A universal polyphosphate kinase: PPK2c of Ralstonia eutropha accepts purine and pyrimidine nucleotides including uridine diphosphate
Polyphosphosphate kinases (PPKs) catalyse the reversible transfer of the γ-phosphate group of a nucleoside-triphosphate to a growing chain of polyphosphate. Most known PPKs are specific for ATP, but some can also use GTP as a phosphate donor. In this study, we describe the properties of a PPK2-type...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2020-08, Vol.104 (15), p.6659-6667 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6667 |
---|---|
container_issue | 15 |
container_start_page | 6659 |
container_title | Applied microbiology and biotechnology |
container_volume | 104 |
creator | Hildenbrand, Jennie C. Teleki, Attila Jendrossek, Dieter |
description | Polyphosphosphate kinases (PPKs) catalyse the reversible transfer of the γ-phosphate group of a nucleoside-triphosphate to a growing chain of polyphosphate. Most known PPKs are specific for ATP, but some can also use GTP as a phosphate donor. In this study, we describe the properties of a PPK2-type PPK of the β-proteobacterium
Ralstonia eutropha
. The purified enzyme (PPK2c) is highly unspecific and accepts purine nucleotides as well as the pyridine nucleotides including UTP as substrates. The presence of a polyP primer is not necessary for activity. The corresponding nucleoside diphosphates and microscopically detectable polyphosphate granules were identified as reaction products. PPK2c also catalyses the formation of ATP, GTP, CTP, dTTP and UTP from the corresponding nucleoside diphosphates, if polyP is present as a phosphate donor. Remarkably, the nucleoside-tetraphosphates AT(4)P, GT(4)P, CT(4)P, dTT(4)P and UT(4)P were also detected in substantial amounts. The low nucleotide specificity of PPK2c predestines this enzyme in combination with polyP to become a powerful tool for the regeneration of ATP and other nucleotides in biotechnological applications. As an example, PPK2c and polyP were used to replace ATP and to fuel the hexokinase-catalysed phosphorylation of glucose with only catalytic amounts of ADP.
Key Points
•
PPK2c of R. eutropha can be used for regeneration of any NTP or dNTP.
• PPK2c is highly unspecific and accepts all purine and pyrimidine nucleotides.
• PPK2c forms polyphosphate granules
in vitro
from any NTP. |
doi_str_mv | 10.1007/s00253-020-10706-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7347700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A629083883</galeid><sourcerecordid>A629083883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-d57e82b164d3fa8e511e02f661acb67b525dc99aa094e45545baa531a6d97b4c3</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEokvhBTggS1zgkDK2YzvhgLSq-FNRiarA2XKcSdYla4c4qdgH4L3xdsuWRQj5YHnmN9_MWF-WPaVwQgHUqwjABM-BQU5Bgcyre9mCFpzlIGlxP1sAVSJXoiqPskcxXgFQVkr5MDviTKRaBYvs55LM3l3jGE1PhtBvhlWIw8pMSL45byK-JhcXH5kloSWXpo9T8M4QnKcxJIoYa3GYIhnm0Xkkxjdk2Ixu7Zrt08-2xzC5BiNx3vZzinYkoTfZxu17Pc4etEkcn9zex9nXd2-_nH7Izz-9PztdnudWUjbljVBYsprKouGtKVFQisBaKamxtVS1YKKxVWUMVAUWQhSiNkZwamRTqbqw_Dh7s9Md5nqNjUU_jabXQ5rYjBsdjNOHGe9WugvXWvFCKYAk8OJWYAzfZ4yTXrtose-NxzBHzQoKXKiqZAl9_hd6FebRp_USxajkooLqjupMj9r5NqS-diuql5JVUPKy5Ik6-QeVToNrZ4PH1qX4QcHLg4LETPhj6swcoz77fHnIsh1rxxDjiO3-PyjordH0zmg6GU3fGE1v537250_uS347KwF8B8SU8h2Od-v_R_YXLznfGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421635909</pqid></control><display><type>article</type><title>A universal polyphosphate kinase: PPK2c of Ralstonia eutropha accepts purine and pyrimidine nucleotides including uridine diphosphate</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Hildenbrand, Jennie C. ; Teleki, Attila ; Jendrossek, Dieter</creator><creatorcontrib>Hildenbrand, Jennie C. ; Teleki, Attila ; Jendrossek, Dieter</creatorcontrib><description>Polyphosphosphate kinases (PPKs) catalyse the reversible transfer of the γ-phosphate group of a nucleoside-triphosphate to a growing chain of polyphosphate. Most known PPKs are specific for ATP, but some can also use GTP as a phosphate donor. In this study, we describe the properties of a PPK2-type PPK of the β-proteobacterium
Ralstonia eutropha
. The purified enzyme (PPK2c) is highly unspecific and accepts purine nucleotides as well as the pyridine nucleotides including UTP as substrates. The presence of a polyP primer is not necessary for activity. The corresponding nucleoside diphosphates and microscopically detectable polyphosphate granules were identified as reaction products. PPK2c also catalyses the formation of ATP, GTP, CTP, dTTP and UTP from the corresponding nucleoside diphosphates, if polyP is present as a phosphate donor. Remarkably, the nucleoside-tetraphosphates AT(4)P, GT(4)P, CT(4)P, dTT(4)P and UT(4)P were also detected in substantial amounts. The low nucleotide specificity of PPK2c predestines this enzyme in combination with polyP to become a powerful tool for the regeneration of ATP and other nucleotides in biotechnological applications. As an example, PPK2c and polyP were used to replace ATP and to fuel the hexokinase-catalysed phosphorylation of glucose with only catalytic amounts of ADP.
Key Points
•
PPK2c of R. eutropha can be used for regeneration of any NTP or dNTP.
• PPK2c is highly unspecific and accepts all purine and pyrimidine nucleotides.
• PPK2c forms polyphosphate granules
in vitro
from any NTP.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-020-10706-9</identifier><identifier>PMID: 32500270</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adenosine diphosphate ; Adenosine Diphosphate - metabolism ; Adenosine triphosphate ; Adenosine Triphosphate - metabolism ; Alkaloids ; ATP ; Biomedical and Life Sciences ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; CTP ; Cupriavidus necator - enzymology ; Cupriavidus necator - genetics ; Cytidine triphosphate ; Diphosphates ; Dithiothreitol ; Enzymes ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Granular materials ; Guanosine triphosphate ; Hexokinase ; Kinases ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Nucleosides ; Nucleotides ; Phosphorylation ; Phosphotransferases (Phosphate Group Acceptor) - genetics ; Phosphotransferases (Phosphate Group Acceptor) - metabolism ; Polyphosphate kinase ; Purine Nucleotides - metabolism ; Pyridine ; Pyridine nucleotides ; Pyridines ; Pyrimidine nucleotides ; Pyrimidine Nucleotides - metabolism ; Pyrimidines ; Ralstonia eutropha ; Reaction products ; Regeneration ; Soil bacteria ; Substrates ; Uridine ; Uridine Diphosphate - metabolism</subject><ispartof>Applied microbiology and biotechnology, 2020-08, Vol.104 (15), p.6659-6667</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-d57e82b164d3fa8e511e02f661acb67b525dc99aa094e45545baa531a6d97b4c3</citedby><cites>FETCH-LOGICAL-c612t-d57e82b164d3fa8e511e02f661acb67b525dc99aa094e45545baa531a6d97b4c3</cites><orcidid>0000-0003-3391-0425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-020-10706-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-020-10706-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32500270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hildenbrand, Jennie C.</creatorcontrib><creatorcontrib>Teleki, Attila</creatorcontrib><creatorcontrib>Jendrossek, Dieter</creatorcontrib><title>A universal polyphosphate kinase: PPK2c of Ralstonia eutropha accepts purine and pyrimidine nucleotides including uridine diphosphate</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Polyphosphosphate kinases (PPKs) catalyse the reversible transfer of the γ-phosphate group of a nucleoside-triphosphate to a growing chain of polyphosphate. Most known PPKs are specific for ATP, but some can also use GTP as a phosphate donor. In this study, we describe the properties of a PPK2-type PPK of the β-proteobacterium
Ralstonia eutropha
. The purified enzyme (PPK2c) is highly unspecific and accepts purine nucleotides as well as the pyridine nucleotides including UTP as substrates. The presence of a polyP primer is not necessary for activity. The corresponding nucleoside diphosphates and microscopically detectable polyphosphate granules were identified as reaction products. PPK2c also catalyses the formation of ATP, GTP, CTP, dTTP and UTP from the corresponding nucleoside diphosphates, if polyP is present as a phosphate donor. Remarkably, the nucleoside-tetraphosphates AT(4)P, GT(4)P, CT(4)P, dTT(4)P and UT(4)P were also detected in substantial amounts. The low nucleotide specificity of PPK2c predestines this enzyme in combination with polyP to become a powerful tool for the regeneration of ATP and other nucleotides in biotechnological applications. As an example, PPK2c and polyP were used to replace ATP and to fuel the hexokinase-catalysed phosphorylation of glucose with only catalytic amounts of ADP.
Key Points
•
PPK2c of R. eutropha can be used for regeneration of any NTP or dNTP.
• PPK2c is highly unspecific and accepts all purine and pyrimidine nucleotides.
• PPK2c forms polyphosphate granules
in vitro
from any NTP.</description><subject>Adenosine diphosphate</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Alkaloids</subject><subject>ATP</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>CTP</subject><subject>Cupriavidus necator - enzymology</subject><subject>Cupriavidus necator - genetics</subject><subject>Cytidine triphosphate</subject><subject>Diphosphates</subject><subject>Dithiothreitol</subject><subject>Enzymes</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Granular materials</subject><subject>Guanosine triphosphate</subject><subject>Hexokinase</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Nucleosides</subject><subject>Nucleotides</subject><subject>Phosphorylation</subject><subject>Phosphotransferases (Phosphate Group Acceptor) - genetics</subject><subject>Phosphotransferases (Phosphate Group Acceptor) - metabolism</subject><subject>Polyphosphate kinase</subject><subject>Purine Nucleotides - metabolism</subject><subject>Pyridine</subject><subject>Pyridine nucleotides</subject><subject>Pyridines</subject><subject>Pyrimidine nucleotides</subject><subject>Pyrimidine Nucleotides - metabolism</subject><subject>Pyrimidines</subject><subject>Ralstonia eutropha</subject><subject>Reaction products</subject><subject>Regeneration</subject><subject>Soil bacteria</subject><subject>Substrates</subject><subject>Uridine</subject><subject>Uridine Diphosphate - metabolism</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9ks9u1DAQxiMEokvhBTggS1zgkDK2YzvhgLSq-FNRiarA2XKcSdYla4c4qdgH4L3xdsuWRQj5YHnmN9_MWF-WPaVwQgHUqwjABM-BQU5Bgcyre9mCFpzlIGlxP1sAVSJXoiqPskcxXgFQVkr5MDviTKRaBYvs55LM3l3jGE1PhtBvhlWIw8pMSL45byK-JhcXH5kloSWXpo9T8M4QnKcxJIoYa3GYIhnm0Xkkxjdk2Ixu7Zrt08-2xzC5BiNx3vZzinYkoTfZxu17Pc4etEkcn9zex9nXd2-_nH7Izz-9PztdnudWUjbljVBYsprKouGtKVFQisBaKamxtVS1YKKxVWUMVAUWQhSiNkZwamRTqbqw_Dh7s9Md5nqNjUU_jabXQ5rYjBsdjNOHGe9WugvXWvFCKYAk8OJWYAzfZ4yTXrtose-NxzBHzQoKXKiqZAl9_hd6FebRp_USxajkooLqjupMj9r5NqS-diuql5JVUPKy5Ik6-QeVToNrZ4PH1qX4QcHLg4LETPhj6swcoz77fHnIsh1rxxDjiO3-PyjordH0zmg6GU3fGE1v537250_uS347KwF8B8SU8h2Od-v_R_YXLznfGQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Hildenbrand, Jennie C.</creator><creator>Teleki, Attila</creator><creator>Jendrossek, Dieter</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3391-0425</orcidid></search><sort><creationdate>20200801</creationdate><title>A universal polyphosphate kinase: PPK2c of Ralstonia eutropha accepts purine and pyrimidine nucleotides including uridine diphosphate</title><author>Hildenbrand, Jennie C. ; Teleki, Attila ; Jendrossek, Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-d57e82b164d3fa8e511e02f661acb67b525dc99aa094e45545baa531a6d97b4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine diphosphate</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Alkaloids</topic><topic>ATP</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>CTP</topic><topic>Cupriavidus necator - enzymology</topic><topic>Cupriavidus necator - genetics</topic><topic>Cytidine triphosphate</topic><topic>Diphosphates</topic><topic>Dithiothreitol</topic><topic>Enzymes</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Granular materials</topic><topic>Guanosine triphosphate</topic><topic>Hexokinase</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Nucleosides</topic><topic>Nucleotides</topic><topic>Phosphorylation</topic><topic>Phosphotransferases (Phosphate Group Acceptor) - genetics</topic><topic>Phosphotransferases (Phosphate Group Acceptor) - metabolism</topic><topic>Polyphosphate kinase</topic><topic>Purine Nucleotides - metabolism</topic><topic>Pyridine</topic><topic>Pyridine nucleotides</topic><topic>Pyridines</topic><topic>Pyrimidine nucleotides</topic><topic>Pyrimidine Nucleotides - metabolism</topic><topic>Pyrimidines</topic><topic>Ralstonia eutropha</topic><topic>Reaction products</topic><topic>Regeneration</topic><topic>Soil bacteria</topic><topic>Substrates</topic><topic>Uridine</topic><topic>Uridine Diphosphate - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hildenbrand, Jennie C.</creatorcontrib><creatorcontrib>Teleki, Attila</creatorcontrib><creatorcontrib>Jendrossek, Dieter</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hildenbrand, Jennie C.</au><au>Teleki, Attila</au><au>Jendrossek, Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A universal polyphosphate kinase: PPK2c of Ralstonia eutropha accepts purine and pyrimidine nucleotides including uridine diphosphate</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>104</volume><issue>15</issue><spage>6659</spage><epage>6667</epage><pages>6659-6667</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Polyphosphosphate kinases (PPKs) catalyse the reversible transfer of the γ-phosphate group of a nucleoside-triphosphate to a growing chain of polyphosphate. Most known PPKs are specific for ATP, but some can also use GTP as a phosphate donor. In this study, we describe the properties of a PPK2-type PPK of the β-proteobacterium
Ralstonia eutropha
. The purified enzyme (PPK2c) is highly unspecific and accepts purine nucleotides as well as the pyridine nucleotides including UTP as substrates. The presence of a polyP primer is not necessary for activity. The corresponding nucleoside diphosphates and microscopically detectable polyphosphate granules were identified as reaction products. PPK2c also catalyses the formation of ATP, GTP, CTP, dTTP and UTP from the corresponding nucleoside diphosphates, if polyP is present as a phosphate donor. Remarkably, the nucleoside-tetraphosphates AT(4)P, GT(4)P, CT(4)P, dTT(4)P and UT(4)P were also detected in substantial amounts. The low nucleotide specificity of PPK2c predestines this enzyme in combination with polyP to become a powerful tool for the regeneration of ATP and other nucleotides in biotechnological applications. As an example, PPK2c and polyP were used to replace ATP and to fuel the hexokinase-catalysed phosphorylation of glucose with only catalytic amounts of ADP.
Key Points
•
PPK2c of R. eutropha can be used for regeneration of any NTP or dNTP.
• PPK2c is highly unspecific and accepts all purine and pyrimidine nucleotides.
• PPK2c forms polyphosphate granules
in vitro
from any NTP.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32500270</pmid><doi>10.1007/s00253-020-10706-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3391-0425</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2020-08, Vol.104 (15), p.6659-6667 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7347700 |
source | MEDLINE; SpringerLink Journals |
subjects | Adenosine diphosphate Adenosine Diphosphate - metabolism Adenosine triphosphate Adenosine Triphosphate - metabolism Alkaloids ATP Biomedical and Life Sciences Biotechnologically Relevant Enzymes and Proteins Biotechnology CTP Cupriavidus necator - enzymology Cupriavidus necator - genetics Cytidine triphosphate Diphosphates Dithiothreitol Enzymes Escherichia coli - genetics Escherichia coli - metabolism Granular materials Guanosine triphosphate Hexokinase Kinases Life Sciences Microbial Genetics and Genomics Microbiology Nucleosides Nucleotides Phosphorylation Phosphotransferases (Phosphate Group Acceptor) - genetics Phosphotransferases (Phosphate Group Acceptor) - metabolism Polyphosphate kinase Purine Nucleotides - metabolism Pyridine Pyridine nucleotides Pyridines Pyrimidine nucleotides Pyrimidine Nucleotides - metabolism Pyrimidines Ralstonia eutropha Reaction products Regeneration Soil bacteria Substrates Uridine Uridine Diphosphate - metabolism |
title | A universal polyphosphate kinase: PPK2c of Ralstonia eutropha accepts purine and pyrimidine nucleotides including uridine diphosphate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A25%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20universal%20polyphosphate%20kinase:%20PPK2c%20of%20Ralstonia%20eutropha%20accepts%20purine%20and%20pyrimidine%20nucleotides%20including%20uridine%20diphosphate&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Hildenbrand,%20Jennie%20C.&rft.date=2020-08-01&rft.volume=104&rft.issue=15&rft.spage=6659&rft.epage=6667&rft.pages=6659-6667&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-020-10706-9&rft_dat=%3Cgale_pubme%3EA629083883%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421635909&rft_id=info:pmid/32500270&rft_galeid=A629083883&rfr_iscdi=true |