Plac8‐mediated autophagy regulates nasopharyngeal carcinoma cell function via AKT/mTOR pathway
To explore the relationship between autophagy and cell function, we investigated how PLAC8‐mediated autophagy influences proliferation, apoptosis and epithelial‐mesenchymal transition (EMT) in NPC. Colony formation analyses and CCK8 assays were used to assess the proliferative capacity of NPC cells....
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2020-07, Vol.24 (14), p.7778-7788 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7788 |
---|---|
container_issue | 14 |
container_start_page | 7778 |
container_title | Journal of cellular and molecular medicine |
container_volume | 24 |
creator | Huang, Mao‐Ling Qi, Cheng‐Lin Zou, You Yang, Rui Jiang, Yang Sheng, Jian‐Fei Kong, Yong‐Gang Tao, Ze‐Zhang Chen, Shi‐Ming |
description | To explore the relationship between autophagy and cell function, we investigated how PLAC8‐mediated autophagy influences proliferation, apoptosis and epithelial‐mesenchymal transition (EMT) in NPC. Colony formation analyses and CCK8 assays were used to assess the proliferative capacity of NPC cells. Transmission electron microscopy (TEM) was used to identify autophagosomes. Autophagic flux was monitored using the tandem monomeric RFP‐GFP‐tagged LC3 (tfLC3) assay. The rate of apoptosis in NPC cells was analysed by flow cytometry. Western blot analysis was used to evaluate the activation of autophagy and the signalling status of the AKT/mTOR pathway. Our study reveals that knocking out PLAC8 (koPLAC8) induces autophagy and apoptosis, while suppressing NPC cell proliferation and EMT. However, inhibition of autophagy with 3‐methyladenine or by knocking down Beclin‐1 reverses the cell proliferation, apoptosis and EMT influenced by koPLAC8. We find that koPLAC8 inhibits the phosphorylation of AKT and its downstream target, mTOR. Moreover, immunofluorescence and co‐immunoprecipitation reveal complete PLAC8/AKT colocalization and PLAC8/AKT interaction, respectively. Furthermore, knockout of PLAC8 induced autophagy and inactivated AKT/mTOR signalling pathway of NPC xenografts. Overall, our findings demonstrate that koPLAC8 induces autophagy via the AKT/mTOR pathway, thereby inhibiting cell proliferation and EMT, and promoting apoptosis in NPC cells. |
doi_str_mv | 10.1111/jcmm.15409 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7348153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408203732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4899-fbd26d11652c015288f4e242e82ebc8e03a7ab9a1d59370586e6655678d5980b3</originalsourceid><addsrcrecordid>eNp9kc1uEzEUhS0Eom1gwwMgS2wQUlr_j2eDVEX8tLQqQmFt7ng8iaMZT2rPtMquj8Az8iR1mlABC7yxdfzp6J57EHpFyTHN52Rlu-6YSkHKJ-iQSs2mouTi6f5NNdcH6CilFSFcUV4-RwecCaWV5ofox9cWrP5197NztYfB1RjGoV8vYbHB0S3GNmsJB0hbLW7CwkGLLUTrQ98Btq5tcTMGO_g-4BsP-PTL_KSbX33DaxiWt7B5gZ410Cb3cn9P0PePH-azz9OLq09ns9OLqRW6LKdNVTNVU6oks4RKpnUjHBPMaeYqqx3hUEBVAq1lyQsitXJKSakKnQVNKj5B73e-67HKWawLQ4TWrKPv8tymB2_-_gl-aRb9jSm40FTybPB2bxD769GlwXQ-bfNBcP2YDBNEM8ILzjL65h901Y8x5HiZYlSVhcxbn6B3O8rGPqXomsdhKDHb4sy2OPNQXIZf_zn-I_q7qQzQHXDrW7f5j5U5n11e7kzvAf86pMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421697518</pqid></control><display><type>article</type><title>Plac8‐mediated autophagy regulates nasopharyngeal carcinoma cell function via AKT/mTOR pathway</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Huang, Mao‐Ling ; Qi, Cheng‐Lin ; Zou, You ; Yang, Rui ; Jiang, Yang ; Sheng, Jian‐Fei ; Kong, Yong‐Gang ; Tao, Ze‐Zhang ; Chen, Shi‐Ming</creator><creatorcontrib>Huang, Mao‐Ling ; Qi, Cheng‐Lin ; Zou, You ; Yang, Rui ; Jiang, Yang ; Sheng, Jian‐Fei ; Kong, Yong‐Gang ; Tao, Ze‐Zhang ; Chen, Shi‐Ming</creatorcontrib><description>To explore the relationship between autophagy and cell function, we investigated how PLAC8‐mediated autophagy influences proliferation, apoptosis and epithelial‐mesenchymal transition (EMT) in NPC. Colony formation analyses and CCK8 assays were used to assess the proliferative capacity of NPC cells. Transmission electron microscopy (TEM) was used to identify autophagosomes. Autophagic flux was monitored using the tandem monomeric RFP‐GFP‐tagged LC3 (tfLC3) assay. The rate of apoptosis in NPC cells was analysed by flow cytometry. Western blot analysis was used to evaluate the activation of autophagy and the signalling status of the AKT/mTOR pathway. Our study reveals that knocking out PLAC8 (koPLAC8) induces autophagy and apoptosis, while suppressing NPC cell proliferation and EMT. However, inhibition of autophagy with 3‐methyladenine or by knocking down Beclin‐1 reverses the cell proliferation, apoptosis and EMT influenced by koPLAC8. We find that koPLAC8 inhibits the phosphorylation of AKT and its downstream target, mTOR. Moreover, immunofluorescence and co‐immunoprecipitation reveal complete PLAC8/AKT colocalization and PLAC8/AKT interaction, respectively. Furthermore, knockout of PLAC8 induced autophagy and inactivated AKT/mTOR signalling pathway of NPC xenografts. Overall, our findings demonstrate that koPLAC8 induces autophagy via the AKT/mTOR pathway, thereby inhibiting cell proliferation and EMT, and promoting apoptosis in NPC cells.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.15409</identifier><identifier>PMID: 32468683</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>AKT protein ; AKT/mTOR pathway ; Animals ; Antibodies ; Apoptosis ; Apoptosis - genetics ; Autophagy ; Autophagy - genetics ; Beclin-1 - genetics ; Beclin-1 - metabolism ; Cancer ; Cell adhesion & migration ; Cell cycle ; Cell growth ; Cell Line, Tumor ; Cell Proliferation ; Chemotherapy ; Disease Models, Animal ; Disease Susceptibility ; Epithelial-Mesenchymal Transition - genetics ; epithelial‐mesenchymal transition ; Experiments ; Flow cytometry ; Gene Knockdown Techniques ; Genes ; Humans ; Immunofluorescence ; Immunohistochemistry ; Immunoprecipitation ; Laboratory animals ; Male ; Membranes ; Mesenchyme ; Metastasis ; Mice ; Models, Biological ; Nasopharyngeal carcinoma ; Nasopharyngeal Neoplasms - etiology ; Nasopharyngeal Neoplasms - metabolism ; Nasopharyngeal Neoplasms - pathology ; Original ; Phagocytosis ; Phagosomes ; Phosphorylation ; placenta specific 8 gene knockout ; Proteins ; Proteins - genetics ; Proteins - metabolism ; Proto-Oncogene Proteins c-akt - metabolism ; RNA, Small Interfering - genetics ; Signal Transduction ; Software ; Throat cancer ; TOR protein ; TOR Serine-Threonine Kinases - metabolism ; Transmission electron microscopy ; Xenografts</subject><ispartof>Journal of cellular and molecular medicine, 2020-07, Vol.24 (14), p.7778-7788</ispartof><rights>2020 The Authors. published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><rights>2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4899-fbd26d11652c015288f4e242e82ebc8e03a7ab9a1d59370586e6655678d5980b3</citedby><cites>FETCH-LOGICAL-c4899-fbd26d11652c015288f4e242e82ebc8e03a7ab9a1d59370586e6655678d5980b3</cites><orcidid>0000-0002-1216-004X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7348153/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7348153/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32468683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Mao‐Ling</creatorcontrib><creatorcontrib>Qi, Cheng‐Lin</creatorcontrib><creatorcontrib>Zou, You</creatorcontrib><creatorcontrib>Yang, Rui</creatorcontrib><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>Sheng, Jian‐Fei</creatorcontrib><creatorcontrib>Kong, Yong‐Gang</creatorcontrib><creatorcontrib>Tao, Ze‐Zhang</creatorcontrib><creatorcontrib>Chen, Shi‐Ming</creatorcontrib><title>Plac8‐mediated autophagy regulates nasopharyngeal carcinoma cell function via AKT/mTOR pathway</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>To explore the relationship between autophagy and cell function, we investigated how PLAC8‐mediated autophagy influences proliferation, apoptosis and epithelial‐mesenchymal transition (EMT) in NPC. Colony formation analyses and CCK8 assays were used to assess the proliferative capacity of NPC cells. Transmission electron microscopy (TEM) was used to identify autophagosomes. Autophagic flux was monitored using the tandem monomeric RFP‐GFP‐tagged LC3 (tfLC3) assay. The rate of apoptosis in NPC cells was analysed by flow cytometry. Western blot analysis was used to evaluate the activation of autophagy and the signalling status of the AKT/mTOR pathway. Our study reveals that knocking out PLAC8 (koPLAC8) induces autophagy and apoptosis, while suppressing NPC cell proliferation and EMT. However, inhibition of autophagy with 3‐methyladenine or by knocking down Beclin‐1 reverses the cell proliferation, apoptosis and EMT influenced by koPLAC8. We find that koPLAC8 inhibits the phosphorylation of AKT and its downstream target, mTOR. Moreover, immunofluorescence and co‐immunoprecipitation reveal complete PLAC8/AKT colocalization and PLAC8/AKT interaction, respectively. Furthermore, knockout of PLAC8 induced autophagy and inactivated AKT/mTOR signalling pathway of NPC xenografts. Overall, our findings demonstrate that koPLAC8 induces autophagy via the AKT/mTOR pathway, thereby inhibiting cell proliferation and EMT, and promoting apoptosis in NPC cells.</description><subject>AKT protein</subject><subject>AKT/mTOR pathway</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Apoptosis - genetics</subject><subject>Autophagy</subject><subject>Autophagy - genetics</subject><subject>Beclin-1 - genetics</subject><subject>Beclin-1 - metabolism</subject><subject>Cancer</subject><subject>Cell adhesion & migration</subject><subject>Cell cycle</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Chemotherapy</subject><subject>Disease Models, Animal</subject><subject>Disease Susceptibility</subject><subject>Epithelial-Mesenchymal Transition - genetics</subject><subject>epithelial‐mesenchymal transition</subject><subject>Experiments</subject><subject>Flow cytometry</subject><subject>Gene Knockdown Techniques</subject><subject>Genes</subject><subject>Humans</subject><subject>Immunofluorescence</subject><subject>Immunohistochemistry</subject><subject>Immunoprecipitation</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Membranes</subject><subject>Mesenchyme</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Nasopharyngeal carcinoma</subject><subject>Nasopharyngeal Neoplasms - etiology</subject><subject>Nasopharyngeal Neoplasms - metabolism</subject><subject>Nasopharyngeal Neoplasms - pathology</subject><subject>Original</subject><subject>Phagocytosis</subject><subject>Phagosomes</subject><subject>Phosphorylation</subject><subject>placenta specific 8 gene knockout</subject><subject>Proteins</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>Signal Transduction</subject><subject>Software</subject><subject>Throat cancer</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transmission electron microscopy</subject><subject>Xenografts</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1uEzEUhS0Eom1gwwMgS2wQUlr_j2eDVEX8tLQqQmFt7ng8iaMZT2rPtMquj8Az8iR1mlABC7yxdfzp6J57EHpFyTHN52Rlu-6YSkHKJ-iQSs2mouTi6f5NNdcH6CilFSFcUV4-RwecCaWV5ofox9cWrP5197NztYfB1RjGoV8vYbHB0S3GNmsJB0hbLW7CwkGLLUTrQ98Btq5tcTMGO_g-4BsP-PTL_KSbX33DaxiWt7B5gZ410Cb3cn9P0PePH-azz9OLq09ns9OLqRW6LKdNVTNVU6oks4RKpnUjHBPMaeYqqx3hUEBVAq1lyQsitXJKSakKnQVNKj5B73e-67HKWawLQ4TWrKPv8tymB2_-_gl-aRb9jSm40FTybPB2bxD769GlwXQ-bfNBcP2YDBNEM8ILzjL65h901Y8x5HiZYlSVhcxbn6B3O8rGPqXomsdhKDHb4sy2OPNQXIZf_zn-I_q7qQzQHXDrW7f5j5U5n11e7kzvAf86pMg</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Huang, Mao‐Ling</creator><creator>Qi, Cheng‐Lin</creator><creator>Zou, You</creator><creator>Yang, Rui</creator><creator>Jiang, Yang</creator><creator>Sheng, Jian‐Fei</creator><creator>Kong, Yong‐Gang</creator><creator>Tao, Ze‐Zhang</creator><creator>Chen, Shi‐Ming</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1216-004X</orcidid></search><sort><creationdate>202007</creationdate><title>Plac8‐mediated autophagy regulates nasopharyngeal carcinoma cell function via AKT/mTOR pathway</title><author>Huang, Mao‐Ling ; Qi, Cheng‐Lin ; Zou, You ; Yang, Rui ; Jiang, Yang ; Sheng, Jian‐Fei ; Kong, Yong‐Gang ; Tao, Ze‐Zhang ; Chen, Shi‐Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4899-fbd26d11652c015288f4e242e82ebc8e03a7ab9a1d59370586e6655678d5980b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AKT protein</topic><topic>AKT/mTOR pathway</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Apoptosis - genetics</topic><topic>Autophagy</topic><topic>Autophagy - genetics</topic><topic>Beclin-1 - genetics</topic><topic>Beclin-1 - metabolism</topic><topic>Cancer</topic><topic>Cell adhesion & migration</topic><topic>Cell cycle</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Chemotherapy</topic><topic>Disease Models, Animal</topic><topic>Disease Susceptibility</topic><topic>Epithelial-Mesenchymal Transition - genetics</topic><topic>epithelial‐mesenchymal transition</topic><topic>Experiments</topic><topic>Flow cytometry</topic><topic>Gene Knockdown Techniques</topic><topic>Genes</topic><topic>Humans</topic><topic>Immunofluorescence</topic><topic>Immunohistochemistry</topic><topic>Immunoprecipitation</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Membranes</topic><topic>Mesenchyme</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Nasopharyngeal carcinoma</topic><topic>Nasopharyngeal Neoplasms - etiology</topic><topic>Nasopharyngeal Neoplasms - metabolism</topic><topic>Nasopharyngeal Neoplasms - pathology</topic><topic>Original</topic><topic>Phagocytosis</topic><topic>Phagosomes</topic><topic>Phosphorylation</topic><topic>placenta specific 8 gene knockout</topic><topic>Proteins</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>Signal Transduction</topic><topic>Software</topic><topic>Throat cancer</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transmission electron microscopy</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Mao‐Ling</creatorcontrib><creatorcontrib>Qi, Cheng‐Lin</creatorcontrib><creatorcontrib>Zou, You</creatorcontrib><creatorcontrib>Yang, Rui</creatorcontrib><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>Sheng, Jian‐Fei</creatorcontrib><creatorcontrib>Kong, Yong‐Gang</creatorcontrib><creatorcontrib>Tao, Ze‐Zhang</creatorcontrib><creatorcontrib>Chen, Shi‐Ming</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Mao‐Ling</au><au>Qi, Cheng‐Lin</au><au>Zou, You</au><au>Yang, Rui</au><au>Jiang, Yang</au><au>Sheng, Jian‐Fei</au><au>Kong, Yong‐Gang</au><au>Tao, Ze‐Zhang</au><au>Chen, Shi‐Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plac8‐mediated autophagy regulates nasopharyngeal carcinoma cell function via AKT/mTOR pathway</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2020-07</date><risdate>2020</risdate><volume>24</volume><issue>14</issue><spage>7778</spage><epage>7788</epage><pages>7778-7788</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>To explore the relationship between autophagy and cell function, we investigated how PLAC8‐mediated autophagy influences proliferation, apoptosis and epithelial‐mesenchymal transition (EMT) in NPC. Colony formation analyses and CCK8 assays were used to assess the proliferative capacity of NPC cells. Transmission electron microscopy (TEM) was used to identify autophagosomes. Autophagic flux was monitored using the tandem monomeric RFP‐GFP‐tagged LC3 (tfLC3) assay. The rate of apoptosis in NPC cells was analysed by flow cytometry. Western blot analysis was used to evaluate the activation of autophagy and the signalling status of the AKT/mTOR pathway. Our study reveals that knocking out PLAC8 (koPLAC8) induces autophagy and apoptosis, while suppressing NPC cell proliferation and EMT. However, inhibition of autophagy with 3‐methyladenine or by knocking down Beclin‐1 reverses the cell proliferation, apoptosis and EMT influenced by koPLAC8. We find that koPLAC8 inhibits the phosphorylation of AKT and its downstream target, mTOR. Moreover, immunofluorescence and co‐immunoprecipitation reveal complete PLAC8/AKT colocalization and PLAC8/AKT interaction, respectively. Furthermore, knockout of PLAC8 induced autophagy and inactivated AKT/mTOR signalling pathway of NPC xenografts. Overall, our findings demonstrate that koPLAC8 induces autophagy via the AKT/mTOR pathway, thereby inhibiting cell proliferation and EMT, and promoting apoptosis in NPC cells.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>32468683</pmid><doi>10.1111/jcmm.15409</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1216-004X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2020-07, Vol.24 (14), p.7778-7788 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7348153 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central |
subjects | AKT protein AKT/mTOR pathway Animals Antibodies Apoptosis Apoptosis - genetics Autophagy Autophagy - genetics Beclin-1 - genetics Beclin-1 - metabolism Cancer Cell adhesion & migration Cell cycle Cell growth Cell Line, Tumor Cell Proliferation Chemotherapy Disease Models, Animal Disease Susceptibility Epithelial-Mesenchymal Transition - genetics epithelial‐mesenchymal transition Experiments Flow cytometry Gene Knockdown Techniques Genes Humans Immunofluorescence Immunohistochemistry Immunoprecipitation Laboratory animals Male Membranes Mesenchyme Metastasis Mice Models, Biological Nasopharyngeal carcinoma Nasopharyngeal Neoplasms - etiology Nasopharyngeal Neoplasms - metabolism Nasopharyngeal Neoplasms - pathology Original Phagocytosis Phagosomes Phosphorylation placenta specific 8 gene knockout Proteins Proteins - genetics Proteins - metabolism Proto-Oncogene Proteins c-akt - metabolism RNA, Small Interfering - genetics Signal Transduction Software Throat cancer TOR protein TOR Serine-Threonine Kinases - metabolism Transmission electron microscopy Xenografts |
title | Plac8‐mediated autophagy regulates nasopharyngeal carcinoma cell function via AKT/mTOR pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plac8%E2%80%90mediated%20autophagy%20regulates%20nasopharyngeal%20carcinoma%20cell%20function%20via%20AKT/mTOR%20pathway&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Huang,%20Mao%E2%80%90Ling&rft.date=2020-07&rft.volume=24&rft.issue=14&rft.spage=7778&rft.epage=7788&rft.pages=7778-7788&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.15409&rft_dat=%3Cproquest_pubme%3E2408203732%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421697518&rft_id=info:pmid/32468683&rfr_iscdi=true |