Flavin-dependent N-hydroxylating enzymes: distribution and application
Amino groups derived from naturally abundant amino acids or (di)amines can be used as “shuttles” in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as N -hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime, C -, S -, or N -nitroso, and azoxy u...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2020-08, Vol.104 (15), p.6481-6499 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6499 |
---|---|
container_issue | 15 |
container_start_page | 6481 |
container_title | Applied microbiology and biotechnology |
container_volume | 104 |
creator | Mügge, Carolin Heine, Thomas Baraibar, Alvaro Gomez van Berkel, Willem J. H. Paul, Caroline E. Tischler, Dirk |
description | Amino groups derived from naturally abundant amino acids or (di)amines can be used as “shuttles” in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as
N
-hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime,
C
-,
S
-, or
N
-nitroso, and azoxy units. To this end, molecular oxygen is activated by flavin, heme, or metal cofactor-containing enzymes and transferred to initially obtain
N
-hydroxy compounds, which can be further functionalized. In this review, we focus on flavin-dependent
N
-hydroxylating enzymes, which play a major role in the production of secondary metabolites, such as siderophores or antimicrobial agents. Flavoprotein monooxygenases of higher organisms (among others, in humans) can interact with nitrogen-bearing secondary metabolites or are relevant with respect to detoxification metabolism and are thus of importance to understand potential medical applications. Many enzymes that catalyze
N
-hydroxylation reactions have specific substrate scopes and others are rather relaxed. The subsequent conversion towards various N-O or N-N comprising molecules is also described. Overall, flavin-dependent
N
-hydroxylating enzymes can accept amines, diamines, amino acids, amino sugars, and amino aromatic compounds and thus provide access to versatile families of compounds containing the N-O motif. Natural roles as well as synthetic applications are highlighted.
Key points
• N-O and N-N comprising natural and
(
semi
)
synthetic products are highlighted
.
• Flavin-based NMOs with respect to mechanism
,
structure
,
and phylogeny are reviewed
.
• Applications in natural product formation and synthetic approaches are provided
.
Graphical abstract
. |
doi_str_mv | 10.1007/s00253-020-10705-w |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7347517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A629083875</galeid><sourcerecordid>A629083875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-3c614a9e2133f09e532b7d5276fdbe3349a32f63e43c11a1dc24515b325a87ca3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhi0EokvhD3BAkbjAwcWfccIBqapYqFSBxMfZcpxJ6iqxg520XX493m5pWYSQDyN7nnk9M3oRek7JESVEvUmEMMkxYQRToojEVw_QigrOMCmpeIhWhCqJlayrA_QkpQtCKKvK8jE64EwSkS8rtF4P5tJ53MIEvgU_F5_w-aaN4XozmNn5vgD_czNCelu0Ls3RNcvsgi-MbwszTYOzZnt_ih51Zkjw7DYeou_r999OPuKzzx9OT47PsC0pmzHPQZgaGOW8IzVIzhrVSqbKrm2Ac1EbzrqSg-CWUkNby4Skssn9mkpZww_Ru53utDQjtDY3HM2gp-hGEzc6GKf3M96d6z5casWFklRlgVe3AjH8WCDNenTJwjAYD2FJmglKeJk7khl9-Rd6EZbo83iZYrTkshb8nurNANr5LuR_7VZUH5esJhWvbrSO_kHl08LobPDQufy-V_B6ryAzM1zPvVlS0qdfv-yzbMfaGFKK0N3tgxK9dYreOUVnp-gbp-irXPTiz03elfy2Rgb4Dkg55XuI9-P_R_YXCRzHrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421635943</pqid></control><display><type>article</type><title>Flavin-dependent N-hydroxylating enzymes: distribution and application</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Mügge, Carolin ; Heine, Thomas ; Baraibar, Alvaro Gomez ; van Berkel, Willem J. H. ; Paul, Caroline E. ; Tischler, Dirk</creator><creatorcontrib>Mügge, Carolin ; Heine, Thomas ; Baraibar, Alvaro Gomez ; van Berkel, Willem J. H. ; Paul, Caroline E. ; Tischler, Dirk</creatorcontrib><description>Amino groups derived from naturally abundant amino acids or (di)amines can be used as “shuttles” in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as
N
-hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime,
C
-,
S
-, or
N
-nitroso, and azoxy units. To this end, molecular oxygen is activated by flavin, heme, or metal cofactor-containing enzymes and transferred to initially obtain
N
-hydroxy compounds, which can be further functionalized. In this review, we focus on flavin-dependent
N
-hydroxylating enzymes, which play a major role in the production of secondary metabolites, such as siderophores or antimicrobial agents. Flavoprotein monooxygenases of higher organisms (among others, in humans) can interact with nitrogen-bearing secondary metabolites or are relevant with respect to detoxification metabolism and are thus of importance to understand potential medical applications. Many enzymes that catalyze
N
-hydroxylation reactions have specific substrate scopes and others are rather relaxed. The subsequent conversion towards various N-O or N-N comprising molecules is also described. Overall, flavin-dependent
N
-hydroxylating enzymes can accept amines, diamines, amino acids, amino sugars, and amino aromatic compounds and thus provide access to versatile families of compounds containing the N-O motif. Natural roles as well as synthetic applications are highlighted.
Key points
• N-O and N-N comprising natural and
(
semi
)
synthetic products are highlighted
.
• Flavin-based NMOs with respect to mechanism
,
structure
,
and phylogeny are reviewed
.
• Applications in natural product formation and synthetic approaches are provided
.
Graphical abstract
.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-020-10705-w</identifier><identifier>PMID: 32504128</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amines ; Amino acids ; Amino groups ; Antimicrobial agents ; Aromatic compounds ; Bacteria - enzymology ; Biocatalysis ; Biological Products - metabolism ; Biomedical and Life Sciences ; Biotechnology ; Chemical reactions ; Detoxification ; Diamines ; Enzymes ; Flavin ; Flavins - metabolism ; Flavoproteins - metabolism ; Functional groups ; Heme ; Humans ; Hydroxylation ; Intermediates ; Isoxazolidines ; Kinetics ; Life Sciences ; Metabolites ; Metal oxide semiconductors ; Microbial Genetics and Genomics ; Microbiology ; Mini-Review ; Mixed Function Oxygenases - metabolism ; Natural products ; Nitrogen ; Oxazine ; Oxygen ; Oxygen - metabolism ; Oxygen transfer ; Phylogeny ; Plant metabolites ; Secondary Metabolism ; Secondary metabolites ; Siderophores ; Siderophores - biosynthesis ; Substrates ; Sugar</subject><ispartof>Applied microbiology and biotechnology, 2020-08, Vol.104 (15), p.6481-6499</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-3c614a9e2133f09e532b7d5276fdbe3349a32f63e43c11a1dc24515b325a87ca3</citedby><cites>FETCH-LOGICAL-c612t-3c614a9e2133f09e532b7d5276fdbe3349a32f63e43c11a1dc24515b325a87ca3</cites><orcidid>0000-0002-7889-9920 ; 0000-0002-7109-2788 ; 0000-0002-6288-2403 ; 0000-0001-7191-7316 ; 0000-0002-6551-2782 ; 0000-0002-8065-173X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-020-10705-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-020-10705-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32504128$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mügge, Carolin</creatorcontrib><creatorcontrib>Heine, Thomas</creatorcontrib><creatorcontrib>Baraibar, Alvaro Gomez</creatorcontrib><creatorcontrib>van Berkel, Willem J. H.</creatorcontrib><creatorcontrib>Paul, Caroline E.</creatorcontrib><creatorcontrib>Tischler, Dirk</creatorcontrib><title>Flavin-dependent N-hydroxylating enzymes: distribution and application</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Amino groups derived from naturally abundant amino acids or (di)amines can be used as “shuttles” in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as
N
-hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime,
C
-,
S
-, or
N
-nitroso, and azoxy units. To this end, molecular oxygen is activated by flavin, heme, or metal cofactor-containing enzymes and transferred to initially obtain
N
-hydroxy compounds, which can be further functionalized. In this review, we focus on flavin-dependent
N
-hydroxylating enzymes, which play a major role in the production of secondary metabolites, such as siderophores or antimicrobial agents. Flavoprotein monooxygenases of higher organisms (among others, in humans) can interact with nitrogen-bearing secondary metabolites or are relevant with respect to detoxification metabolism and are thus of importance to understand potential medical applications. Many enzymes that catalyze
N
-hydroxylation reactions have specific substrate scopes and others are rather relaxed. The subsequent conversion towards various N-O or N-N comprising molecules is also described. Overall, flavin-dependent
N
-hydroxylating enzymes can accept amines, diamines, amino acids, amino sugars, and amino aromatic compounds and thus provide access to versatile families of compounds containing the N-O motif. Natural roles as well as synthetic applications are highlighted.
Key points
• N-O and N-N comprising natural and
(
semi
)
synthetic products are highlighted
.
• Flavin-based NMOs with respect to mechanism
,
structure
,
and phylogeny are reviewed
.
• Applications in natural product formation and synthetic approaches are provided
.
Graphical abstract
.</description><subject>Amines</subject><subject>Amino acids</subject><subject>Amino groups</subject><subject>Antimicrobial agents</subject><subject>Aromatic compounds</subject><subject>Bacteria - enzymology</subject><subject>Biocatalysis</subject><subject>Biological Products - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Chemical reactions</subject><subject>Detoxification</subject><subject>Diamines</subject><subject>Enzymes</subject><subject>Flavin</subject><subject>Flavins - metabolism</subject><subject>Flavoproteins - metabolism</subject><subject>Functional groups</subject><subject>Heme</subject><subject>Humans</subject><subject>Hydroxylation</subject><subject>Intermediates</subject><subject>Isoxazolidines</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Metal oxide semiconductors</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mini-Review</subject><subject>Mixed Function Oxygenases - metabolism</subject><subject>Natural products</subject><subject>Nitrogen</subject><subject>Oxazine</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Oxygen transfer</subject><subject>Phylogeny</subject><subject>Plant metabolites</subject><subject>Secondary Metabolism</subject><subject>Secondary metabolites</subject><subject>Siderophores</subject><subject>Siderophores - biosynthesis</subject><subject>Substrates</subject><subject>Sugar</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kk1v1DAQhi0EokvhD3BAkbjAwcWfccIBqapYqFSBxMfZcpxJ6iqxg520XX493m5pWYSQDyN7nnk9M3oRek7JESVEvUmEMMkxYQRToojEVw_QigrOMCmpeIhWhCqJlayrA_QkpQtCKKvK8jE64EwSkS8rtF4P5tJ53MIEvgU_F5_w-aaN4XozmNn5vgD_czNCelu0Ls3RNcvsgi-MbwszTYOzZnt_ih51Zkjw7DYeou_r999OPuKzzx9OT47PsC0pmzHPQZgaGOW8IzVIzhrVSqbKrm2Ac1EbzrqSg-CWUkNby4Skssn9mkpZww_Ru53utDQjtDY3HM2gp-hGEzc6GKf3M96d6z5casWFklRlgVe3AjH8WCDNenTJwjAYD2FJmglKeJk7khl9-Rd6EZbo83iZYrTkshb8nurNANr5LuR_7VZUH5esJhWvbrSO_kHl08LobPDQufy-V_B6ryAzM1zPvVlS0qdfv-yzbMfaGFKK0N3tgxK9dYreOUVnp-gbp-irXPTiz03elfy2Rgb4Dkg55XuI9-P_R_YXCRzHrA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Mügge, Carolin</creator><creator>Heine, Thomas</creator><creator>Baraibar, Alvaro Gomez</creator><creator>van Berkel, Willem J. H.</creator><creator>Paul, Caroline E.</creator><creator>Tischler, Dirk</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7889-9920</orcidid><orcidid>https://orcid.org/0000-0002-7109-2788</orcidid><orcidid>https://orcid.org/0000-0002-6288-2403</orcidid><orcidid>https://orcid.org/0000-0001-7191-7316</orcidid><orcidid>https://orcid.org/0000-0002-6551-2782</orcidid><orcidid>https://orcid.org/0000-0002-8065-173X</orcidid></search><sort><creationdate>20200801</creationdate><title>Flavin-dependent N-hydroxylating enzymes: distribution and application</title><author>Mügge, Carolin ; Heine, Thomas ; Baraibar, Alvaro Gomez ; van Berkel, Willem J. H. ; Paul, Caroline E. ; Tischler, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-3c614a9e2133f09e532b7d5276fdbe3349a32f63e43c11a1dc24515b325a87ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amines</topic><topic>Amino acids</topic><topic>Amino groups</topic><topic>Antimicrobial agents</topic><topic>Aromatic compounds</topic><topic>Bacteria - enzymology</topic><topic>Biocatalysis</topic><topic>Biological Products - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Chemical reactions</topic><topic>Detoxification</topic><topic>Diamines</topic><topic>Enzymes</topic><topic>Flavin</topic><topic>Flavins - metabolism</topic><topic>Flavoproteins - metabolism</topic><topic>Functional groups</topic><topic>Heme</topic><topic>Humans</topic><topic>Hydroxylation</topic><topic>Intermediates</topic><topic>Isoxazolidines</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Metal oxide semiconductors</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mini-Review</topic><topic>Mixed Function Oxygenases - metabolism</topic><topic>Natural products</topic><topic>Nitrogen</topic><topic>Oxazine</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Oxygen transfer</topic><topic>Phylogeny</topic><topic>Plant metabolites</topic><topic>Secondary Metabolism</topic><topic>Secondary metabolites</topic><topic>Siderophores</topic><topic>Siderophores - biosynthesis</topic><topic>Substrates</topic><topic>Sugar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mügge, Carolin</creatorcontrib><creatorcontrib>Heine, Thomas</creatorcontrib><creatorcontrib>Baraibar, Alvaro Gomez</creatorcontrib><creatorcontrib>van Berkel, Willem J. H.</creatorcontrib><creatorcontrib>Paul, Caroline E.</creatorcontrib><creatorcontrib>Tischler, Dirk</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mügge, Carolin</au><au>Heine, Thomas</au><au>Baraibar, Alvaro Gomez</au><au>van Berkel, Willem J. H.</au><au>Paul, Caroline E.</au><au>Tischler, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flavin-dependent N-hydroxylating enzymes: distribution and application</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>104</volume><issue>15</issue><spage>6481</spage><epage>6499</epage><pages>6481-6499</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Amino groups derived from naturally abundant amino acids or (di)amines can be used as “shuttles” in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as
N
-hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime,
C
-,
S
-, or
N
-nitroso, and azoxy units. To this end, molecular oxygen is activated by flavin, heme, or metal cofactor-containing enzymes and transferred to initially obtain
N
-hydroxy compounds, which can be further functionalized. In this review, we focus on flavin-dependent
N
-hydroxylating enzymes, which play a major role in the production of secondary metabolites, such as siderophores or antimicrobial agents. Flavoprotein monooxygenases of higher organisms (among others, in humans) can interact with nitrogen-bearing secondary metabolites or are relevant with respect to detoxification metabolism and are thus of importance to understand potential medical applications. Many enzymes that catalyze
N
-hydroxylation reactions have specific substrate scopes and others are rather relaxed. The subsequent conversion towards various N-O or N-N comprising molecules is also described. Overall, flavin-dependent
N
-hydroxylating enzymes can accept amines, diamines, amino acids, amino sugars, and amino aromatic compounds and thus provide access to versatile families of compounds containing the N-O motif. Natural roles as well as synthetic applications are highlighted.
Key points
• N-O and N-N comprising natural and
(
semi
)
synthetic products are highlighted
.
• Flavin-based NMOs with respect to mechanism
,
structure
,
and phylogeny are reviewed
.
• Applications in natural product formation and synthetic approaches are provided
.
Graphical abstract
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32504128</pmid><doi>10.1007/s00253-020-10705-w</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7889-9920</orcidid><orcidid>https://orcid.org/0000-0002-7109-2788</orcidid><orcidid>https://orcid.org/0000-0002-6288-2403</orcidid><orcidid>https://orcid.org/0000-0001-7191-7316</orcidid><orcidid>https://orcid.org/0000-0002-6551-2782</orcidid><orcidid>https://orcid.org/0000-0002-8065-173X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2020-08, Vol.104 (15), p.6481-6499 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7347517 |
source | MEDLINE; SpringerNature Journals |
subjects | Amines Amino acids Amino groups Antimicrobial agents Aromatic compounds Bacteria - enzymology Biocatalysis Biological Products - metabolism Biomedical and Life Sciences Biotechnology Chemical reactions Detoxification Diamines Enzymes Flavin Flavins - metabolism Flavoproteins - metabolism Functional groups Heme Humans Hydroxylation Intermediates Isoxazolidines Kinetics Life Sciences Metabolites Metal oxide semiconductors Microbial Genetics and Genomics Microbiology Mini-Review Mixed Function Oxygenases - metabolism Natural products Nitrogen Oxazine Oxygen Oxygen - metabolism Oxygen transfer Phylogeny Plant metabolites Secondary Metabolism Secondary metabolites Siderophores Siderophores - biosynthesis Substrates Sugar |
title | Flavin-dependent N-hydroxylating enzymes: distribution and application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A28%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flavin-dependent%20N-hydroxylating%20enzymes:%20distribution%20and%20application&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=M%C3%BCgge,%20Carolin&rft.date=2020-08-01&rft.volume=104&rft.issue=15&rft.spage=6481&rft.epage=6499&rft.pages=6481-6499&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-020-10705-w&rft_dat=%3Cgale_pubme%3EA629083875%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421635943&rft_id=info:pmid/32504128&rft_galeid=A629083875&rfr_iscdi=true |