Flavin-dependent N-hydroxylating enzymes: distribution and application

Amino groups derived from naturally abundant amino acids or (di)amines can be used as “shuttles” in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as N -hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime, C -, S -, or N -nitroso, and azoxy u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2020-08, Vol.104 (15), p.6481-6499
Hauptverfasser: Mügge, Carolin, Heine, Thomas, Baraibar, Alvaro Gomez, van Berkel, Willem J. H., Paul, Caroline E., Tischler, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6499
container_issue 15
container_start_page 6481
container_title Applied microbiology and biotechnology
container_volume 104
creator Mügge, Carolin
Heine, Thomas
Baraibar, Alvaro Gomez
van Berkel, Willem J. H.
Paul, Caroline E.
Tischler, Dirk
description Amino groups derived from naturally abundant amino acids or (di)amines can be used as “shuttles” in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as N -hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime, C -, S -, or N -nitroso, and azoxy units. To this end, molecular oxygen is activated by flavin, heme, or metal cofactor-containing enzymes and transferred to initially obtain N -hydroxy compounds, which can be further functionalized. In this review, we focus on flavin-dependent N -hydroxylating enzymes, which play a major role in the production of secondary metabolites, such as siderophores or antimicrobial agents. Flavoprotein monooxygenases of higher organisms (among others, in humans) can interact with nitrogen-bearing secondary metabolites or are relevant with respect to detoxification metabolism and are thus of importance to understand potential medical applications. Many enzymes that catalyze N -hydroxylation reactions have specific substrate scopes and others are rather relaxed. The subsequent conversion towards various N-O or N-N comprising molecules is also described. Overall, flavin-dependent N -hydroxylating enzymes can accept amines, diamines, amino acids, amino sugars, and amino aromatic compounds and thus provide access to versatile families of compounds containing the N-O motif. Natural roles as well as synthetic applications are highlighted. Key points • N-O and N-N comprising natural and ( semi ) synthetic products are highlighted . • Flavin-based NMOs with respect to mechanism , structure , and phylogeny are reviewed . • Applications in natural product formation and synthetic approaches are provided . Graphical abstract .
doi_str_mv 10.1007/s00253-020-10705-w
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7347517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A629083875</galeid><sourcerecordid>A629083875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-3c614a9e2133f09e532b7d5276fdbe3349a32f63e43c11a1dc24515b325a87ca3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhi0EokvhD3BAkbjAwcWfccIBqapYqFSBxMfZcpxJ6iqxg520XX493m5pWYSQDyN7nnk9M3oRek7JESVEvUmEMMkxYQRToojEVw_QigrOMCmpeIhWhCqJlayrA_QkpQtCKKvK8jE64EwSkS8rtF4P5tJ53MIEvgU_F5_w-aaN4XozmNn5vgD_czNCelu0Ls3RNcvsgi-MbwszTYOzZnt_ih51Zkjw7DYeou_r999OPuKzzx9OT47PsC0pmzHPQZgaGOW8IzVIzhrVSqbKrm2Ac1EbzrqSg-CWUkNby4Skssn9mkpZww_Ru53utDQjtDY3HM2gp-hGEzc6GKf3M96d6z5casWFklRlgVe3AjH8WCDNenTJwjAYD2FJmglKeJk7khl9-Rd6EZbo83iZYrTkshb8nurNANr5LuR_7VZUH5esJhWvbrSO_kHl08LobPDQufy-V_B6ryAzM1zPvVlS0qdfv-yzbMfaGFKK0N3tgxK9dYreOUVnp-gbp-irXPTiz03elfy2Rgb4Dkg55XuI9-P_R_YXCRzHrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421635943</pqid></control><display><type>article</type><title>Flavin-dependent N-hydroxylating enzymes: distribution and application</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Mügge, Carolin ; Heine, Thomas ; Baraibar, Alvaro Gomez ; van Berkel, Willem J. H. ; Paul, Caroline E. ; Tischler, Dirk</creator><creatorcontrib>Mügge, Carolin ; Heine, Thomas ; Baraibar, Alvaro Gomez ; van Berkel, Willem J. H. ; Paul, Caroline E. ; Tischler, Dirk</creatorcontrib><description>Amino groups derived from naturally abundant amino acids or (di)amines can be used as “shuttles” in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as N -hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime, C -, S -, or N -nitroso, and azoxy units. To this end, molecular oxygen is activated by flavin, heme, or metal cofactor-containing enzymes and transferred to initially obtain N -hydroxy compounds, which can be further functionalized. In this review, we focus on flavin-dependent N -hydroxylating enzymes, which play a major role in the production of secondary metabolites, such as siderophores or antimicrobial agents. Flavoprotein monooxygenases of higher organisms (among others, in humans) can interact with nitrogen-bearing secondary metabolites or are relevant with respect to detoxification metabolism and are thus of importance to understand potential medical applications. Many enzymes that catalyze N -hydroxylation reactions have specific substrate scopes and others are rather relaxed. The subsequent conversion towards various N-O or N-N comprising molecules is also described. Overall, flavin-dependent N -hydroxylating enzymes can accept amines, diamines, amino acids, amino sugars, and amino aromatic compounds and thus provide access to versatile families of compounds containing the N-O motif. Natural roles as well as synthetic applications are highlighted. Key points • N-O and N-N comprising natural and ( semi ) synthetic products are highlighted . • Flavin-based NMOs with respect to mechanism , structure , and phylogeny are reviewed . • Applications in natural product formation and synthetic approaches are provided . Graphical abstract .</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-020-10705-w</identifier><identifier>PMID: 32504128</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amines ; Amino acids ; Amino groups ; Antimicrobial agents ; Aromatic compounds ; Bacteria - enzymology ; Biocatalysis ; Biological Products - metabolism ; Biomedical and Life Sciences ; Biotechnology ; Chemical reactions ; Detoxification ; Diamines ; Enzymes ; Flavin ; Flavins - metabolism ; Flavoproteins - metabolism ; Functional groups ; Heme ; Humans ; Hydroxylation ; Intermediates ; Isoxazolidines ; Kinetics ; Life Sciences ; Metabolites ; Metal oxide semiconductors ; Microbial Genetics and Genomics ; Microbiology ; Mini-Review ; Mixed Function Oxygenases - metabolism ; Natural products ; Nitrogen ; Oxazine ; Oxygen ; Oxygen - metabolism ; Oxygen transfer ; Phylogeny ; Plant metabolites ; Secondary Metabolism ; Secondary metabolites ; Siderophores ; Siderophores - biosynthesis ; Substrates ; Sugar</subject><ispartof>Applied microbiology and biotechnology, 2020-08, Vol.104 (15), p.6481-6499</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-3c614a9e2133f09e532b7d5276fdbe3349a32f63e43c11a1dc24515b325a87ca3</citedby><cites>FETCH-LOGICAL-c612t-3c614a9e2133f09e532b7d5276fdbe3349a32f63e43c11a1dc24515b325a87ca3</cites><orcidid>0000-0002-7889-9920 ; 0000-0002-7109-2788 ; 0000-0002-6288-2403 ; 0000-0001-7191-7316 ; 0000-0002-6551-2782 ; 0000-0002-8065-173X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-020-10705-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-020-10705-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32504128$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mügge, Carolin</creatorcontrib><creatorcontrib>Heine, Thomas</creatorcontrib><creatorcontrib>Baraibar, Alvaro Gomez</creatorcontrib><creatorcontrib>van Berkel, Willem J. H.</creatorcontrib><creatorcontrib>Paul, Caroline E.</creatorcontrib><creatorcontrib>Tischler, Dirk</creatorcontrib><title>Flavin-dependent N-hydroxylating enzymes: distribution and application</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Amino groups derived from naturally abundant amino acids or (di)amines can be used as “shuttles” in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as N -hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime, C -, S -, or N -nitroso, and azoxy units. To this end, molecular oxygen is activated by flavin, heme, or metal cofactor-containing enzymes and transferred to initially obtain N -hydroxy compounds, which can be further functionalized. In this review, we focus on flavin-dependent N -hydroxylating enzymes, which play a major role in the production of secondary metabolites, such as siderophores or antimicrobial agents. Flavoprotein monooxygenases of higher organisms (among others, in humans) can interact with nitrogen-bearing secondary metabolites or are relevant with respect to detoxification metabolism and are thus of importance to understand potential medical applications. Many enzymes that catalyze N -hydroxylation reactions have specific substrate scopes and others are rather relaxed. The subsequent conversion towards various N-O or N-N comprising molecules is also described. Overall, flavin-dependent N -hydroxylating enzymes can accept amines, diamines, amino acids, amino sugars, and amino aromatic compounds and thus provide access to versatile families of compounds containing the N-O motif. Natural roles as well as synthetic applications are highlighted. Key points • N-O and N-N comprising natural and ( semi ) synthetic products are highlighted . • Flavin-based NMOs with respect to mechanism , structure , and phylogeny are reviewed . • Applications in natural product formation and synthetic approaches are provided . Graphical abstract .</description><subject>Amines</subject><subject>Amino acids</subject><subject>Amino groups</subject><subject>Antimicrobial agents</subject><subject>Aromatic compounds</subject><subject>Bacteria - enzymology</subject><subject>Biocatalysis</subject><subject>Biological Products - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Chemical reactions</subject><subject>Detoxification</subject><subject>Diamines</subject><subject>Enzymes</subject><subject>Flavin</subject><subject>Flavins - metabolism</subject><subject>Flavoproteins - metabolism</subject><subject>Functional groups</subject><subject>Heme</subject><subject>Humans</subject><subject>Hydroxylation</subject><subject>Intermediates</subject><subject>Isoxazolidines</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Metal oxide semiconductors</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mini-Review</subject><subject>Mixed Function Oxygenases - metabolism</subject><subject>Natural products</subject><subject>Nitrogen</subject><subject>Oxazine</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Oxygen transfer</subject><subject>Phylogeny</subject><subject>Plant metabolites</subject><subject>Secondary Metabolism</subject><subject>Secondary metabolites</subject><subject>Siderophores</subject><subject>Siderophores - biosynthesis</subject><subject>Substrates</subject><subject>Sugar</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kk1v1DAQhi0EokvhD3BAkbjAwcWfccIBqapYqFSBxMfZcpxJ6iqxg520XX493m5pWYSQDyN7nnk9M3oRek7JESVEvUmEMMkxYQRToojEVw_QigrOMCmpeIhWhCqJlayrA_QkpQtCKKvK8jE64EwSkS8rtF4P5tJ53MIEvgU_F5_w-aaN4XozmNn5vgD_czNCelu0Ls3RNcvsgi-MbwszTYOzZnt_ih51Zkjw7DYeou_r999OPuKzzx9OT47PsC0pmzHPQZgaGOW8IzVIzhrVSqbKrm2Ac1EbzrqSg-CWUkNby4Skssn9mkpZww_Ru53utDQjtDY3HM2gp-hGEzc6GKf3M96d6z5casWFklRlgVe3AjH8WCDNenTJwjAYD2FJmglKeJk7khl9-Rd6EZbo83iZYrTkshb8nurNANr5LuR_7VZUH5esJhWvbrSO_kHl08LobPDQufy-V_B6ryAzM1zPvVlS0qdfv-yzbMfaGFKK0N3tgxK9dYreOUVnp-gbp-irXPTiz03elfy2Rgb4Dkg55XuI9-P_R_YXCRzHrA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Mügge, Carolin</creator><creator>Heine, Thomas</creator><creator>Baraibar, Alvaro Gomez</creator><creator>van Berkel, Willem J. H.</creator><creator>Paul, Caroline E.</creator><creator>Tischler, Dirk</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7889-9920</orcidid><orcidid>https://orcid.org/0000-0002-7109-2788</orcidid><orcidid>https://orcid.org/0000-0002-6288-2403</orcidid><orcidid>https://orcid.org/0000-0001-7191-7316</orcidid><orcidid>https://orcid.org/0000-0002-6551-2782</orcidid><orcidid>https://orcid.org/0000-0002-8065-173X</orcidid></search><sort><creationdate>20200801</creationdate><title>Flavin-dependent N-hydroxylating enzymes: distribution and application</title><author>Mügge, Carolin ; Heine, Thomas ; Baraibar, Alvaro Gomez ; van Berkel, Willem J. H. ; Paul, Caroline E. ; Tischler, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-3c614a9e2133f09e532b7d5276fdbe3349a32f63e43c11a1dc24515b325a87ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amines</topic><topic>Amino acids</topic><topic>Amino groups</topic><topic>Antimicrobial agents</topic><topic>Aromatic compounds</topic><topic>Bacteria - enzymology</topic><topic>Biocatalysis</topic><topic>Biological Products - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Chemical reactions</topic><topic>Detoxification</topic><topic>Diamines</topic><topic>Enzymes</topic><topic>Flavin</topic><topic>Flavins - metabolism</topic><topic>Flavoproteins - metabolism</topic><topic>Functional groups</topic><topic>Heme</topic><topic>Humans</topic><topic>Hydroxylation</topic><topic>Intermediates</topic><topic>Isoxazolidines</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Metal oxide semiconductors</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mini-Review</topic><topic>Mixed Function Oxygenases - metabolism</topic><topic>Natural products</topic><topic>Nitrogen</topic><topic>Oxazine</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Oxygen transfer</topic><topic>Phylogeny</topic><topic>Plant metabolites</topic><topic>Secondary Metabolism</topic><topic>Secondary metabolites</topic><topic>Siderophores</topic><topic>Siderophores - biosynthesis</topic><topic>Substrates</topic><topic>Sugar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mügge, Carolin</creatorcontrib><creatorcontrib>Heine, Thomas</creatorcontrib><creatorcontrib>Baraibar, Alvaro Gomez</creatorcontrib><creatorcontrib>van Berkel, Willem J. H.</creatorcontrib><creatorcontrib>Paul, Caroline E.</creatorcontrib><creatorcontrib>Tischler, Dirk</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mügge, Carolin</au><au>Heine, Thomas</au><au>Baraibar, Alvaro Gomez</au><au>van Berkel, Willem J. H.</au><au>Paul, Caroline E.</au><au>Tischler, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flavin-dependent N-hydroxylating enzymes: distribution and application</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>104</volume><issue>15</issue><spage>6481</spage><epage>6499</epage><pages>6481-6499</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Amino groups derived from naturally abundant amino acids or (di)amines can be used as “shuttles” in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as N -hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime, C -, S -, or N -nitroso, and azoxy units. To this end, molecular oxygen is activated by flavin, heme, or metal cofactor-containing enzymes and transferred to initially obtain N -hydroxy compounds, which can be further functionalized. In this review, we focus on flavin-dependent N -hydroxylating enzymes, which play a major role in the production of secondary metabolites, such as siderophores or antimicrobial agents. Flavoprotein monooxygenases of higher organisms (among others, in humans) can interact with nitrogen-bearing secondary metabolites or are relevant with respect to detoxification metabolism and are thus of importance to understand potential medical applications. Many enzymes that catalyze N -hydroxylation reactions have specific substrate scopes and others are rather relaxed. The subsequent conversion towards various N-O or N-N comprising molecules is also described. Overall, flavin-dependent N -hydroxylating enzymes can accept amines, diamines, amino acids, amino sugars, and amino aromatic compounds and thus provide access to versatile families of compounds containing the N-O motif. Natural roles as well as synthetic applications are highlighted. Key points • N-O and N-N comprising natural and ( semi ) synthetic products are highlighted . • Flavin-based NMOs with respect to mechanism , structure , and phylogeny are reviewed . • Applications in natural product formation and synthetic approaches are provided . Graphical abstract .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32504128</pmid><doi>10.1007/s00253-020-10705-w</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7889-9920</orcidid><orcidid>https://orcid.org/0000-0002-7109-2788</orcidid><orcidid>https://orcid.org/0000-0002-6288-2403</orcidid><orcidid>https://orcid.org/0000-0001-7191-7316</orcidid><orcidid>https://orcid.org/0000-0002-6551-2782</orcidid><orcidid>https://orcid.org/0000-0002-8065-173X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2020-08, Vol.104 (15), p.6481-6499
issn 0175-7598
1432-0614
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7347517
source MEDLINE; SpringerNature Journals
subjects Amines
Amino acids
Amino groups
Antimicrobial agents
Aromatic compounds
Bacteria - enzymology
Biocatalysis
Biological Products - metabolism
Biomedical and Life Sciences
Biotechnology
Chemical reactions
Detoxification
Diamines
Enzymes
Flavin
Flavins - metabolism
Flavoproteins - metabolism
Functional groups
Heme
Humans
Hydroxylation
Intermediates
Isoxazolidines
Kinetics
Life Sciences
Metabolites
Metal oxide semiconductors
Microbial Genetics and Genomics
Microbiology
Mini-Review
Mixed Function Oxygenases - metabolism
Natural products
Nitrogen
Oxazine
Oxygen
Oxygen - metabolism
Oxygen transfer
Phylogeny
Plant metabolites
Secondary Metabolism
Secondary metabolites
Siderophores
Siderophores - biosynthesis
Substrates
Sugar
title Flavin-dependent N-hydroxylating enzymes: distribution and application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A28%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flavin-dependent%20N-hydroxylating%20enzymes:%20distribution%20and%20application&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=M%C3%BCgge,%20Carolin&rft.date=2020-08-01&rft.volume=104&rft.issue=15&rft.spage=6481&rft.epage=6499&rft.pages=6481-6499&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-020-10705-w&rft_dat=%3Cgale_pubme%3EA629083875%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421635943&rft_id=info:pmid/32504128&rft_galeid=A629083875&rfr_iscdi=true