549254b1151dba39cde0f96706dced6341d9c819111cc3</cites><orcidid>0000-0002-1550-3511 ; 0000-0002-0972-6241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351959/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351959/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32651393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zwirzitz, Benjamin</creatorcontrib><creatorcontrib>Wetzels, Stefanie U.</creatorcontrib><creatorcontrib>Dixon, Emmanuel D.</creatorcontrib><creatorcontrib>Stessl, Beatrix</creatorcontrib><creatorcontrib>Zaiser, Andreas</creatorcontrib><creatorcontrib>Rabanser, Isabel</creatorcontrib><creatorcontrib>Thalguter, Sarah</creatorcontrib><creatorcontrib>Pinior, Beate</creatorcontrib><creatorcontrib>Roch, Franz-Ferdinand</creatorcontrib><creatorcontrib>Strachan, Cameron</creatorcontrib><creatorcontrib>Zanghellini, Jürgen</creatorcontrib><creatorcontrib>Dzieciol, Monika</creatorcontrib><creatorcontrib>Wagner, Martin</creatorcontrib><creatorcontrib>Selberherr, Evelyne</creatorcontrib><title>The sources and transmission routes of microbial populations throughout a meat processing facility</title><title>NPJ biofilms and microbiomes</title><addtitle>npj Biofilms Microbiomes</addtitle><addtitle>NPJ Biofilms Microbiomes</addtitle><description>Microbial food spoilage is responsible for a considerable amount of waste and can cause food-borne diseases in humans, particularly in immunocompromised individuals and children. Therefore, preventing microbial food spoilage is a major concern for health authorities, regulators, consumers, and the food industry. However, the contamination of food products is difficult to control because there are several potential sources during production, processing, storage, distribution, and consumption, where microorganisms come in contact with the product. Here, we use high-throughput full-length 16S rRNA gene sequencing to provide insights into bacterial community structure throughout a pork-processing plant. Specifically, we investigated what proportion of bacteria on meat are presumptively not animal-associated and are therefore transferred during cutting via personnel, equipment, machines, or the slaughter environment. We then created a facility-specific transmission map of bacterial flow, which predicted previously unknown sources of bacterial contamination. This allowed us to pinpoint specific taxa to particular environmental sources and provide the facility with essential information for targeted disinfection. For example, Moraxella spp., a prominent meat spoilage organism, which was one of the most abundant amplicon sequence variants (ASVs) detected on the meat, was most likely transferred from the gloves of employees, a railing at the classification step, and the polishing tunnel whips. Our results suggest that high-throughput full-length 16S rRNA gene sequencing has great potential in food monitoring applications.</description><subject>631/1647/514/2254</subject><subject>631/326/171/1495</subject><subject>631/326/2522</subject><subject>631/326/2565/2134</subject><subject>631/326/2565/855</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation &amp; purification</subject><subject>Biomedical and Life Sciences</subject><subject>Community structure</subject><subject>Disinfection</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Ribosomal - genetics</subject><subject>Food</subject><subject>Food contamination</subject><subject>Food Contamination - analysis</subject><subject>Food Handling</subject><subject>Food industry</subject><subject>Food Microbiology</subject><subject>Food processing</subject><subject>Food spoilage</subject><subject>Food-Processing Industry</subject><subject>Foodborne diseases</subject><subject>Gloves</subject><subject>Gloves, Protective - microbiology</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Meat</subject><subject>Meat processing</subject><subject>Medical Microbiology</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Phylogeny</subject><subject>Pork</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Swine</subject><issn>2055-5008</issn><issn>2055-5008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1rFTEUhoMotlz7A9xIwI2b0Zx8zCQbQYpfUHBz9yGTydybMpOMyYzQ_npPubVWQVcJOc95T877EvIS2FtgQr-rEhTnDeOsYSDa5vYJOedMqUYxpp8-up-Ri1qvGWOgZCe0ek7OBG8VCCPOSb8_BlrzVnyo1KWBrsWlOsdaY0605G3F9zzSOfqS--gmuuRlm9yK5UrXIxKHI1LU0Tm4lS4lo1KN6UBH5-MU15sX5Nnophou7s8d2X_6uL_80lx9-_z18sNV46XRawNSytaJzg-D61TfaqOk4Ur2AAqG3gnjh8BG03asHXwYWiFhMF6DAQDvxY68P8kuWz8HJBKuMtmlxNmVG5tdtH9WUjzaQ_5hO6HAKIMCb-4FSv6-hbpatMGHaXIp5K1aLrlgrZbo3I68_gu9RgsTboeU1kKh-ez_FOcYomAaKThRaHCtJYwPXwZm75K2p6QtJm3vkra32PPq8a4PHb9yRYCfgIqldAjl9-h_q_4ETmW1MQ</recordid><startdate>20200710</startdate><enddate>20200710</enddate><creator>Zwirzitz, Benjamin</creator><creator>Wetzels, Stefanie U.</creator><creator>Dixon, Emmanuel D.</creator><creator>Stessl, Beatrix</creator><creator>Zaiser, Andreas</creator><creator>Rabanser, Isabel</creator><creator>Thalguter, Sarah</creator><creator>Pinior, Beate</creator><creator>Roch, Franz-Ferdinand</creator><creator>Strachan, Cameron</creator><creator>Zanghellini, Jürgen</creator><creator>Dzieciol, Monika</creator><creator>Wagner, Martin</creator><creator>Selberherr, Evelyne</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1550-3511</orcidid><orcidid>https://orcid.org/0000-0002-0972-6241</orcidid></search><sort><creationdate>20200710</creationdate><title>The sources and transmission routes of microbial populations throughout a meat processing facility</title><author>Zwirzitz, Benjamin ; Wetzels, Stefanie U. ; Dixon, Emmanuel D. ; Stessl, Beatrix ; Zaiser, Andreas ; Rabanser, Isabel ; Thalguter, Sarah ; Pinior, Beate ; Roch, Franz-Ferdinand ; Strachan, Cameron ; Zanghellini, Jürgen ; Dzieciol, Monika ; Wagner, Martin ; Selberherr, Evelyne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-14446a37cdda75b689549254b1151dba39cde0f96706dced6341d9c819111cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/1647/514/2254</topic><topic>631/326/171/1495</topic><topic>631/326/2522</topic><topic>631/326/2565/2134</topic><topic>631/326/2565/855</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation &amp; purification</topic><topic>Biomedical and Life Sciences</topic><topic>Community structure</topic><topic>Disinfection</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Ribosomal - genetics</topic><topic>Food</topic><topic>Food contamination</topic><topic>Food Contamination - analysis</topic><topic>Food Handling</topic><topic>Food industry</topic><topic>Food Microbiology</topic><topic>Food processing</topic><topic>Food spoilage</topic><topic>Food-Processing Industry</topic><topic>Foodborne diseases</topic><topic>Gloves</topic><topic>Gloves, Protective - microbiology</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Meat</topic><topic>Meat processing</topic><topic>Medical Microbiology</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Phylogeny</topic><topic>Pork</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zwirzitz, Benjamin</creatorcontrib><creatorcontrib>Wetzels, Stefanie U.</creatorcontrib><creatorcontrib>Dixon, Emmanuel D.</creatorcontrib><creatorcontrib>Stessl, Beatrix</creatorcontrib><creatorcontrib>Zaiser, Andreas</creatorcontrib><creatorcontrib>Rabanser, Isabel</creatorcontrib><creatorcontrib>Thalguter, Sarah</creatorcontrib><creatorcontrib>Pinior, Beate</creatorcontrib><creatorcontrib>Roch, Franz-Ferdinand</creatorcontrib><creatorcontrib>Strachan, Cameron</creatorcontrib><creatorcontrib>Zanghellini, Jürgen</creatorcontrib><creatorcontrib>Dzieciol, Monika</creatorcontrib><creatorcontrib>Wagner, Martin</creatorcontrib><creatorcontrib>Selberherr, Evelyne</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NPJ biofilms and microbiomes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zwirzitz, Benjamin</au><au>Wetzels, Stefanie U.</au><au>Dixon, Emmanuel D.</au><au>Stessl, Beatrix</au><au>Zaiser, Andreas</au><au>Rabanser, Isabel</au><au>Thalguter, Sarah</au><au>Pinior, Beate</au><au>Roch, Franz-Ferdinand</au><au>Strachan, Cameron</au><au>Zanghellini, Jürgen</au><au>Dzieciol, Monika</au><au>Wagner, Martin</au><au>Selberherr, Evelyne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The sources and transmission routes of microbial populations throughout a meat processing facility</atitle><jtitle>NPJ biofilms and microbiomes</jtitle><stitle>npj Biofilms Microbiomes</stitle><addtitle>NPJ Biofilms Microbiomes</addtitle><date>2020-07-10</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><spage>26</spage><pages>26-</pages><artnum>26</artnum><issn>2055-5008</issn><eissn>2055-5008</eissn><abstract>Microbial food spoilage is responsible for a considerable amount of waste and can cause food-borne diseases in humans, particularly in immunocompromised individuals and children. Therefore, preventing microbial food spoilage is a major concern for health authorities, regulators, consumers, and the food industry. However, the contamination of food products is difficult to control because there are several potential sources during production, processing, storage, distribution, and consumption, where microorganisms come in contact with the product. Here, we use high-throughput full-length 16S rRNA gene sequencing to provide insights into bacterial community structure throughout a pork-processing plant. Specifically, we investigated what proportion of bacteria on meat are presumptively not animal-associated and are therefore transferred during cutting via personnel, equipment, machines, or the slaughter environment. We then created a facility-specific transmission map of bacterial flow, which predicted previously unknown sources of bacterial contamination. This allowed us to pinpoint specific taxa to particular environmental sources and provide the facility with essential information for targeted disinfection. For example, Moraxella spp., a prominent meat spoilage organism, which was one of the most abundant amplicon sequence variants (ASVs) detected on the meat, was most likely transferred from the gloves of employees, a railing at the classification step, and the polishing tunnel whips. Our results suggest that high-throughput full-length 16S rRNA gene sequencing has great potential in food monitoring applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32651393</pmid><doi>10.1038/s41522-020-0136-z</doi><orcidid>https://orcid.org/0000-0002-1550-3511</orcidid><orcidid>https://orcid.org/0000-0002-0972-6241</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2055-5008
ispartof NPJ biofilms and microbiomes, 2020-07, Vol.6 (1), p.26, Article 26
issn 2055-5008
2055-5008
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7351959
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals
subjects 631/1647/514/2254
631/326/171/1495
631/326/2522
631/326/2565/2134
631/326/2565/855
Animals
Bacteria
Bacteria - classification
Bacteria - genetics
Bacteria - isolation & purification
Biomedical and Life Sciences
Community structure
Disinfection
DNA, Bacterial - genetics
DNA, Ribosomal - genetics
Food
Food contamination
Food Contamination - analysis
Food Handling
Food industry
Food Microbiology
Food processing
Food spoilage
Food-Processing Industry
Foodborne diseases
Gloves
Gloves, Protective - microbiology
High-Throughput Nucleotide Sequencing
Humans
Life Sciences
Meat
Meat processing
Medical Microbiology
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Phylogeny
Pork
RNA, Ribosomal, 16S - genetics
rRNA 16S
Sequence Analysis, DNA - methods
Swine
title The sources and transmission routes of microbial populations throughout a meat processing facility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A29%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20sources%20and%20transmission%20routes%20of%20microbial%20populations%20throughout%20a%20meat%20processing%20facility&rft.jtitle=NPJ%20biofilms%20and%20microbiomes&rft.au=Zwirzitz,%20Benjamin&rft.date=2020-07-10&rft.volume=6&rft.issue=1&rft.spage=26&rft.pages=26-&rft.artnum=26&rft.issn=2055-5008&rft.eissn=2055-5008&rft_id=info:doi/10.1038/s41522-020-0136-z&rft_dat=%3Cproquest_pubme%3E2488352050%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422038308&rft_id=info:pmid/32651393&rfr_iscdi=true