Electrocardiographic changes predate Parkinson’s disease onset

Autonomic nervous system involvement precedes the motor features of Parkinson’s disease (PD). Our goal was to develop a proof-of-concept model for identifying subjects at high risk of developing PD by analysis of cardiac electrical activity. We used standard 10-s electrocardiogram (ECG) recordings o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-07, Vol.10 (1), p.11319, Article 11319
Hauptverfasser: Akbilgic, Oguz, Kamaleswaran, Rishikesan, Mohammed, Akram, Ross, G. Webster, Masaki, Kamal, Petrovitch, Helen, Tanner, Caroline M., Davis, Robert L., Goldman, Samuel M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 11319
container_title Scientific reports
container_volume 10
creator Akbilgic, Oguz
Kamaleswaran, Rishikesan
Mohammed, Akram
Ross, G. Webster
Masaki, Kamal
Petrovitch, Helen
Tanner, Caroline M.
Davis, Robert L.
Goldman, Samuel M.
description Autonomic nervous system involvement precedes the motor features of Parkinson’s disease (PD). Our goal was to develop a proof-of-concept model for identifying subjects at high risk of developing PD by analysis of cardiac electrical activity. We used standard 10-s electrocardiogram (ECG) recordings of 60 subjects from the Honolulu Asia Aging Study including 10 with prevalent PD, 25 with prodromal PD, and 25 controls who never developed PD. Various methods were implemented to extract features from ECGs including simple heart rate variability (HRV) metrics, commonly used signal processing methods, and a Probabilistic Symbolic Pattern Recognition (PSPR) method. Extracted features were analyzed via stepwise logistic regression to distinguish between prodromal cases and controls. Stepwise logistic regression selected four features from PSPR as predictors of PD. The final regression model built on the entire dataset provided an area under receiver operating characteristics curve (AUC) with 95% confidence interval of 0.90 [0.80, 0.99]. The five-fold cross-validation process produced an average AUC of 0.835 [0.831, 0.839]. We conclude that cardiac electrical activity provides important information about the likelihood of future PD not captured by classical HRV metrics. Machine learning applied to ECGs may help identify subjects at high risk of having prodromal PD.
doi_str_mv 10.1038/s41598-020-68241-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7347531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421630737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-6d79ca8d6e4c8783a7917537777ab7fabb8673db81b82e8dc7d4e095cbe078cc3</originalsourceid><addsrcrecordid>eNp9UctKBDEQDKKoqD_gQQY9j-Y1SeYiivgCQQ96Dpmkdze6JmsyK3jzN_w9v8To-LzYlwS6uqqrC6FNgncJZmovc9K0qsYU10JRTmqxgFYp5k1NGaWLv_4raCPnW1yqoS0n7TJaYVRwSVqxig6Op2D7FK1JzsdxMrOJt5WdmDCGXM0SONNDdWXSnQ85htfnl1w5n8FkqGLI0K-jpZGZZtj4fNfQzcnx9dFZfXF5en50eFHbBpO-Fk621igngFslFTOyJbJhspTp5Mh0nRKSuU6RTlFQzkrHAbeN7QBLZS1bQ_sD72ze3YOzEPpkpnqW_L1JTzoar_92gp_ocXzUkvEiRArB9kAQc-91tr4HO7ExhOJfE1WuSVgB7XyqpPgwh9zr2zhPoRjTlFMiGJZMFhQdUDbFnBOMvtcgWL-no4d0dElHf6SjRRna-m3ge-QriwJgAyCXVjl_-tH-h_YNI6qcPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421630737</pqid></control><display><type>article</type><title>Electrocardiographic changes predate Parkinson’s disease onset</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Akbilgic, Oguz ; Kamaleswaran, Rishikesan ; Mohammed, Akram ; Ross, G. Webster ; Masaki, Kamal ; Petrovitch, Helen ; Tanner, Caroline M. ; Davis, Robert L. ; Goldman, Samuel M.</creator><creatorcontrib>Akbilgic, Oguz ; Kamaleswaran, Rishikesan ; Mohammed, Akram ; Ross, G. Webster ; Masaki, Kamal ; Petrovitch, Helen ; Tanner, Caroline M. ; Davis, Robert L. ; Goldman, Samuel M. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Autonomic nervous system involvement precedes the motor features of Parkinson’s disease (PD). Our goal was to develop a proof-of-concept model for identifying subjects at high risk of developing PD by analysis of cardiac electrical activity. We used standard 10-s electrocardiogram (ECG) recordings of 60 subjects from the Honolulu Asia Aging Study including 10 with prevalent PD, 25 with prodromal PD, and 25 controls who never developed PD. Various methods were implemented to extract features from ECGs including simple heart rate variability (HRV) metrics, commonly used signal processing methods, and a Probabilistic Symbolic Pattern Recognition (PSPR) method. Extracted features were analyzed via stepwise logistic regression to distinguish between prodromal cases and controls. Stepwise logistic regression selected four features from PSPR as predictors of PD. The final regression model built on the entire dataset provided an area under receiver operating characteristics curve (AUC) with 95% confidence interval of 0.90 [0.80, 0.99]. The five-fold cross-validation process produced an average AUC of 0.835 [0.831, 0.839]. We conclude that cardiac electrical activity provides important information about the likelihood of future PD not captured by classical HRV metrics. Machine learning applied to ECGs may help identify subjects at high risk of having prodromal PD.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-68241-6</identifier><identifier>PMID: 32647196</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/531 ; 692/308/53/2421 ; 692/308/53/2423 ; 692/699/375/1718 ; Aged ; Aged, 80 and over ; Aging ; Asian Americans ; Autonomic nervous system ; BASIC BIOLOGICAL SCIENCES ; Case-Control Studies ; Disease Progression ; EKG ; Electrocardiography ; Hawaii ; Heart Rate ; Humanities and Social Sciences ; Humans ; Learning algorithms ; Logistic Models ; Machine Learning ; Male ; Middle Aged ; Movement disorders ; multidisciplinary ; Neurodegenerative diseases ; Parkinson Disease - diagnosis ; Parkinson Disease - physiopathology ; Parkinson's disease ; Pattern recognition ; Pattern Recognition, Automated ; Prodromal Symptoms ; Proof of Concept Study ; Science ; Science (multidisciplinary) ; Signal processing</subject><ispartof>Scientific reports, 2020-07, Vol.10 (1), p.11319, Article 11319</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-6d79ca8d6e4c8783a7917537777ab7fabb8673db81b82e8dc7d4e095cbe078cc3</citedby><cites>FETCH-LOGICAL-c501t-6d79ca8d6e4c8783a7917537777ab7fabb8673db81b82e8dc7d4e095cbe078cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347531/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347531/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32647196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1815913$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Akbilgic, Oguz</creatorcontrib><creatorcontrib>Kamaleswaran, Rishikesan</creatorcontrib><creatorcontrib>Mohammed, Akram</creatorcontrib><creatorcontrib>Ross, G. Webster</creatorcontrib><creatorcontrib>Masaki, Kamal</creatorcontrib><creatorcontrib>Petrovitch, Helen</creatorcontrib><creatorcontrib>Tanner, Caroline M.</creatorcontrib><creatorcontrib>Davis, Robert L.</creatorcontrib><creatorcontrib>Goldman, Samuel M.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Electrocardiographic changes predate Parkinson’s disease onset</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Autonomic nervous system involvement precedes the motor features of Parkinson’s disease (PD). Our goal was to develop a proof-of-concept model for identifying subjects at high risk of developing PD by analysis of cardiac electrical activity. We used standard 10-s electrocardiogram (ECG) recordings of 60 subjects from the Honolulu Asia Aging Study including 10 with prevalent PD, 25 with prodromal PD, and 25 controls who never developed PD. Various methods were implemented to extract features from ECGs including simple heart rate variability (HRV) metrics, commonly used signal processing methods, and a Probabilistic Symbolic Pattern Recognition (PSPR) method. Extracted features were analyzed via stepwise logistic regression to distinguish between prodromal cases and controls. Stepwise logistic regression selected four features from PSPR as predictors of PD. The final regression model built on the entire dataset provided an area under receiver operating characteristics curve (AUC) with 95% confidence interval of 0.90 [0.80, 0.99]. The five-fold cross-validation process produced an average AUC of 0.835 [0.831, 0.839]. We conclude that cardiac electrical activity provides important information about the likelihood of future PD not captured by classical HRV metrics. Machine learning applied to ECGs may help identify subjects at high risk of having prodromal PD.</description><subject>639/705/531</subject><subject>692/308/53/2421</subject><subject>692/308/53/2423</subject><subject>692/699/375/1718</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Aging</subject><subject>Asian Americans</subject><subject>Autonomic nervous system</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Case-Control Studies</subject><subject>Disease Progression</subject><subject>EKG</subject><subject>Electrocardiography</subject><subject>Hawaii</subject><subject>Heart Rate</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Logistic Models</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Movement disorders</subject><subject>multidisciplinary</subject><subject>Neurodegenerative diseases</subject><subject>Parkinson Disease - diagnosis</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson's disease</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated</subject><subject>Prodromal Symptoms</subject><subject>Proof of Concept Study</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal processing</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UctKBDEQDKKoqD_gQQY9j-Y1SeYiivgCQQ96Dpmkdze6JmsyK3jzN_w9v8To-LzYlwS6uqqrC6FNgncJZmovc9K0qsYU10JRTmqxgFYp5k1NGaWLv_4raCPnW1yqoS0n7TJaYVRwSVqxig6Op2D7FK1JzsdxMrOJt5WdmDCGXM0SONNDdWXSnQ85htfnl1w5n8FkqGLI0K-jpZGZZtj4fNfQzcnx9dFZfXF5en50eFHbBpO-Fk621igngFslFTOyJbJhspTp5Mh0nRKSuU6RTlFQzkrHAbeN7QBLZS1bQ_sD72ze3YOzEPpkpnqW_L1JTzoar_92gp_ocXzUkvEiRArB9kAQc-91tr4HO7ExhOJfE1WuSVgB7XyqpPgwh9zr2zhPoRjTlFMiGJZMFhQdUDbFnBOMvtcgWL-no4d0dElHf6SjRRna-m3ge-QriwJgAyCXVjl_-tH-h_YNI6qcPw</recordid><startdate>20200709</startdate><enddate>20200709</enddate><creator>Akbilgic, Oguz</creator><creator>Kamaleswaran, Rishikesan</creator><creator>Mohammed, Akram</creator><creator>Ross, G. Webster</creator><creator>Masaki, Kamal</creator><creator>Petrovitch, Helen</creator><creator>Tanner, Caroline M.</creator><creator>Davis, Robert L.</creator><creator>Goldman, Samuel M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20200709</creationdate><title>Electrocardiographic changes predate Parkinson’s disease onset</title><author>Akbilgic, Oguz ; Kamaleswaran, Rishikesan ; Mohammed, Akram ; Ross, G. Webster ; Masaki, Kamal ; Petrovitch, Helen ; Tanner, Caroline M. ; Davis, Robert L. ; Goldman, Samuel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-6d79ca8d6e4c8783a7917537777ab7fabb8673db81b82e8dc7d4e095cbe078cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/705/531</topic><topic>692/308/53/2421</topic><topic>692/308/53/2423</topic><topic>692/699/375/1718</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Aging</topic><topic>Asian Americans</topic><topic>Autonomic nervous system</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Case-Control Studies</topic><topic>Disease Progression</topic><topic>EKG</topic><topic>Electrocardiography</topic><topic>Hawaii</topic><topic>Heart Rate</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Logistic Models</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Movement disorders</topic><topic>multidisciplinary</topic><topic>Neurodegenerative diseases</topic><topic>Parkinson Disease - diagnosis</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson's disease</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated</topic><topic>Prodromal Symptoms</topic><topic>Proof of Concept Study</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbilgic, Oguz</creatorcontrib><creatorcontrib>Kamaleswaran, Rishikesan</creatorcontrib><creatorcontrib>Mohammed, Akram</creatorcontrib><creatorcontrib>Ross, G. Webster</creatorcontrib><creatorcontrib>Masaki, Kamal</creatorcontrib><creatorcontrib>Petrovitch, Helen</creatorcontrib><creatorcontrib>Tanner, Caroline M.</creatorcontrib><creatorcontrib>Davis, Robert L.</creatorcontrib><creatorcontrib>Goldman, Samuel M.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbilgic, Oguz</au><au>Kamaleswaran, Rishikesan</au><au>Mohammed, Akram</au><au>Ross, G. Webster</au><au>Masaki, Kamal</au><au>Petrovitch, Helen</au><au>Tanner, Caroline M.</au><au>Davis, Robert L.</au><au>Goldman, Samuel M.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrocardiographic changes predate Parkinson’s disease onset</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-07-09</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>11319</spage><pages>11319-</pages><artnum>11319</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Autonomic nervous system involvement precedes the motor features of Parkinson’s disease (PD). Our goal was to develop a proof-of-concept model for identifying subjects at high risk of developing PD by analysis of cardiac electrical activity. We used standard 10-s electrocardiogram (ECG) recordings of 60 subjects from the Honolulu Asia Aging Study including 10 with prevalent PD, 25 with prodromal PD, and 25 controls who never developed PD. Various methods were implemented to extract features from ECGs including simple heart rate variability (HRV) metrics, commonly used signal processing methods, and a Probabilistic Symbolic Pattern Recognition (PSPR) method. Extracted features were analyzed via stepwise logistic regression to distinguish between prodromal cases and controls. Stepwise logistic regression selected four features from PSPR as predictors of PD. The final regression model built on the entire dataset provided an area under receiver operating characteristics curve (AUC) with 95% confidence interval of 0.90 [0.80, 0.99]. The five-fold cross-validation process produced an average AUC of 0.835 [0.831, 0.839]. We conclude that cardiac electrical activity provides important information about the likelihood of future PD not captured by classical HRV metrics. Machine learning applied to ECGs may help identify subjects at high risk of having prodromal PD.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32647196</pmid><doi>10.1038/s41598-020-68241-6</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-07, Vol.10 (1), p.11319, Article 11319
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7347531
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry
subjects 639/705/531
692/308/53/2421
692/308/53/2423
692/699/375/1718
Aged
Aged, 80 and over
Aging
Asian Americans
Autonomic nervous system
BASIC BIOLOGICAL SCIENCES
Case-Control Studies
Disease Progression
EKG
Electrocardiography
Hawaii
Heart Rate
Humanities and Social Sciences
Humans
Learning algorithms
Logistic Models
Machine Learning
Male
Middle Aged
Movement disorders
multidisciplinary
Neurodegenerative diseases
Parkinson Disease - diagnosis
Parkinson Disease - physiopathology
Parkinson's disease
Pattern recognition
Pattern Recognition, Automated
Prodromal Symptoms
Proof of Concept Study
Science
Science (multidisciplinary)
Signal processing
title Electrocardiographic changes predate Parkinson’s disease onset
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrocardiographic%20changes%20predate%20Parkinson%E2%80%99s%20disease%20onset&rft.jtitle=Scientific%20reports&rft.au=Akbilgic,%20Oguz&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-07-09&rft.volume=10&rft.issue=1&rft.spage=11319&rft.pages=11319-&rft.artnum=11319&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-68241-6&rft_dat=%3Cproquest_pubme%3E2421630737%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421630737&rft_id=info:pmid/32647196&rfr_iscdi=true